
Volume 1 | Issue 3 | 157Eng OA, 2023

Exploring Instruction Set Architectural Variations: x86, ARM, and RISC-V in
Compute-Intensive Applications

Review Article

Wajid Ali*

Electrical Engineering dept University of Engineering and
Technology Lahore, Pakistan

*Corresponding Author
Wajid Ali, Electrical Engineering dept University of Engineering and
Technology Lahore, Pakistan

Submitted: 2023, Aug 06; Accepted: 2023, Sep 26; Published: 2023, Oct 02

Citation: Ali, W. (2023). Exploring Instruction Set Architectural Variations: x86, ARM, and RISC-V in Compute-Intensive
Applications. Eng OA, 1(3), 157-162.

Abstract
As computational demands continue to evolve in the modern era, the choice of hardware architecture plays a pivotal role in
optimizing the performance of compute-intensive applications. This research paper delves into the exploration and comparison of
three prominent hardware architectures: x86, ARM, and RISC-V, within the context of compute-intensive applications. The study
begins with a comprehensive overview of these architectures, highlighting their distinctive features, and strengths. Subsequently, we
investigate their suitability and adaptability in diverse compute-intensive workloads. Our analysis encompasses a wide spectrum
of parameters, including computational throughput, power efficiency, scalability, and architectural flexibility. We scrutinize
the architectural intricacies that impact the execution of compute-intensive tasks, shedding light on both the advantages and
limitations of each architecture. We used the gem5 simulator to compare these Instruction Set Architectures (ISA). We run different
benchmarks on gem5 with different ISA and different configurations and compare the result. Based on these results we predict
which architecture is better in which scenario. Gem5 is not a cycle accurate simulator but it’s a model accurate. In conclusion,
"Exploring Architectural Variations: x86, ARM, and RISC-V in Compute-Intensive Applications" offers a comprehensive insight
into the nuances of hardware selection for compute-intensive workloads. Our findings aid system architects, researchers, and
technology enthusiasts in making informed decisions about the most suitable architectural choice for their specific compute-
intensive applications, ultimately contributing to advancements in computational performance and efficiency.

Engineering: Open Access

Keywords: Computer Architecture, Gem5, Isa Comparison, Intensive Workloads

I. Introduction
In the realm of computer architecture, Intel's x86 design has
long championed peak performance, catering primarily to the
demanding needs of personal computers and servers. Conversely,
ARM diligently pursued energy efficiency enhancements,
targeting the mobile devices and wearable technology sectors.
However, the relentless march of technological progress has
ushered in a convergence of objectives [2]. Intel, a stalwart in
the realm of traditional computing, has expanded its horizons by
producing processors for handheld devices. Simultaneously, ARM,
synonymous with energy-efficient mobility, has ventured into the
realm of servers. This intriguing shift marks a departure from the
well-defined roles these architectures once occupied.

In today's landscape, where x86 and ARM-based processors
engage in head-to-head competition, it is imperative to
scrutinize their performance capabilities across a diverse spectrum
of applications. Furthermore, the hardware industry has witnessed
a seismic transformation with the advent of RISC-V, an open-
source architecture that challenges established conventions. As
these architectural forces converge and compete, our research

embarks on a comprehensive journey to assess their respective
strengths and weaknesses across various application domains.
In this rapidly evolving technological arena, where x86 and
ARM architectures realign their objectives, and RISC-V disrupts
the traditional hardware paradigm, this study serves as an
indispensable compass. It illuminates the nuanced capabilities
and far-reaching implications of these architectures, providing
invaluable insights for decision-makers navigating the complex
landscape of contemporary computing environments. Two primary
types of instruction set govern modern computer architectures:
CISC (Complex Instruction Set Computer), exemplified by x86,
and RISC (Reduced Instruction Set Computer), represented
by ARM. The RISC architecture stands out for its streamlined
instruction set, which contrasts with the complexity of CISC. A
key distinction lies in how these architectures access memory.
In the RISC paradigm, memory access is achieved through
dedicated instructions, namely, 'LOAD' and 'STORE.' In contrast,
CISC architectures embed memory access methods within other
instructions, resulting in variable instruction lengths. While this
approach reduces the number of instructions required to execute
a program, thereby easing the compiler's workload in translating

Volume 1 | Issue 3 | 158Eng OA, 2023

high-level instructions to assembly-level equivalents, it places a
higher demand on hardware to support these intricate instructions.
RISC architectures, on the other hand, employ fixed-length
instructions, simplifying the decoding process. This shift, however,
places a greater burden on the compiler to efficiently convert
high-level instructions to their assembly-level counterparts.
Nevertheless, the reduced hardware complexity in executing these
straightforward instructions facilitates pipelining. With RISC
architectures steadily improving their hardware efficiency, Intel
embarked on a development path that incorporates RISC-like
micro-architecture to harness these advantages. This entails the
translation of x86 instructions into RISC-like instructions within
the hardware before execution. While this approach maintains the
appearance of traditional x86 operation to external observers, it
internally executes RISC-like instructions [2]. In order to check
which ISA is better many experiments are already done but these
experiments and research is on the real hardware our experiment is
on the gem5 simulator which is the model accurate simulator [3-5].
Gem5 is the simulator that made by the merging of two simulator
M5 by the University of Michigan and gems by the University of
Wisconsin.Gem5 has various ISA like MIPS, RISCV, X86, ARM,
ALPHA,

POWER and SPARC. There are different prebuilt boards in gem5
like X86 board, ARM board and RISC-V board. There
II. Workload
III. EXPERIMENTAL WORK

are two modes of simulation sys-call emulation and full system.
In the sys-call emulation we don’t use any Disc image however
while doing a full system simulation we need a proper Disc image.
We can also use the kernel or terminal during the full system
simulation of that Disc image by using m5 terms. There are
different cache models like Ruby cache by gems and Classic cache
by m5. There are different memory access options also present
in it like Timing memory access and atomic memory access. We
can use different CPU models such as KVM, in-order, out-order,
Timing and Atomic. According [1] the gem5 is the cycle accurate
model but according to the latest study it is known that gem5 is not
the cycle accurate it’s a model accurate simulator we can validate
any model on gem5 because it is not cycle accurate but we can
build a different model and test it on the gem5.

RISC is far better than CISC when it come into the highly intense
computing [4]. The concept of RISC is normally integrated in the
CISC. In some early research the author compares the in-order and
out-order CPU available in gem5.

Early investigations have suggested that in the realm of highly
parallel computing environments, RISC architectures may
offer advantages over CISC counterparts [4]. Furthermore, the
incorporation of RISC principles into CISC designs seems to be an
ongoing trend in the field [6].

A comprehensive study conducted by [7] extensively compared
ARM and x86 microprocessors within the gem5 framework.

The assessment encompassed both in-order and out-of-order
CPU models and featured an evaluation based on four critical
performance metrics: average cycles-per- instruction (CPI), L2
cache miss rate, throughput, and total energy consumption. Their
analysis, executed using the MiBench benchmark suite, notably
showcased the ARM microprocessor's superior performance
across most scenarios when compared to its x86 counterpart.

Another comprehensive exploration, undertaken by [5], involved
an in-depth analysis of x86, ARM, and RISC-V Instruction
Set Architectures (ISAs) within the gem5 framework. This
investigation employed three distinct configurations: in-order,
out-of-order1, and out-of-order2. McPAT was utilized to estimate
power consumption, and simulations relied on benchmarks drawn
from SPEC2006 and BEEBS. The findings from this research
point towards the remarkable performance and energy efficiency
of the ARM ISA, surpassing both RISC-V and x86 architectures.
Interestingly, the performance distinction between ARM and
RISC-V proved to be marginal.

In subsequent research efforts, [3] and [8] leveraged the gem5
framework to delve into the ramifications of altering cache
parameters on overall system performance. These studies provided
valuable insights into the intricate relationship between cache
configurations and the optimization of hardware architectures for
improved system performance.

In this research paper we used different benchmarks and run the
Radix Sort Algorithm with the help of Timing CPU. This algorithm
sort the given reverse sorted array. For the comparison of different
ISA, we use the C language code of the Radix Sort of different
number of arrays then compile it with the compiler. As my host
machine is X86 so for X86, we simply compiled my C code by the
following command:

gcc RadixSort.c -o Radixsort
For the ARM and RISC-V we used the cross compiler we cross
compiled our C code to form the corresponding binaries. For ARM
we used the following command: aarch64-linux-gnu-gcc --static
-o RadixSort RadixSort.c For the RISC-V we used the cross-
compiler for RISC-V to compile our C code riscv64-linux-gnu-
gcc --static -o RadixSort RadixSort.c

The binaries that we made are then simulate by the gem5.

A. Configuration of gem5
Initially, we prepared the gem5 program executables. Specifically,
we utilized the gem5.fast executable for all three Instruction Set
Architectures (ISAs). To create these executables, we executed the
following commands:

For RISCV: scons build/RISCV/gem5.fast -j{nproc} For ARM:
scons build/ARM/gem5.fast -j{nproc} For X86: scons build/X86/
gem5.fast -j{nproc}

To determine the appropriate number of threads to use, we

Volume 1 | Issue 3 | 159Eng OA, 2023

employed the "nproc" command in the terminal. This command
provided us with the number of available threads on our machine,
helping us optimize the build process.

IV. Results
A. Timing simple CPU with no cache hierarchy :
We created a Python script where we utilized a Simple CPU

configuration that doesn't include any cache. The CPU operated at
a clock frequency of 1 gigahertz (1GHz).

1) Sim Ticks
The data in Table 1 SimTicks illustrates fluctuations in Sim- Ticks,
with values presented in billions.

No elements in Array ARM RISCV X86
100 11.029 13.811 23.117
512 54.340 69.035 81.831
1024 116.730 148.843 161.609
2048 230.617 297.148 13.506
4096 464.469 599.624 618.778
8192 1040.880 1268.804 1315.286
16384 2055.154 2639.056 2717.258
32768 3989.682 5093.749 5238.690

Table 1 SimTicks

Figure 1 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

2) SimOps
The data in the Table 2 illustrates the fluctuations in SimOps,
with values presented in Millions.

Table 2 SimOps 1

No of elements in array ARM RISCV X86

100 0.1883 0.1733 0.5057

512 0.9288 0.8753 1.8168

1024 1.9839 1.8829 3.7387

2048 3.9561 3.7591 7.2972

4096 7.9682 7.5095 14.4239

8192 17.0019 16.0371 30.8756

16384 34.0607 32.1598 61.8142

32768 61.1621 64.31044 123.6229

Figure 2 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

Figure 2

a) Histograms to compare results
The Figure 3 shows the histogram for efficient comparison of
the ARM, X86 and RISC-V architectures

Figure 3

The Figure 4 shows the histogram to compare SimOps

Figure 4

3) CPI (Cycle per Instruction)
We run the Radix sort on different sizes of array then
calculate the average CPI (cycle per instruction) of each ISA.
The average CPI value for ARM is 65.23, RISC-V 77.01 and
for X86 is 83.
The figure 5 shows the histogram to compare the average CPI
(Cycle per Instruction) of different ISA’s

Table 3 CPI

Cycle per Instruction ARM RISCV X86

1- 65.23 77.01 83

The cycle per instruction (CPI) statistics in gem5 provide
critical insights into the efficiency and performance of
computer architectures and microarchitectures. CPI is a
fundamental metric that quantifies the average number of
clock cycles required to execute a single instruction. It serves
as a key indicator of how effectively a processor utilizes its
computational resources. By analyzing CPI statistics in
gem5, researchers and engineers can gain a deeper
understanding of the instruction execution efficiency within
a given simulation or real-world scenario. These statistics are
instrumental in pinpointing performance bottlenecks,
optimizing processor designs, and benchmarking various
architectural configurations, making CPI a cornerstone
metric for performance evaluation and improvement in
computer systems.

Figure 1
Figure 1: visually represents the fluctuation of Sim-Ticks across different ISA configurations.

The data in the Table 2 illustrates the fluctuations in SimOps, with values presented in Millions.

Table 2 SimOps 1

No of elements in array ARM RISCV X86
100 0.1883 0.1733 0.5057
512 0.9288 0.8753 1.8168
1024 1.9839 1.8829 3.7387
2048 3.9561 3.7591 7.2972
4096 7.9682 7.5095 14.4239
8192 17.0019 16.0371 30.8756
16384 34.0607 32.1598 61.8142
32768 61.1621 64.31044 123.6229

Volume 1 | Issue 3 | 160Eng OA, 2023

Figure 1 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

2) SimOps
The data in the Table 2 illustrates the fluctuations in SimOps,
with values presented in Millions.

Table 2 SimOps 1

No of elements in array ARM RISCV X86

100 0.1883 0.1733 0.5057

512 0.9288 0.8753 1.8168

1024 1.9839 1.8829 3.7387

2048 3.9561 3.7591 7.2972

4096 7.9682 7.5095 14.4239

8192 17.0019 16.0371 30.8756

16384 34.0607 32.1598 61.8142

32768 61.1621 64.31044 123.6229

Figure 2 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

Figure 2

a) Histograms to compare results
The Figure 3 shows the histogram for efficient comparison of
the ARM, X86 and RISC-V architectures

Figure 3

The Figure 4 shows the histogram to compare SimOps

Figure 4

3) CPI (Cycle per Instruction)
We run the Radix sort on different sizes of array then
calculate the average CPI (cycle per instruction) of each ISA.
The average CPI value for ARM is 65.23, RISC-V 77.01 and
for X86 is 83.
The figure 5 shows the histogram to compare the average CPI
(Cycle per Instruction) of different ISA’s

Table 3 CPI

Cycle per Instruction ARM RISCV X86

1- 65.23 77.01 83

The cycle per instruction (CPI) statistics in gem5 provide
critical insights into the efficiency and performance of
computer architectures and microarchitectures. CPI is a
fundamental metric that quantifies the average number of
clock cycles required to execute a single instruction. It serves
as a key indicator of how effectively a processor utilizes its
computational resources. By analyzing CPI statistics in
gem5, researchers and engineers can gain a deeper
understanding of the instruction execution efficiency within
a given simulation or real-world scenario. These statistics are
instrumental in pinpointing performance bottlenecks,
optimizing processor designs, and benchmarking various
architectural configurations, making CPI a cornerstone
metric for performance evaluation and improvement in
computer systems.

Figure 1

Figure 2: visually represents the fluctuation of Sim-Ticks across different ISA configurations.

Figure 3

The Figure 4 shows the histogram to compare SimOps

Figure 4

a) Histograms to compare results
The Figure 3 shows the histogram for efficient comparison of the ARM, X86 and RISC-V architectures

Figure 1 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

2) SimOps
The data in the Table 2 illustrates the fluctuations in SimOps,
with values presented in Millions.

Table 2 SimOps 1

No of elements in array ARM RISCV X86

100 0.1883 0.1733 0.5057

512 0.9288 0.8753 1.8168

1024 1.9839 1.8829 3.7387

2048 3.9561 3.7591 7.2972

4096 7.9682 7.5095 14.4239

8192 17.0019 16.0371 30.8756

16384 34.0607 32.1598 61.8142

32768 61.1621 64.31044 123.6229

Figure 2 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

Figure 2

a) Histograms to compare results
The Figure 3 shows the histogram for efficient comparison of
the ARM, X86 and RISC-V architectures

Figure 3

The Figure 4 shows the histogram to compare SimOps

Figure 4

3) CPI (Cycle per Instruction)
We run the Radix sort on different sizes of array then
calculate the average CPI (cycle per instruction) of each ISA.
The average CPI value for ARM is 65.23, RISC-V 77.01 and
for X86 is 83.
The figure 5 shows the histogram to compare the average CPI
(Cycle per Instruction) of different ISA’s

Table 3 CPI

Cycle per Instruction ARM RISCV X86

1- 65.23 77.01 83

The cycle per instruction (CPI) statistics in gem5 provide
critical insights into the efficiency and performance of
computer architectures and microarchitectures. CPI is a
fundamental metric that quantifies the average number of
clock cycles required to execute a single instruction. It serves
as a key indicator of how effectively a processor utilizes its
computational resources. By analyzing CPI statistics in
gem5, researchers and engineers can gain a deeper
understanding of the instruction execution efficiency within
a given simulation or real-world scenario. These statistics are
instrumental in pinpointing performance bottlenecks,
optimizing processor designs, and benchmarking various
architectural configurations, making CPI a cornerstone
metric for performance evaluation and improvement in
computer systems.

Figure 1

Figure 1 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

2) SimOps
The data in the Table 2 illustrates the fluctuations in SimOps,
with values presented in Millions.

Table 2 SimOps 1

No of elements in array ARM RISCV X86

100 0.1883 0.1733 0.5057

512 0.9288 0.8753 1.8168

1024 1.9839 1.8829 3.7387

2048 3.9561 3.7591 7.2972

4096 7.9682 7.5095 14.4239

8192 17.0019 16.0371 30.8756

16384 34.0607 32.1598 61.8142

32768 61.1621 64.31044 123.6229

Figure 2 visually represents the fluctuation of Sim-Ticks
across different ISA configurations.

Figure 2

a) Histograms to compare results
The Figure 3 shows the histogram for efficient comparison of
the ARM, X86 and RISC-V architectures

Figure 3

The Figure 4 shows the histogram to compare SimOps

Figure 4

3) CPI (Cycle per Instruction)
We run the Radix sort on different sizes of array then
calculate the average CPI (cycle per instruction) of each ISA.
The average CPI value for ARM is 65.23, RISC-V 77.01 and
for X86 is 83.
The figure 5 shows the histogram to compare the average CPI
(Cycle per Instruction) of different ISA’s

Table 3 CPI

Cycle per Instruction ARM RISCV X86

1- 65.23 77.01 83

The cycle per instruction (CPI) statistics in gem5 provide
critical insights into the efficiency and performance of
computer architectures and microarchitectures. CPI is a
fundamental metric that quantifies the average number of
clock cycles required to execute a single instruction. It serves
as a key indicator of how effectively a processor utilizes its
computational resources. By analyzing CPI statistics in
gem5, researchers and engineers can gain a deeper
understanding of the instruction execution efficiency within
a given simulation or real-world scenario. These statistics are
instrumental in pinpointing performance bottlenecks,
optimizing processor designs, and benchmarking various
architectural configurations, making CPI a cornerstone
metric for performance evaluation and improvement in
computer systems.

Figure 1

Volume 1 | Issue 3 | 161Eng OA, 2023

3) CPI (Cycle per Instruction)
We run the Radix sort on different sizes of array then calculate the average CPI (cycle per instruction) of each ISA. The average CPI
value for ARM is 65.23, RISC-V 77.01 and for X86 is 83.

The figure 5 shows the histogram to compare the average CPI (Cycle per Instruction) of different ISA’s

Cycle per Instruction ARM RISCV X86
1- 65.23 77.01 83

Table 3 CPI

The cycle per instruction (CPI) statistics in gem5 provide critical insights into the efficiency and performance of computer architectures
and microarchitectures. CPI is a fundamental metric that quantifies the average number of clock cycles required to execute a single
instruction. It serves as a key indicator of how effectively a processor utilizes its computational resources. By analyzing CPI statistics
in gem5, researchers and engineers can gain a deeper understanding of the instruction execution efficiency within a given simulation
or real-world scenario. These statistics are instrumental in pinpointing performance bottlenecks, optimizing processor designs, and
benchmarking various architectural configurations, making CPI a cornerstone metric for performance evaluation and improvement in
computer systems.

Figure 5

4) Overall performance
Upon a comprehensive examination of various performance
metrics and statistics produced by gem5, a clear pattern
emerges regarding the performance of the three different
Instruction Set Architectures (ISAs).

First and foremost, ARM stands out as the top performer
among the trio. It consistently exhibits significantly higher
speed and efficiency compared to both RISC-V and X86.
This superior performance can be attributed to ARM's
architectural advantages and optimizations.
While ARM takes the lead, RISC-V follows closely behind.
RISC-V demonstrates commendable performance and
efficiency, making it a strong contender. Although it may not
match ARM's speed, it still outpaces X86 by a notable
margin.
Conversely, X86 emerges as the least performing ISA in this
evaluation. The primary factor contributing to X86's slower
performance is its reliance on CISC (Complex Instruction Set
Computing) architecture. This inherently complex
architecture results in slower execution times when compared
to the more streamlined and efficient ARM and RISC-V
architectures.
In conclusion, the assessment reveals a clear hierarchy in
terms of performance, with ARM leading the pack, followed
by RISC-V, and X86 trailing as the slowest ISA. These
findings underscore the importance of selecting the
appropriate ISA for specific computing tasks to achieve
optimal performance.

IV. CONCLUSION
In conclusion, this paper presented a comprehensive
comparative analysis of three prominent CPU architectures:
X86, ARM, and RISC-V. The study focused on evaluating
the performance of these architectures through the execution
of a specific application, Radix Sort, utilizing a simplified
CPU timing model. The key performance parameters
investigated included Sim-Ops (simulation operations), Sim-
Ticks (simulation ticks), and CPI (cycles per instruction).
After an in-depth examination and analysis of these
parameters, it is evident that the ARM architecture emerges
as the clear leader in terms of speed and efficiency. Following

ARM, the RISC-V architecture demonstrates commendable
performance, albeit slightly behind ARM. In contrast, the
X86 architecture lags behind both ARM and RISC-V in terms
of performance for the Radix Sort application. This research
underscores the significance of architecture selection when
considering the execution of specific applications. The
findings highlight that, for Radix Sort, opting for the ARM
architecture would result in the fastest execution, while
RISC-V offers a competitive alternative.

V. ACKNOWLEDGEMENTS

We extend our heartfelt gratitude to our esteemed mentors,
Umer Shahid from the University of Engineering and
Technology Lahore and Ayaz Akram from the University of
California, Davis, for their unwavering dedication, expert
guidance. Their profound knowledge and insightful feedback
were instrumental in shaping our research and guiding us
towards meaningful outcomes. Furthermore, we wish to
express our sincere thanks to the Digital Design Research Lab
(DDRC Lab) within the Electrical Engineering Department at
the University of Engineering and Technology, Lahore. Their
invaluable contributions, including access to cutting-edge
resources, technical expertise, and collaborative spirit, have
played a pivotal role in our research endeavors. The synergy
between our team and DDRC Lab has been integral to the
seamless execution and completion of our collective work,
underscoring the importance of strong academic partnerships
and collaborative research environments in achieving
meaningful advancements in our field.

VI. REFERENCES
[1] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, "Accuracy evaluation

of GEM5 simulator system," in 7th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), 2012

[2] S. V. Bharadwaj and C. K. Vudadha, "Evaluation of x86 and ARM
architectures using compute-intensive workloads," in 2022 IEEE
International Symposium on Smart Electronic Systems (iSES), 2022.

[3] R. Saha, Y. P. Pundir, S. Yadav, and P. K. Pal, "Impact of size, latency

of cache-L1 and workload over system performance," in 2020
International Conference on Advances in Computing, Communication
Materials (ICACCM), 2020

[4] A.D. George, "An overview of RISC vs. CISC," in 1990 Proceedings

of the Twenty-Second Southeastern Symposium on System Theory,
1990

[5] M. Ling, X. Xu, Y. Gu, and Z. Pan, "Does the ISA really matter? A
simulation-based investigation," in 2019 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM), 2019

[6] T. Jamil, "RISC versus CISC," IEEE Potentials, vol. 14, no. 3, pp. 13-
16, 1995.

[7] A. A. Abudaqa, T. M. Al-Kharoubi, M. F. Mudawar, and A. Kobilica,
"Simulation of ARM and x86 microprocessors using in-order and out-of-
order CPU models with gem5 simulator," in 2018 5th International
Conference on Electrical and Electronic Engineering (ICEEE), 2018, pp.
317-322.

[8] B. Vikas and B. Talawar, "On the cache behavior of Splash-2
benchmarks on ARM and Alpha processors in gem5 full system simulator,"
in 2014 3rd International Conference on Eco-friendly Computing and
Communication Systems, 2014, pp. 5-8.

Figure 5

4) Overall performance
Upon a comprehensive examination of various performance
metrics and statistics produced by gem5, a clear pattern emerges
regarding the performance of the three different Instruction Set
Architectures (ISAs).

First and foremost, ARM stands out as the top performer among
the trio. It consistently exhibits significantly higher speed and
efficiency compared to both RISC-V and X86. This superior
performance can be attributed to ARM's architectural advantages
and optimizations.

While ARM takes the lead, RISC-V follows closely behind.
RISC-V demonstrates commendable performance and efficiency,
making it a strong contender. Although it may not match ARM's
speed, it still outpaces X86 by a notable margin.

Conversely, X86 emerges as the least performing ISA in this
evaluation. The primary factor contributing to X86's slower
performance is its reliance on CISC (Complex Instruction Set
Computing) architecture. This inherently complex architecture

results in slower execution times when compared to the more
streamlined and efficient ARM and RISC-V architectures.

In conclusion, the assessment reveals a clear hierarchy in terms of
performance, with ARM leading the pack, followed by RISC-V,
and X86 trailing as the slowest ISA. These findings underscore the
importance of selecting the appropriate ISA for specific computing
tasks to achieve optimal performance.

V. Conclusion
In conclusion, this paper presented a comprehensive comparative
analysis of three prominent CPU architectures: X86, ARM, and
RISC-V. The study focused on evaluating the performance of these
architectures through the execution of a specific application, Radix
Sort, utilizing a simplified CPU timing model. The key performance
parameters investigated included Sim-Ops (simulation operations),
Sim- Ticks (simulation ticks), and CPI (cycles per instruction).
After an in-depth examination and analysis of these parameters, it
is evident that the ARM architecture emerges as the clear leader in
terms of speed and efficiency. Following

Volume 1 | Issue 3 | 162Eng OA, 2023

ARM, the RISC-V architecture demonstrates commendable
performance, albeit slightly behind ARM. In contrast, the
X86 architecture lags behind both ARM and RISC-V in terms
of performance for the Radix Sort application. This research
underscores the significance of architecture selection when
considering the execution of specific applications. The findings
highlight that, for Radix Sort, opting for the ARM architecture
would result in the fastest execution, while RISC-V offers a
competitive alternative.

VI. Acknowledgements
We extend our heartfelt gratitude to our esteemed mentors, Umer
Shahid from the University of Engineering and Technology
Lahore and Ayaz Akram from the University of California, Davis,
for their unwavering dedication, expert guidance. Their profound
knowledge and insightful feedback were instrumental in shaping
our research and guiding us towards meaningful outcomes.
Furthermore, we wish to express our sincere thanks to the
Digital Design Research Lab (DDRC Lab) within the Electrical
Engineering Department at the University of Engineering and
Technology, Lahore. Their invaluable contributions, including
access to cutting-edge resources, technical expertise, and
collaborative spirit, have played a pivotal role in our research
endeavors. The synergy between our team and DDRC Lab has
been integral to the seamless execution and completion of our
collective work, underscoring the importance of strong academic
partnerships and collaborative research environments in achieving
meaningful advancements in our field.

References
1.	 Butko, A., Garibotti, R., Ost, L., & Sassatelli, G. (2012,

July). Accuracy evaluation of gem5 simulator system. In 7th

International workshop on reconfigurable and communication-
centric systems-on-chip (ReCoSoC) (pp. 1-7). IEEE.

2.	 Bharadwaj, S. V., & Vudadha, C. K. (2022, December).
Evaluation of x86 and ARM architectures using compute-
intensive workloads. In 2022 IEEE International Symposium
on Smart Electronic Systems (iSES) (pp. 586-589). IEEE.

3.	 Saha, R., Pundir, Y. P., Yadav, S., & Pal, P. K. (2020, August).
Impact of Size, Latency of Cache-L1 and Workload Over
System Performance. In 2020 International Conference
on Advances in Computing, Communication & Materials
(ICACCM) (pp. 390-393). IEEE.

4.	 George, A. D. (1990, January). An overview of RISC vs. CISC.
In Proceedings The Twenty-Second Southeastern Symposium
on System Theory (pp. 436-437). IEEE Computer Society.

5.	 Ling, M., Xu, X., Gu, Y., & Pan, Z. (2019, August). Does
the isa really matter? a simulation based investigation. In
2019 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM) (pp. 1-6). IEEE.

6.	 Jamil, T. (1996). Fifth-generation microprocessors. IEEE
Potentials, 15(5), 33-35.

7.	 Abudaqa, A. A., Al-Kharoubi, T. M., Mudawar, M. F., &
Kobilica, A. (2018, May). Simulation of ARM and x86
microprocessors using in-order and out-of-order CPU models
with Gem5 simulator. In 2018 5th International Conference
on Electrical and Electronic Engineering (ICEEE) (pp. 317-
322). IEEE.

8.	 Vikas, B., & Talawar, B. (2014, December). On the cache
behavior of splash-2 benchmarks on arm and alpha processors
in gem5 full system simulator. In 2014 3rd International
Conference on Eco-friendly Computing and Communication
Systems (pp. 5-8). IEEE.

Copyright: ©2023 Wajid Ali. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

https://opastpublishers.com

https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1109/iSES54909.2022.00128
https://doi.org/10.1109/iSES54909.2022.00128
https://doi.org/10.1109/iSES54909.2022.00128
https://doi.org/10.1109/iSES54909.2022.00128
https://doi.org/10.1109/ICACCM50413.2020.9213015
https://doi.org/10.1109/ICACCM50413.2020.9213015
https://doi.org/10.1109/ICACCM50413.2020.9213015
https://doi.org/10.1109/ICACCM50413.2020.9213015
https://doi.org/10.1109/ICACCM50413.2020.9213015
https://doi.ieeecomputersociety.org/10.1109/SSST.1990.138185
https://doi.ieeecomputersociety.org/10.1109/SSST.1990.138185
https://doi.ieeecomputersociety.org/10.1109/SSST.1990.138185
https://doi.org/10.1109/PACRIM47961.2019.8985059
https://doi.org/10.1109/PACRIM47961.2019.8985059
https://doi.org/10.1109/PACRIM47961.2019.8985059
https://doi.org/10.1109/PACRIM47961.2019.8985059
https://doi.org/10.1109/PACRIM47961.2019.8985059
https://doi.org/10.1109/PACRIM47961.2019.8985059
https://doi.org/10.1109/ICEEE2.2018.8391354
https://doi.org/10.1109/ICEEE2.2018.8391354
https://doi.org/10.1109/ICEEE2.2018.8391354
https://doi.org/10.1109/ICEEE2.2018.8391354
https://doi.org/10.1109/ICEEE2.2018.8391354
https://doi.org/10.1109/ICEEE2.2018.8391354
https://doi.org/10.1109/Eco-friendly.2014.76
https://doi.org/10.1109/Eco-friendly.2014.76
https://doi.org/10.1109/Eco-friendly.2014.76
https://doi.org/10.1109/Eco-friendly.2014.76
https://doi.org/10.1109/Eco-friendly.2014.76

