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1. Introduction
Within the domain of medical diagnostics, breast cancer classi-
fication stands a binary problem, where: Malignant (cancerous) 
tumors are represented as the class labeled “1”. Benign (noncan-
cerous) tumors are represented as the class labeled “0”. The goal of 
using this dataset is typically to build a model that can accurately 
classify breast tumors based on the provided features. It is a widely 
recognized dataset for practicing and evaluating the algorithm’s 
performance [1]. Traditional classification methodologies have 
valiantly advanced our understanding, achieving commendable 
milestones. Nevertheless, the relentless pursuit of computational 
efficiency continues unabated, steering us toward exploring more 
precise and timely solutions. Although classical artificial intelli-
gence has reached the point that a model is capable of analyzing a 
breast tomosynthesis and predicting from it whether a patient may 
develop cancer within the next five years quantum computing is on 
the brink of a computing revolution [2]. It represents a harbinger 
of a new era in problem-solving and has the potential to guide us 
through the complexities and enigmatic principles of quantum me-
chanics. Quantum algorithms, with their unique capabilities based 
on superposition and entanglement, are envisioned to achieve the 

ability to dissect vast datasets such as breast cancer with unpar-
alleled efficiency. They offer a tantalizing promise: faster, more 
accurate diagnoses that project an entirely new paradigm shift [3].

While quantum algorithms hold great promise, their incorporation 
into practical quantum hardware is the immersion of scientific val-
idation. Real quantum devices are not without challenges: noise, 
limited qubit connectivity, and gate errors present formidable ob-
stacles. Empirical experimentation with real quantum hardware is 
indispensable. This phase of our research anchors the theoretical 
elegance of quantum algorithms in real-world quantum processors.

Figure 1: The IBM Falcon R5.11H Quantum Processor

A Quantum Marvel with 7 Real Qubits, Scalable to 27 Qubits 
Through its Innovative Multi-Chip Stack Architecture, Empower-
ing Quantum Computing Advancements [4].
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1 Introduction

Within the domain of medical diagnostics, breast
cancer classification stands a binary problem,
where: Malignant (cancerous) tumors are repre-
sented as the class labeled "1". Benign (non-
cancerous) tumors are represented as the class la-
beled "0". The goal of using this dataset is typi-
cally to build a model that can accurately classify
breast tumors based on the provided features. It
is a widely recognized dataset for practicing and
evaluating the algorithm’s performance [1]. Tra-
ditional classification methodologies have valiantly
advanced our understanding, achieving commend-
able milestones. Nevertheless, the relentless pur-
suit of computational efficiency continues unabated,

steering us toward exploring more precise and
timely solutions. Although classical artificial intelli-
gence has reached the point that a model is capable
of analyzing a breast tomosynthesis and predicting
from it whether a patient may develop cancer within
the next five years [2], quantum computing is on
the brink of a computing revolution. It represents
a harbinger of a new era in problem-solving and
has the potential to guide us through the complex-
ities and enigmatic principles of quantum mechan-
ics. Quantum algorithms, with their unique capa-
bilities based on superposition and entanglement,
are envisioned to achieve the ability to dissect vast
datasets such as breast cancer with unparalleled ef-
ficiency. They offer a tantalizing promise: faster,
more accurate diagnoses that project an entirely
new paradigm shift [3].

While quantum algorithms hold great promise,
their incorporation into practical quantum hard-
ware is the immersion of scientific validation. Real
quantum devices are not without challenges: noise,
limited qubit connectivity, and gate errors present
formidable obstacles. Empirical experimentation
with real quantum hardware is indispensable. This
phase of our research anchors the theoretical ele-
gance of quantum algorithms in real-world quantum
processors.

Figure 1: The IBM Falcon R5.11H Quantum Processor–

A Quantum Marvel with 7 Real Qubits, Scalable to 27 Qubits

Through its Innovative Multi-Chip Stack Architecture, Empow-

ering Quantum Computing Advancements [4].
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1.1 Paradigm Shift
In binary classification, discerning between two classes is 
paramount. To understand this quantum advantage, we must delve 
into the theoretical underpinnings of quantum algorithms and their 
implications for binary classification.

Classical binary classification typically deals with datasets 
represented as vectors in a high dimensional feature space [5]. 
Each data point is denoted as xi, and the corresponding binary 
label is yi, where yi ∈ {0, 1} represents the two classes. The goal 
is to achieve a decision boundary or hyperplane that best separates 
these classes [6]. Finding the optimal weights and bias often relies 
on iterative optimization techniques such as gradient descent. 
However, as datasets grow in complexity and dimensionality, 
these classical methods may encounter computational limitations. 
Qubits (quantum bits) are the fundamental information units in 
Quantum computing [7]. Qubits can exist in a superposition of 
states, unlike classical bits, which can be either 0 or 1.

Observation: It is crucial to understand that superposition does 
not allow us to directly place multiple distinct inputs into a single 
qubit. A qubit can encode a complex combination of states. Let us 
consider a quantum state |ψ〉 = α|0〉 + β|1〉, where |0〉 and |1〉 are 
the basis states representing classical bits 0 and 1, respectively. 
The complex amplitudes α and β determine the probabilities of 
measuring the qubit in the 0 or 1 state [8]. This superposition 
allows us to perform certain quantum algorithms, such as quantum 
parallelism, where operations can be applied to multiple states 
simultaneously.

In the context of binary classification or other quantum machine 
learning tasks, qubits can represent quantum feature vectors that 
encapsulate information about the data. While qubits enable 
quantum computers to process information differently from 
classical computers, it does not directly represent multiple inputs 
in a single qubit. The power of quantum computing lies in its 
ability to manipulate and process quantum states.

1.2 Quantum Principles
By assuming the above observation, it’s possible to say, the 
superposition of data points allows quantum systems to explore 
multiple data instances simultaneously. This parallelism can 
significantly accelerate computations when dealing with large 
datasets, as quantum algorithms can process data points in a 
superposition, potentially can reduce computational complexity 
and time [9]. Quantum entanglement is another foundational 
principle that goes beyond classical correlations. When two or 
more qubits become entangled, the state of one qubit becomes 
intrinsically linked to the state of another, regardless of the physical 
distance between them. This unique correlation introduces a level 
of interconnectedness that can be harnessed for enhanced data 
processing [10]. It is mathematically represented as:

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉

|00〉, |01〉, |10〉, and |11〉 are the four possible entangled states 
of two qubits. The complex amplitudes α, β, γ and δ describe the 
correlations between these states. Entanglement is particularly 
relevant in the context of high-dimensional data processing. 
It allows quantum systems to discover intricate relationships 
and correlations between data points that might not be seen in 
classical representations. This capability can lead to enhanced 
classification accuracy, especially when dealing with complex 
binary classification problems, such as medical diagnostics.

2. Theoretical Overview
Kernel evaluations are essential for mapping data points into a 
higher-dimensional feature space [11]. The most common kernel 
function used is the Radial Basis Function (RBF) kernel:

• K(x, x′) represents the RBF kernel function.
• x and x′ are the input vectors or data points.
• σ is a hyperparameter that controls the “spread” or “width” of the 
Gaussian function.
• ∥x − x′∥2 denotes the Euclidean distance squared between the 
input vectors x and x′.

Quantum computing introduces a paradigm shift in kernel 
evaluation [3]. The quantum state vector |ψ〉 facilitates the 
parallel computation of kernel evaluations for multiple data points 
simultaneously:

In the above equality, |xi〉 signifies the quantum state of data point 
xi, and αi are complex amplitudes. Quantum algorithms enable 
the efficient calculation of inner products between these quantum 
states, leading to quantum kernel evaluations.

Quantum kernel is created by mapping a classical feature vector ⃗x 
to a Hilbert space using a quantum feature map ϕ(⃗x).

• Kij is the kernel matrix.
• x⃗i and x⃗j are dimensional inputs.
• ϕ(⃗x) is the quantum feature map.
• |⟨a|b⟩|2 denotes the overlap of two quantum states a and b.

a. Quantum Parallelism
Quantum computing’s primary advantage lies in its ability to 
compute these kernel evaluations in parallel across multiple data 
points, thanks to superposition; entanglement introduces a new 
level of correlation between data points, allowing the quantum 
model to uncover intricate patterns that might remain hidden in 
classical representations [12]. Classical computers, by contrast, 
must calculate them sequentially. For instance, the class SVM 
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might not be seen in classical representations. This
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classification problems, such as medical diagnostics.
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Kernel evaluations are essential for mapping data
points into a higher-dimensional feature space [11].
The most common kernel function used is the
Radial Basis Function (RBF ) kernel:

K(x, x′) = exp
(
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where;

• K(x, x′) represents the RBF kernel function.

• x and x′ are the input vectors or data points.

• σ is a hyperparameter that controls the
"spread" or "width" of the Gaussian function.

• ∥x − x′∥2 denotes the Euclidean distance
squared between the input vectors x and x′.

Quantum computing introduces a paradigm shift
in kernel evaluation [3]. The quantum state vector
|ψ〉 facilitates the parallel computation of kernel
evaluations for multiple data points simultaneously:

|ψ⟩ =
∑

i αi|xi⟩

In the above equality, |xi〉 signifies the quantum
state of data point xi, and αi are complex ampli-
tudes. Quantum algorithms enable the efficient
calculation of inner products between these quan-
tum states, leading to quantum kernel evaluations.

Quantum kernel is created by mapping a classical
feature vector x⃗ to a Hilbert space using a quantum
feature map ϕ(x⃗) [4].
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Kij = |⟨ϕ(x⃗i)|ϕ(x⃗j)⟩|2 where;

• Kij is the kernel matrix.

• x⃗i and x⃗j are dimensional inputs.

• ϕ(x⃗) is the quantum feature map.

• |⟨a|b⟩|2 denotes the overlap of two quantum
states a and b.

2.1 Quantum Parallelism

Quantum computing’s primary advantage lies in its
ability to compute these kernel evaluations in paral-
lel across multiple data points, thanks to superpo-
sition; entanglement introduces a new level of cor-
relation between data points, allowing the quantum
model to uncover intricate patterns that might re-
main hidden in classical representations [12]. Clas-
sical computers, by contrast, must calculate them
sequentially. For instance, the class SVM exploits
the outputs of these quantum phenomena and com-
putes kernel evaluations. This parallelism can dras-
tically reduce computational complexity [13], mak-
ing it possible to handle high-dimensional datasets
efficiently.

3 Methodology

The guidelines in this section are indispensable for
the quantum experiment process.

3.1 Quantum-Ready Preparation

The initial step in our data preprocessing pipeline
addresses dimensionality reduction [14]. It is up-
permost for quantum workflows due to the intrinsic
quantum computing resources limitations. Quan-
tum computers exhibit significant computational
power but are currently constrained by the number
of qubits and quantum gates they can efficiently
handle. By reducing the dimensionality of the
dataset using Principal Component Analysis (PCA)
to the number of real qubits, which are seven, in this
study, we mitigate the quantum resources required
for subsequent operations. This enhances quantum
algorithm efficiency, as it reduces the number of
qubits and quantum operations needed to process
the data.

3.2 Ease Quantum Convergence

Normalization plays an essential role in quantum
data preprocessing by standardizing the dataset. In
quantum algorithms, ensuring data consistency and
convergence is crucial to operate reliably on diverse
datasets while avoiding numerical instability. When

data exhibits widely varying scales, quantum com-
putations can become unstable or converge slowly
[15]. Normalization mitigates this issue, fostering
the convergence of quantum algorithms by ensur-
ing that the data operates within a stable range.

3.3 Compatibility with Quantum
Feature Maps

Scaling the dataset to a predefined range is another
pivotal preprocessing step for quantum computa-
tions. Quantum feature maps and quantum kernels,
central to many quantum machine learning algo-
rithms, often depend on the input data’s range [16].
Scaling the data aligns it with the expectations of
quantum components, ensuring compatibility.
Non-observance to scale the data appropriately
could lead quantum computations to yield inaccu-
rate results.

3.4 Managing Computational
Resources

The selection of train and test size parameters
determines the dataset’s size, directly impacting
quantum computation complexity. By limiting the
dataset size, we strike a balance between compu-
tational feasibility and classification accuracy [17].
This step is focal to check, as it allows us to tai-
lor their analyses to the available quantum hard-
ware capabilities and desired effectiveness since
data selection ensures that quantum resources are
utilized efficiently, making quantum computations
more manageable.

4 Results

We present the outcomes of our quantum-based
classification approach. We explore various aspects
of classification performance, including accuracy en-
hancement, insights from confusion matrices, and a
breakdown of correct and incorrect classifications.

4.1 Quantum Accuracy Enhance-
ment

We delve into the empirical demonstration of quan-
tum advantage in the context of our quantum-
augmented (SVMs). The quantum exploration
is empirically substantiated through specific Pauli
configurations [18], namely ‘ZZ ’, ‘ZY ’ and a custom
configuration [‘Z’, ‘YY’, ‘ZXZ’ ]. We try to under-
stand the scientific rationale behind each Pauli con-
figuration, including the quantum feature maps in-
volved and how these configurations are intricately
linked to the quantum accuracy enhancement.
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exploits the outputs of these quantum phenomena and computes 
kernel evaluations. This parallelism can drastically reduce 
computational complexity  making it possible to handle high-
dimensional datasets efficiently [13].

3. Methodology
The guidelines in this section are indispensable for the quantum 
experiment process.

a. Quantum-Ready Preparation
The initial step in our data preprocessing pipeline addresses 
dimensionality reduction [14]. It is uppermost for quantum 
workflows due to the intrinsic quantum computing resources 
limitations. Quantum computers exhibit significant computational 
power but are currently constrained by the number of qubits 
and quantum gates they can efficiently handle. By reducing the 
dimensionality of the dataset using Principal Component Analysis 
(PCA) to the number of real qubits, which are seven, in this 
study, we mitigate the quantum resources required for subsequent 
operations. This enhances quantum algorithm efficiency, as it 
reduces the number of qubits and quantum operations needed to 
process the data.

b. Ease Quantum Convergence
Normalization plays an essential role in quantum data preprocessing 
by standardizing the dataset. In quantum algorithms, ensuring 
data consistency and convergence is crucial to operate reliably 
on diverse datasets while avoiding numerical instability. When 
data exhibits widely varying scales, quantum computations can 
become unstable or converge slowly [15]. Normalization mitigates 
this issue, fostering the convergence of quantum algorithms by 
ensuring that the data operates within a stable range.

c. Compatibility	with Quantum Feature Maps
Scaling the dataset to a predefined range is another pivotal 
preprocessing step for quantum computations. Quantum feature 
maps and quantum kernels, central to many quantum machine 
learning algorithms, often depend on the input data’s range 
[16]. Scaling the data aligns it with the expectations of quantum 
components, ensuring compatibility. Non-observance to scale 
the data appropriately could lead quantum computations to yield 
inaccurate results.

d. Managing Computational Resources
The selection of train and test size parameters determines the 
dataset’s size, directly impacting quantum computation complexity. 
By limiting the dataset size, we strike a balance between 
computational feasibility and classification accuracy [17]. This 
step is focal to check, as it allows us to tailor their analyses to the 
available quantum hardware capabilities and desired effectiveness 
since data selection ensures that quantum resources are utilized 

efficiently, making quantum computations more manageable.

4. Results
We present the outcomes of our quantum-based classification 
approach. We explore various aspects of classification performance, 
including accuracy enhancement, insights from confusion matrices, 
and a breakdown of correct and incorrect classifications.

a. Quantum Accuracy Enhancement
We delve into the empirical demonstration of quantum advantage 
in the context of our quantumaugmented (SVMs). The quantum 
exploration is empirically substantiated through specific Pauli 
configurations namely ‘ZZ’, ‘ZY ’ and a custom configuration [‘Z’, 
‘YY’, ‘ZXZ’]. We try to understand the scientific rationale behind 
each Pauli configuration, including the quantum feature maps 
involved and how these configurations are intricately linked to the 
quantum accuracy enhancement [18].

i. Pauli Configuration ‘ZZ’
The ‘ZZ’ Pauli configuration signifies utilizing the ZZFeatureMap, 
a quantum feature map designed to capture pairwise correlations 
between data points. In this configuration, the quantum feature 
map is defined as follows:

ΦZZ(x) = Qi ≠j exp(iθijZi ⊗ Zj) where;
• ΦZZ(x) represents the function.
• Qi≠j denotes the product over all pairs (i, j) where i is not equal 
to j.
• iθijZi⊗Zj represents the term inside the product, with ⊗ denoting 
the tensor product.

Zi and Zj are Pauli-Z operators acting on qubits i and j, and θij 
represents the entangling parameter between qubits i and j. This 
feature map captures second-order correlations between the data 
features, allowing the quantum SVM to learn intricate relationships 
within the dataset.

While ‘ZZ’ Pauli configuration leverages the ZZFeatureMap 
capturing pairwise correlations. The high accuracy (0.9300) 
demonstrates that this configuration effectively captured second-
order correlations within the data. The high recall (0.9524) 
suggests that the quantum model excelled at identifying true 
positives, which is crucial in medical diagnosis. The F1-score 
(0.9449) reflects a balanced precision-recall trade-off, all while 
executed on a quantum simulator.

4.1.1 Pauli Configuration ‘ZZ ’

The ‘ZZ ’ Pauli configuration signifies utilizing the
ZZFeatureMap, a quantum feature map designed
to capture pairwise correlations between data
points. In this configuration, the quantum feature
map is defined as follows:

ΦZZ(x) =
∏

i̸=j exp(iθijZi ⊗ Zj) where;

• ΦZZ(x) represents the function.

•
∏

i̸=j denotes the product over all pairs (i, j)
where i is not equal to j.

• iθijZi⊗Zj represents the term inside the prod-
uct, with ⊗ denoting the tensor product.

Zi and Zj are Pauli-Z operators acting on qubits i
and j, and θij represents the entangling parameter
between qubits i and j. This feature map captures
second-order correlations between the data features,
allowing the quantum SVM to learn intricate rela-
tionships within the dataset.

Analysis Results for Pauli Configuration ‘ZZ’

Accuracy (Pauli: ZZ): 0.9300
Recall (Pauli: ZZ): 0.9524

F1-score (Pauli: ZZ) 0.9449

While ‘ZZ ’ Pauli configuration leverages the ZZFea-
tureMap capturing pairwise correlations. The high
accuracy (0.9300) demonstrates that this configura-
tion effectively captured second-order correlations
within the data. The high recall (0.9524) suggests
that the quantum model excelled at identifying true
positives, which is crucial in medical diagnosis. The
F1-score (0.9449) reflects a balanced precision-recall
trade-off, all while executed on a quantum simula-
tor.

Figure 2: The presence of 33 TP indicates that the model

successfully identified 33 malignant tumors correctly. There were

4 FP, which means that the model mistakenly classified 4 benign

tumors as malignant. Additionally, there were 3 FN, signifying

that the model failed to identify 3 malignant tumors correctly.

Lastly, there were 60 TN, indicating that the model correctly

identified 60 benign tumors.

Figure 3: The model successfully discerned and classified the

experiment data with a remarkable accuracy of 93% on quantum

simulation.

4.1.2 Pauli Configuration ‘ZY ’

The ‘ZY ’ Pauli configuration employs the ZFea-
tureMap, which focuses on capturing correlations
between data points and the individual features
of the dataset. The feature map for ‘ZY ’ can be
expressed as:

ΦZY (x) =
∏

i exp(iθiZi ⊗ I) where;

• ΦZY (x) represents the function.

•
∏

i denotes the product over all terms involving
i.

• iθiZi ⊗ I represents the term inside the prod-
uct, with ⊗ denoting the tensor product, and
I representing the identity operator.

In this configuration, Zi is a Pauli-Z operator act-
ing on qubit i, and θi represents the entangling pa-
rameter for feature i. This feature map allows the
quantum SVM to highlight the significance of indi-
vidual features while considering their interplay in
the classification process.

Analysis Results for Pauli Configuration ‘ZY’

Accuracy (Pauli: ZY): 0.9400
Recall (Pauli: ZY): 0.9841

F1-score (Pauli: ZY) 0.9538

‘ZY ’ Pauli configuration employs the ZFeatureMap,
which captures correlations between data points
and individual features. The high accuracy (0.9400)
showcases the configuration’s capability to effec-
tively consider feature importance and data correla-
tions. The impressive recall (0.9841) suggests that
this configuration excelled at identifying cancerous
instances (true positives), all while executed on a
quantum simulator.
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4.1.1 Pauli Configuration ‘ZZ ’

The ‘ZZ ’ Pauli configuration signifies utilizing the
ZZFeatureMap, a quantum feature map designed
to capture pairwise correlations between data
points. In this configuration, the quantum feature
map is defined as follows:

ΦZZ(x) =
∏

i̸=j exp(iθijZi ⊗ Zj) where;

• ΦZZ(x) represents the function.

•
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i̸=j denotes the product over all pairs (i, j)
where i is not equal to j.

• iθijZi⊗Zj represents the term inside the prod-
uct, with ⊗ denoting the tensor product.

Zi and Zj are Pauli-Z operators acting on qubits i
and j, and θij represents the entangling parameter
between qubits i and j. This feature map captures
second-order correlations between the data features,
allowing the quantum SVM to learn intricate rela-
tionships within the dataset.

Analysis Results for Pauli Configuration ‘ZZ’

Accuracy (Pauli: ZZ): 0.9300
Recall (Pauli: ZZ): 0.9524

F1-score (Pauli: ZZ) 0.9449

While ‘ZZ ’ Pauli configuration leverages the ZZFea-
tureMap capturing pairwise correlations. The high
accuracy (0.9300) demonstrates that this configura-
tion effectively captured second-order correlations
within the data. The high recall (0.9524) suggests
that the quantum model excelled at identifying true
positives, which is crucial in medical diagnosis. The
F1-score (0.9449) reflects a balanced precision-recall
trade-off, all while executed on a quantum simula-
tor.

Figure 2: The presence of 33 TP indicates that the model

successfully identified 33 malignant tumors correctly. There were

4 FP, which means that the model mistakenly classified 4 benign

tumors as malignant. Additionally, there were 3 FN, signifying

that the model failed to identify 3 malignant tumors correctly.

Lastly, there were 60 TN, indicating that the model correctly

identified 60 benign tumors.
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Figure 4: The presence of 32 TP indicates that the model

successfully identified 32 malignant tumors correctly. However,

there were 5 FP, which means that the model mistakenly classi-

fied 5 benign tumors as malignant. Additionally, there was 1 FN,

signifying that the model failed to identify 1 malignant tumor

correctly. Lastly, there were 62 TN, indicating that the model

correctly identified 62 benign tumors.

Figure 5: The model successfully discerned and classified the

experiment data with a remarkable accuracy of 93% on quantum

simulation.

4.1.3 Custom Pauli Configuration
[‘Z ′, ‘Y Y ′, ‘ZXZ ′]

The custom Pauli configuration [‘Z’, ‘YY’, ‘ZXZ’ ]
is a versatile choice that combines the Pauli-Z
operator, Pauli-Y operators, and a combination of
Pauli-Z and Pauli-X operators. The custom feature
map can be represented as:

Φ[Z′,Y Y ′,ZXZ′](x) =
∏

i exp(iθiZi⊗ I+ iϕiYi⊗Yi+
iχiZi ⊗Xi) where;

• Φ[Z′,Y Y ′,ZXZ′](x) represents the function.

•
∏

i denotes the product over all terms involving
i.

• iθiZi ⊗ I, iϕiYi ⊗ Yi, and iχiZi ⊗Xi represent
the terms inside the product, with ⊗ denoting
the tensor product. I represents the identity
operator.

Yi represents Pauli-Y operators, Xi represents
Pauli-X operators, and θi, ϕi, and χi are the corre-
sponding entangling parameters.

This setup experiment aims to hypothetically bal-
ance both first-order correlations and complex
higher-order interactions within the data [18].

Analysis Results for Custom Pauli Configuration

Accuracy (Pauli: [‘Z’, ‘YY’, ‘ZXZ’]): 0.6300
Recall (Pauli: [‘Z’, ‘YY’, ‘ZXZ’]): 1.0000

F1-score (Pauli: [‘Z’, ‘YY’, ‘ZXZ’]) 0.7730

This custom Pauli configuration [‘Z’, ‘YY’, ‘ZXZ’ ]
combines Pauli-Z, Pauli-Y, and Pauli-X operators,
looking or pretending to offer a balanced approach
to capturing correlations within the data. While
this configuration got high recall (1.0000) proba-
bly due bias, the accuracy (0.6300) and F1-score
(0.7730) are relatively lower. The lower accuracy
suggests that the model may have incurred more
false positives or negatives compared to the other
configurations. The high recall indicates all true
cancer cases evaluated were identified but poten-
tially at the expense of higher false positives, all
while executed on a quantum simulator.

Figure 6: This particular confusion matrix pattern, where

there is no TP and a relatively high number of FP, suggests a

potential bias in the model. Bias models occur when they are

skewed towards one class, typically the majority class, and per-

form poorly on the minority class. It appears that Pauli [‘Z’,

‘YY’, ‘ZXZ’ ] configuration may have a bias towards classifying

tumors as malignant, resulting in a high number of false pos-

itives. The bias could be due to several factors, including the

choice of the Pauli feature map, hyperparameters of the SVM,

or characteristics of the breast cancer dataset. It is essential to

investigate and fine-tune these factors to address the bias and

improve the model’s performance, especially in scenarios where

correctly identifying malignant tumors.
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the tensor product. I represents the identity
operator.
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sponding entangling parameters.
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higher-order interactions within the data [18].

Analysis Results for Custom Pauli Configuration

Accuracy (Pauli: [‘Z’, ‘YY’, ‘ZXZ’]): 0.6300
Recall (Pauli: [‘Z’, ‘YY’, ‘ZXZ’]): 1.0000

F1-score (Pauli: [‘Z’, ‘YY’, ‘ZXZ’]) 0.7730

This custom Pauli configuration [‘Z’, ‘YY’, ‘ZXZ’ ]
combines Pauli-Z, Pauli-Y, and Pauli-X operators,
looking or pretending to offer a balanced approach
to capturing correlations within the data. While
this configuration got high recall (1.0000) proba-
bly due bias, the accuracy (0.6300) and F1-score
(0.7730) are relatively lower. The lower accuracy
suggests that the model may have incurred more
false positives or negatives compared to the other
configurations. The high recall indicates all true
cancer cases evaluated were identified but poten-
tially at the expense of higher false positives, all
while executed on a quantum simulator.

Figure 6: This particular confusion matrix pattern, where

there is no TP and a relatively high number of FP, suggests a

potential bias in the model. Bias models occur when they are

skewed towards one class, typically the majority class, and per-

form poorly on the minority class. It appears that Pauli [‘Z’,

‘YY’, ‘ZXZ’ ] configuration may have a bias towards classifying

tumors as malignant, resulting in a high number of false pos-

itives. The bias could be due to several factors, including the

choice of the Pauli feature map, hyperparameters of the SVM,

or characteristics of the breast cancer dataset. It is essential to

investigate and fine-tune these factors to address the bias and

improve the model’s performance, especially in scenarios where

correctly identifying malignant tumors.
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Figure 7: The model study has unveiled an accuracy of 63%

on quantum simulation.

4.2 ROC and AUC
Calculation Values

The Receiver Operating Characteristic and Area
Under the Curve presented in the following results
were calculated by leveraging the quantum feature
maps, quantum kernels, and classical SVMs with
quantum kernels as outlined. Here are the values
that were determined:

Figure 8: The code calculated the false positive rate (FPR)

and true positive rate (TPR) at various decision thresholds.

These rates were used to plot the ROC curve. The AUC was

then calculated as the area under this curve.

The high AUC value (96) indicates that the
model’s true positive rate (sensitivity) is con-
siderably higher than its false positive rate
(1-specificity), showcasing its ability to correctly
classify cancer cases while minimizing misclassifi-
cations. In quantum terms, this suggests that the
quantum feature map and quantum kernel derived
from the ‘ZZ ’ Pauli configuration have effectively
encoded and processed the dataset’s information,
enabling the quantum SVM to make perceptible
predictions. In quantum terms, the high AUC
value (98) implies that the quantum model’s
feature map effectively utilizes both data point
correlations and individual feature information

to make highly accurate predictions. Quantum
SVM based on the ‘ZY ’ configuration has learned
to navigate the complex relationships within the
data, leading to superior classification performance.

The scenario with a custom Pauli configuration [‘Z’,
‘YY’, ‘ZXZ’ ] resulting in an AUC value (48) can
be indicative bias or an imbalance in the quantum
data encoding or processing. This bias may arise
from several quantum-related factors:

• Our custom configuration might not be well-
suited for the specific quantum problem we are
trying to solve. Quantum algorithms often rely
on carefully selecting quantum gates (Pauli op-
erators) to encode and manipulate data. If
these operators do not capture the relevant in-
formation in the data, it can lead to a biased
model.

• Quantum systems exhibit entanglement and in-
terference effects [19], which can be both an
advantage and a disadvantage. ‘YY ’ opera-
tor represents a form of entanglement between
qubits, which might not be appropriate for the
experiment. This entanglement could lead to
correlations that are not relevant to the clas-
sification task, introducing noise and bias into
the model.

• Quantum computing algorithms involve vari-
ous design options, such as ansatz (quantum
circuit structure), optimization algorithms,
and encoding techniques, among others. If
these options are not appropriate or if an ex-
periment is performed just to find out what
results it can give, biases can occur.

4.3 Importance of Quantum
Simulators

Quantum simulators like "statevector_simulator"
offer a controlled and resource-efficient environment
for developing, debugging, and validating quantum
algorithms. They ensure the quantum model be-
haves as expected before transitioning to actual
quantum hardware [20]. This step is crucial to
avoid resource wastage and validate the correctness
of the quantum code. Simulators serve as bench-
marks to assess the potential quantum advantage
of an algorithm or configuration when compared to
classical methods. This benchmarking provides a
baseline for evaluating quantum approaches’ effec-
tiveness and helps make informed decisions about
their real-world deployment.
Running on quantum simulators allows us to es-
timate the computational requirements of quantum
algorithms. This estimation is essential for planning
resource allocation, especially when transitioning to

6

Figure 7: The model study has unveiled an accuracy of 63% on quantum simulation.
b. ROC and AUC Calculation Values
The Receiver Operating Characteristic and Area under the Curve 
presented in the following results were calculated by leveraging 

the quantum feature maps, quantum kernels, and classical SVMs 
with quantum kernels as outlined. Here are the values that were 
determined:

Figure 7: The model study has unveiled an accuracy of 63%

on quantum simulation.

4.2 ROC and AUC
Calculation Values

The Receiver Operating Characteristic and Area
Under the Curve presented in the following results
were calculated by leveraging the quantum feature
maps, quantum kernels, and classical SVMs with
quantum kernels as outlined. Here are the values
that were determined:

Figure 8: The code calculated the false positive rate (FPR)

and true positive rate (TPR) at various decision thresholds.

These rates were used to plot the ROC curve. The AUC was

then calculated as the area under this curve.

The high AUC value (96) indicates that the
model’s true positive rate (sensitivity) is con-
siderably higher than its false positive rate
(1-specificity), showcasing its ability to correctly
classify cancer cases while minimizing misclassifi-
cations. In quantum terms, this suggests that the
quantum feature map and quantum kernel derived
from the ‘ZZ ’ Pauli configuration have effectively
encoded and processed the dataset’s information,
enabling the quantum SVM to make perceptible
predictions. In quantum terms, the high AUC
value (98) implies that the quantum model’s
feature map effectively utilizes both data point
correlations and individual feature information

to make highly accurate predictions. Quantum
SVM based on the ‘ZY ’ configuration has learned
to navigate the complex relationships within the
data, leading to superior classification performance.

The scenario with a custom Pauli configuration [‘Z’,
‘YY’, ‘ZXZ’ ] resulting in an AUC value (48) can
be indicative bias or an imbalance in the quantum
data encoding or processing. This bias may arise
from several quantum-related factors:

• Our custom configuration might not be well-
suited for the specific quantum problem we are
trying to solve. Quantum algorithms often rely
on carefully selecting quantum gates (Pauli op-
erators) to encode and manipulate data. If
these operators do not capture the relevant in-
formation in the data, it can lead to a biased
model.

• Quantum systems exhibit entanglement and in-
terference effects [19], which can be both an
advantage and a disadvantage. ‘YY ’ opera-
tor represents a form of entanglement between
qubits, which might not be appropriate for the
experiment. This entanglement could lead to
correlations that are not relevant to the clas-
sification task, introducing noise and bias into
the model.

• Quantum computing algorithms involve vari-
ous design options, such as ansatz (quantum
circuit structure), optimization algorithms,
and encoding techniques, among others. If
these options are not appropriate or if an ex-
periment is performed just to find out what
results it can give, biases can occur.

4.3 Importance of Quantum
Simulators

Quantum simulators like "statevector_simulator"
offer a controlled and resource-efficient environment
for developing, debugging, and validating quantum
algorithms. They ensure the quantum model be-
haves as expected before transitioning to actual
quantum hardware [20]. This step is crucial to
avoid resource wastage and validate the correctness
of the quantum code. Simulators serve as bench-
marks to assess the potential quantum advantage
of an algorithm or configuration when compared to
classical methods. This benchmarking provides a
baseline for evaluating quantum approaches’ effec-
tiveness and helps make informed decisions about
their real-world deployment.
Running on quantum simulators allows us to es-
timate the computational requirements of quantum
algorithms. This estimation is essential for planning
resource allocation, especially when transitioning to

6

Figure 8: The code calculated the false positive rate (FPR) and true positive rate (TPR) at various decision thresholds. These rates were 
used to plot the ROC curve. The AUC was then calculated as the area under this curve.



Volume 5 | Issue 3 | 238J Gene Engg Bio Res, 2023

The high AUC value (96) indicates that the model’s true positive 
rate (sensitivity) is considerably higher than its false positive rate 
(1-specificity), showcasing its ability to correctly classify cancer 
cases while minimizing misclassifications. In quantum terms, this 
suggests that the quantum feature map and quantum kernel derived 
from the ‘ZZ’ Pauli configuration have effectively encoded and 
processed the dataset’s information, enabling the quantum SVM 
to make perceptible predictions. In quantum terms, the high AUC 
value (98) implies that the quantum model’s feature map effec-
tively utilizes both data point correlations and individual feature 
information to make highly accurate predictions. Quantum SVM 
based on the ‘ZY ’ configuration has learned to navigate the com-
plex relationships within the data, leading to superior classification 
performance.

The scenario with a custom Pauli configuration [‘Z’,‘YY’, ‘ZXZ’] 
resulting in an AUC value (48) can be indicative bias or an imbal-
ance in the quantum data encoding or processing. This bias may 
arise from several quantum-related factors:

• Our custom configuration might not be wellsuited for the specif-
ic quantum problem we are trying to solve. Quantum algorithms 
often rely on carefully selecting quantum gates (Pauli operators) 
to encode and manipulate data. If these operators do not capture 
the relevant information in the data, it can lead to a biased model.
• Quantum systems exhibit entanglement and interference effects  
which can be both an advantage and a disadvantage. ‘YY ’ operator 
represents a form of entanglement between qubits, which might 
not be appropriate for the experiment. This entanglement could 
lead to correlations that are not relevant to the classification task, 
introducing noise and bias into the model [19].
• Quantum computing algorithms involve various design options, 
such as ansatz (quantum circuit structure), optimization algo-
rithms, and encoding techniques, among others. If these options 

are not appropriate or if an experiment is performed just to find out 
what results it can give, biases can occur.

c. Importance of Quantum Simulators
Quantum simulators like “statevector_simulator” offer a con-
trolled and resource-efficient environment for developing, debug-
ging, and validating quantum algorithms. They ensure the quantum 
model behaves as expected before transitioning to actual quantum 
hardware [20]. This step is crucial to avoid resource wastage and 
validate the correctness of the quantum code. Simulators serve 
as benchmarks to assess the potential quantum advantage of an 
algorithm or configuration when compared to classical methods. 
This benchmarking provides a baseline for evaluating quantum ap-
proaches’ effectiveness and helps make informed decisions about 
their real-world deployment.

Running on quantum simulators allows us to estimate the compu-
tational requirements of quantum algorithms. This estimation is 
essential for planning resource allocation, especially when transi-
tioning to quantum hardware with limited qubits and gates. It helps 
in optimizing resource usage and managing the cost-effectiveness 
of quantum computations.

5. Real-World IBM Quantum Provider
The selection of an appropriate quantum backend is a crucial as-
pect of any quantum computing experiment, as it directly impacts 
the results’ quality and the research objectives’ feasibility.

In our real-world experiment, we carefully considered the choice 
of the quantum backend, and we opted for the “ibmq_jakarta” is 
hosted on the Falcon r5.11H processor, which is a state-of-the-
art quantum computing system designed for practical quantum 
computations. This processor has several important attributes that 
make it an attractive choice for our experiment.
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It helps in optimizing resource usage and managing
the cost-effectiveness of quantum computations.
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quantum computing system designed for practical
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Figure 9: Readout assignment errors in a quantum processor

refer to inaccuracies or imperfections in the measurement process

that occur at the end of a quantum computation. These errors

can occur when mapping the quantum state of qubits to classical

bits, which is necessary to obtain the measurement outcomes.

When a qubit is in a particular quantum state (e.g.,
|0〉 or |1〉), but the measurement outcome (readout)
does not accurately reflect this state, then there
is a discrepancy between what the qubit’s quan-
tum state should be and what is observed as the
measurement result [21]. Assignment errors are re-
lated to the mapping of qubit states to classical
bits. When assignment errors occur, the classical
bit recorded from the qubit’s measurement does not
correctly correspond to the qubit’s quantum state.
Quantum processors often have built-in calibration
procedures to reduce readout errors. These calibra-
tions involve adjusting the readout assignments for
each qubit to align measurement outcomes with the
actual qubit states. Falcon r5.11H Processor (quan-
tum hardware) and statevector simulator (quantum
simulator) involve fundamental differences related
to hardware constraints, noise-error handling, exe-
cution time, algorithm design, and other factors [4].
We often use simulators during algorithm develop-
ment and debugging before transitioning to quan-
tum hardware for real-world experiments.

5.1 Runtime Service

The runtime_service object represents the con-
nection to IBM Quantum’s cloud-based quantum
computing resources. The jobs() function is used
to retrieve a list of quantum jobs that have
been submitted to the specified quantum back-
end; backend_name="ibmq_jakarta" is the spe-
cific quantum processor we use for our quantum
computations.

Figure 10: List that represent a collection of quantum jobs

submitted to the ’ibmq_jakarta’ quantum backend, a real-world

7-qubit Falcon r5.11H quantum processor. Each <RuntimeJob>

entry corresponds to a specific quantum computation task.

This list of jobs is critical because it provides insight
into the status, progress, and results of quantum
computations performed on real quantum hard-
ware.

5.2 Iterating through jobs list and
retrieve results

Each set of quantum circuits we submit to a quan-
tum computer is assigned a unique Job ID. The Job
ID is a way to track and identify a specific computa-
tion on the quantum computer. In the subsequent
output, we show multiple Job IDs, each correspond-
ing to a different set of quantum circuits.

Figure 11: List that represent a collection of quantum jobs

submitted to the ’ibmq_jakarta’ quantum backend, a real-world

7-qubit Falcon r5.11H quantum processor. Each <RuntimeJob>

entry corresponds to a specific quantum computation task. .

The above figure provides detailed information
about each quantum computation job, including
the backend used, qobj_id (Quantum Object ID),
job_id (Job ID), success status, and the actual re-
sults of the computation.
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tor simulator (quantum simulator) involve fundamental differenc-
es related to hardware constraints, noise-error handling, execution 
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time, algorithm design, and other factors. We often use simulators 
during algorithm development and debugging before transitioning 
to quantum hardware for real-world experiments.

a. Runtime Service
The runtime_service object represents the connection to IBM 
Quantum’s cloud-based quantum computing resources. The jobs 
() function is used to retrieve a list of quantum jobs that have been 
submitted to the specified quantum backend; backend_name=”ib-
mq_jakarta” is the specific quantum processor we use for our 
quantum computations.
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tum computer is assigned a unique Job ID. The Job
ID is a way to track and identify a specific computa-
tion on the quantum computer. In the subsequent
output, we show multiple Job IDs, each correspond-
ing to a different set of quantum circuits.
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sults of the computation.
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The above figure provides detailed information about each quan-
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Backend Name: The “backend_name” field tells which IBM 
quantum computer was used for the computation.

Backend Version: This field specifies the version of the quantum 
computer backend.

Qobj ID: The “qobj_id” is a unique identifier for the quantum 
object used in the computation.

Job ID: This field repeats the Job ID mentioned earlier.

Success: The “success” field indicates whether the quantum com-
putation was successful (True) or encountered errors (False).

Results: This section provides the actual measurement results ob-
tained from running the quantum circuits. It includes information 
about the measured qubits, the number of shots (measurements) 
taken, and the measurement outcomes (counts) for each possible 
outcome.

Experiment Header: This section contains information about the 
quantum circuits that were executed in the job.

Clbit_Labels: Labels for classical bits used in measurement out-
comes. creg_sizes: Sizes of classical registers.

Global Phase: The global phase applied to the quantum circuit.

Memory Slots: The number of classical memory slots used.

Metadata: Additional metadata associated with the experiment.
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n_qubits: The total number of qubits used in the quantum circuit.

Name: The name of the quantum circuit or experiment. qreg_siz-
es: Sizes of quantum registers. 

Qubit_Labels: Labels for individual qubits.

b. Classification Accuracy
The classification accuracy achieved in this experiment, utilizing 
real quantum hardware (’ibmq_jakarta’) and employing only Pauli 
ZY feature maps, was determined to be 0.63. This section elabo-

rates on the factors influencing this accuracy and underscores po-
tential sources of bias that may have contributed to this result. Pau-
li ZY feature maps were chosen due to their effectiveness, as they 
had previously yielded an accuracy score of 0.94 in the statevector 
simulator, justifying their selection for quantum hardware experi-
mentation. Quantum computations are inherently probabilistic and 
sensitive to noise [22]. The quantum kernel computation, which 
forms the core of the machine learning model, can yield different 
results due to quantum variability. This could contribute to the dis-
tribution of data points across TP, FP, FN, and TN categories.

Backend Name: The "backend_name" field tells
which IBM quantum computer was used for the
computation.
Backend Version: This field specifies the version
of the quantum computer backend.
Qobj ID: The "qobj_id" is a unique identifier for
the quantum object used in the computation.
Job ID: This field repeats the Job ID mentioned
earlier.
Success: The "success" field indicates whether the
quantum computation was successful (True) or en-
countered errors (False).
Results: This section provides the actual measure-
ment results obtained from running the quantum
circuits. It includes information about the mea-
sured qubits, the number of shots (measurements)
taken, and the measurement outcomes (counts) for
each possible outcome.
Experiment Header: This section contains infor-
mation about the quantum circuits that were exe-
cuted in the job.
clbit_labels: Labels for classical bits used in mea-
surement outcomes.
creg_sizes: Sizes of classical registers.
global_phase: The global phase applied to the
quantum circuit.
memory_slots: The number of classical memory
slots used.
metadata: Additional metadata associated with
the experiment.
n_qubits: The total number of qubits used in the
quantum circuit.
name: The name of the quantum circuit or exper-
iment.
qreg_sizes: Sizes of quantum registers.
qubit_labels: Labels for individual qubits.

5.3 Classification Accuracy

The classification accuracy achieved in this
experiment, utilizing real quantum hardware
(’ibmq_jakarta’) and employing only Pauli ZY fea-
ture maps, was determined to be 0.63. This section
elaborates on the factors influencing this accuracy
and underscores potential sources of bias that may
have contributed to this result. Pauli ZY feature
maps were chosen due to their effectiveness, as they
had previously yielded an accuracy score of 0.94 in
the statevector simulator, justifying their selection
for quantum hardware experimentation.
Quantum computations are inherently probabilistic
and sensitive to noise [22]. The quantum kernel
computation, which forms the core of the machine
learning model, can yield different results due to
quantum variability. This could contribute to the
distribution of data points across TP, FP, FN, and
TN categories.

Figure 12: Confusion matrix revealed an intriguing pattern:

12 True Positives (TP), 25 False Positives (FP), 12 False Nega-

tives (FN ), and 51 True Negatives (TN ). This seemingly unusual

result can be attributed to several factors and hints at potential

sources of bias within the experiment.

Algorithmic bias can persist even in the context of
quantum algorithms [23]. The selection of quantum
kernel construction methods, classical SVM set-
tings, and hyperparameter optimization can wield
substantial influence over classification outcomes.
Prudent consideration and exhaustive optimization
of these aspects remain pivotal in order to try to
mitigate it.

Figure 13: binary classification model achieves an accuracy of

0.63, marking a step forward in our explore for quantum com-

puting advancements.

While the statevector simulator offers noise-free and
idealized measurements, it is essential to recog-
nize that real quantum hardware experiments in-
volve probabilistic measurements affected by quan-
tum noise. Therefore, results obtained from the
simulator may not fully reflect the challenges posed
by measurement bias in practical quantum comput-
ing scenarios.
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12 True Positives (TP), 25 False Positives (FP), 12 False Nega-
tives (FN), and 51 True Negatives (TN). This seemingly unusu-
al result can be attributed to several factors and hints at potential 
sources of bias within the experiment.

Algorithmic bias can persist even in the context of quantum al-

gorithms. The selection of quantum kernel construction methods, 
classical SVM settings, and hyperparameter optimization can 
wield substantial influence over classification outcomes. Prudent 
consideration and exhaustive optimization of these aspects remain 
pivotal in order to try to mitigate it.

Figure 13: binary classification model achieves an accuracy of 0.63, marking a step forward in our explore for quantum computing 
advancements.

While the state vector simulator offers noise-free and idealized 
measurements, it is essential to recognize that real quantum hard-
ware experiments involve probabilistic measurements affected by 

quantum noise. Therefore, results obtained from the simulator may 
not fully reflect the challenges posed by measurement bias in prac-
tical quantum computing scenarios.
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Figure 14: This ROC curve, shows an interesting pattern, it

contains important clues, there are several possible factors that

contribute to the almost diagonal shape and reveal signs of bias

within of the experiment.

The result employs a hybrid approach, combining
the quantum kernel with a classical SVM classifier,
allowing for quantum feature utilization and clas-
sical classification techniques. Accuracy of approx-
imately 0.63 suggests suboptimal performance on
the Breast Cancer dataset. The confusion matrix
reveals a relatively high number of false positives
(25), indicating a propensity for incorrect positive
predictions.
Several factors may contribute to this limited ac-
curacy, including quantum noise, a small dataset
size (400 training samples, 100 test samples), the
choice of quantum hardware, among others; further
optimization of hyperparameters, such as quantum
shots, PCA components, SVM’s hyperparameter,
and seek another perspectives, is needed for im-
provement.

6 Discussion

The results presented in this study raise intrigu-
ing questions about the application of quantum ma-
chine learning in binary classification. The explo-
ration of different Pauli configurations, the transi-
tion from quantum simulators to real-world quan-
tum hardware, and the detection of bias in the mod-
els all provide valuable insights into the challenges
and opportunities in this emerging field.

6.1 Unconventional Pauli Configura-
tions

Using unconventional Pauli configurations, such as
[‘Z’, ‘YY’, ‘ZXZ’ ], challenges traditional quantum
feature mapping approaches. While this configu-
ration achieved a remarkably high recall probably
biased, it came at the cost of accuracy and F1-score.
This raises a fundamental question:

Can unconventional Pauli configurations open new
avenues for capturing complex data correlations
that classical methods might overlook?
Quantum computing is a realm of boundless possi-
bilities, and exploring non-standard Pauli operators
hints at the untapped potential for uncovering hid-
den relationships within data. However, it also ap-
pears to have a propensity for false positives. This
intriguing trade-off warrants further investigation
into how these configurations may be harnessed in
unique ways to address specific challenges in health-
care and beyond.

6.2 Quantum Simulators: The
Quantum Sandbox

The reliance on quantum simulators as a prelim-
inary testing ground showcases their indispensable
role in quantum research. These simulators serve as
a quantum sandbox, allowing to experiment with
quantum algorithms in a controlled and resource-
efficient environment. The high-fidelity results at-
tained in simulators provide a tantalizing glimpse
into the quantum realm’s potential.
Simulators enable quantum algorithm development
and debugging without the complexities and uncer-
tainties of real hardware. They set a benchmark for
what is theoretically achievable, laying the founda-
tion for ambitious quantum experiments. As we
push the boundaries of quantum computing, the
role of simulators as a bridge between theory and
practice cannot be overstated.

6.3 Quantum Hardware: Navigating
the Quantum Frontier

Transitioning from simulators to real-world quan-
tum hardware is akin to navigating a quantum fron-
tier. The drop in accuracy from the simulator (0.94)
to the quantum processor (0.63) underscores the
harsh realities of working with real quantum sys-
tems. Quantum computations are inherently prob-
abilistic, and quantum noise introduces variability
that can impact results. This quantum noise is not
a limitation but a characteristic of quantum sys-
tems. Understanding and harnessing this noise for
specific tasks will be a pivotal challenge.

6.4 Addressing Bias and the Quan-
tum Edge

Bias, a persistent challenge in machine learning,
also finds its way into the quantum realm. The
bias detected in certain experiments suggests that
careful consideration is needed in selecting quan-
tum configurations and mitigating unwanted corre-
lations. While bias is often seen as a problem, it can
also be a tool for fine-tuning quantum algorithms.

9

Figure 14: This ROC curve, shows an interesting pattern, it contains important clues, there are several possible factors that contribute 
to the almost diagonal shape and reveal signs of bias within of the experiment.

The result employs a hybrid approach, combining the quantum 
kernel with a classical SVM classifier, allowing for quantum fea-
ture utilization and classical classification techniques. Accuracy 
of approximately 0.63 suggests suboptimal performance on the 
Breast Cancer dataset. The confusion matrix reveals a relatively 
high number of false positives (25), indicating a propensity for 
incorrect positive predictions.

Several factors may contribute to this limited accuracy, including 
quantum noise, a small dataset size (400 training samples, 100 test 
samples), the choice of quantum hardware, among others; further 
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components, SVM’s hyper parameter, and seek another perspec-
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tion. The exploration of different Pauli configurations, the tran-
sition from quantum simulators to real-world quantum hardware, 
and the detection of bias in the models all provide valuable in-
sights into the challenges and opportunities in this emerging field.

a. Unconventional Pauli Configurations
Using unconventional Pauli configurations, such as
[‘Z’, ‘YY’, ‘ZXZ’], challenges traditional quantum feature mapping 
approaches. While this configuration achieved a remarkably high 
recall probably biased, it came at the cost of accuracy and F1-
score.

This raises a fundamental question:
Can unconventional Pauli configurations open new avenues for 
capturing complex data correlations that classical methods might 
overlook?

Quantum computing is a realm of boundless possibilities, and 
exploring non-standard Pauli operators hints at the untapped po-

tential for uncovering hidden relationships within data. Howev-
er, it also appears to have a propensity for false positives. This 
intriguing trade-off warrants further investigation into how these 
configurations may be harnessed in unique ways to address specif-
ic challenges in healthcare and beyond.

b. Quantum Simulators: The Quantum Sandbox
The reliance on quantum simulators as a preliminary testing 
ground showcases their indispensable role in quantum research. 
These simulators serve as a quantum sandbox, allowing to exper-
iment with quantum algorithms in a controlled and resource effi-
cient environment. The high-fidelity results attained in simulators 
provide a tantalizing glimpse into the quantum realm’s potential.

Simulators enable quantum algorithm development and debug-
ging without the complexities and uncertainties of real hardware. 
They set a benchmark for what is theoretically achievable, laying 
the foundation for ambitious quantum experiments. As we push 
the boundaries of quantum computing, the role of simulators as a 
bridge between theory and practice cannot be overstated.

c. Quantum Hardware: Navigating the Quantum Frontier
Transitioning from simulators to real-world quantum hardware is 
akin to navigating a quantum frontier. The drop in accuracy from 
the simulator (0.94) to the quantum processor (0.63) underscores 
the harsh realities of working with real quantum systems. Quan-
tum computations are inherently probabilistic, and quantum noise 
introduces variability that can impact results. This quantum noise 
is not a limitation but a characteristic of quantum systems. Un-
derstanding and harnessing this noise for specific tasks will be a 
pivotal challenge.

d. Addressing Bias and the Quantum Edge
Bias, a persistent challenge in machine learning, also finds its way 
into the quantum realm. The bias detected in certain experiments 
suggests that careful consideration is needed in selecting quantum 
configurations and mitigating unwanted correlations. While bias is 
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often seen as a problem, it can also be a tool for fine-tuning quan-
tum algorithms.

Quantum computing’s edge lies in its ability to explore uncon-
ventional paths and challenge classical paradigms. This includes 
not only the algorithms but also the way we perceive and address 
bias. Embracing the quantum advantage may require us to rethink 
how we interpret and utilize bias in quantum machine learning. As 
we venture further into the quantum frontier, it is a journey that 
promises not just solutions to complex problems but also a deeper 
understanding of the quantum universe itself.

7. Conclusions
This study provides valuable insights into the application of quan-
tum computing algorithms associated with machine learning for 
breast cancer classification. It highlights the importance of select-
ing appropriate Pauli configurations, leveraging quantum sim-
ulators for development and benchmarking, and addressing bias 
in quantum models. While the high recall achieved with certain 
Pauli settings may be biased results, this indicates the potential of 
quantum computing to identify true cancer cases, there is room for 
improvement in terms of accuracy and reducing false positives. 
Further research and optimization efforts are needed to harness the 
power of quantum computing for healthcare applications effective-
ly. The study also underscores the significance of quantum simu-
lators as a crucial component of the quantum research pipeline, 
enabling researchers to iteratively develop and validate quantum 
algorithms before running experiments on real quantum hardware. 
Ultimately, the combination of quantum computing and classical 
machine learning techniques holds promise for addressing com-
plex healthcare challenges. Nevertheless, it requires a thorough 
understanding of quantum algorithms, careful experimentation, 
and continuous optimization to realize its full potential in re-
al-world applications.
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