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Abstract
As computational demands continue to evolve in the modern era, the choice of hardware architecture plays a pivotal role in 
optimizing the performance of compute-intensive applications. This research paper delves into the exploration and comparison of 
three prominent hardware architectures: x86, ARM, and RISC-V, within the context of compute-intensive applications. The study 
begins with a comprehensive overview of these architectures, highlighting their distinctive features, and strengths. Subsequently, we 
investigate their suitability and adaptability in diverse compute-intensive workloads. Our analysis encompasses a wide spectrum 
of parameters, including computational throughput, power efficiency, scalability, and architectural flexibility. We scrutinize 
the architectural intricacies that impact the execution of compute-intensive tasks, shedding light on both the advantages and 
limitations of each architecture. We used the gem5 simulator to compare these Instruction Set Architectures (ISA). We run different 
benchmarks on gem5 with different ISA and different configurations and compare the result. Based on these results we predict 
which architecture is better in which scenario. Gem5 is not a cycle accurate simulator but it’s a model accurate. In conclusion, 
"Exploring Architectural Variations: x86, ARM, and RISC-V in Compute-Intensive Applications" offers a comprehensive insight 
into the nuances of hardware selection for compute-intensive workloads. Our findings aid system architects, researchers, and 
technology enthusiasts in making informed decisions about the most suitable architectural choice for their specific compute-
intensive applications, ultimately contributing to advancements in computational performance and efficiency.
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I. Introduction
In the realm of computer architecture, Intel's x86 design has 
long championed peak performance, catering primarily to the 
demanding needs of personal computers and servers. Conversely, 
ARM diligently pursued energy efficiency enhancements, 
targeting the mobile devices and wearable technology sectors. 
However, the relentless march of technological progress has 
ushered in a convergence of objectives [2]. Intel, a stalwart in 
the realm of traditional computing, has expanded its horizons by 
producing processors for handheld devices. Simultaneously, ARM, 
synonymous with energy-efficient mobility, has ventured into the 
realm of servers. This intriguing shift marks a departure from the 
well-defined roles these architectures once occupied.

In today's landscape, where x86 and ARM-based processors   
engage   in   head-to-head   competition, it is imperative to 
scrutinize their performance capabilities across a diverse spectrum 
of applications. Furthermore, the hardware industry has witnessed 
a seismic transformation with the advent of RISC-V, an open-
source architecture that challenges established conventions. As 
these architectural forces converge and compete, our research 

embarks on a comprehensive journey to assess their respective 
strengths and weaknesses across various application domains. 
In this rapidly evolving technological arena, where x86 and 
ARM architectures realign their objectives, and RISC-V disrupts 
the traditional hardware paradigm, this study serves as an 
indispensable compass. It illuminates the nuanced capabilities 
and far-reaching implications of these architectures, providing 
invaluable insights for decision-makers navigating the complex 
landscape of contemporary computing environments. Two primary 
types of instruction set govern modern computer architectures: 
CISC (Complex Instruction Set Computer), exemplified by x86, 
and RISC (Reduced Instruction Set Computer), represented 
by ARM. The RISC architecture stands out for its streamlined 
instruction set, which contrasts with the complexity of CISC. A 
key distinction lies in how these architectures access memory. 
In the RISC paradigm, memory access is achieved through 
dedicated instructions, namely, 'LOAD' and 'STORE.' In contrast, 
CISC architectures embed memory access methods within other 
instructions, resulting in variable instruction lengths. While this 
approach reduces the number of instructions required to execute 
a program, thereby easing the compiler's workload in translating 
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high-level instructions to assembly-level equivalents, it places a 
higher demand on hardware to support these intricate instructions. 
RISC architectures, on the other hand, employ fixed-length 
instructions, simplifying the decoding process. This shift, however, 
places a greater burden on the compiler to efficiently convert 
high-level instructions to their assembly-level counterparts. 
Nevertheless, the reduced hardware complexity in executing these 
straightforward instructions facilitates pipelining. With RISC 
architectures steadily improving their hardware efficiency, Intel 
embarked on a development path that incorporates RISC-like 
micro-architecture to harness these advantages. This entails the 
translation of x86 instructions into RISC-like instructions within 
the hardware before execution. While this approach maintains the 
appearance of traditional x86 operation to external observers, it 
internally executes RISC-like instructions [2]. In order to check 
which ISA is better many experiments are already done but these 
experiments and research is on the real hardware our experiment is 
on the gem5 simulator which is the model accurate simulator [3-5]. 
Gem5 is the simulator that made by the merging of two simulator 
M5 by the University of Michigan and gems by the University of 
Wisconsin.Gem5 has various ISA like MIPS, RISCV, X86, ARM, 
ALPHA,

POWER and SPARC. There are different prebuilt boards in gem5 
like X86 board, ARM board and RISC-V board. There
II. Workload
III. EXPERIMENTAL WORK
 
are two modes of simulation sys-call emulation and full system. 
In the sys-call emulation we don’t use any Disc image however 
while doing a full system simulation we need a proper Disc image. 
We can also use the kernel or terminal during the full system 
simulation of that Disc image by using m5 terms. There are 
different cache models like Ruby cache by gems and Classic cache 
by m5. There are different memory access options also present 
in it like Timing memory access and atomic memory access. We 
can use different CPU models such as KVM, in-order, out-order, 
Timing and Atomic. According [1] the gem5 is the cycle accurate 
model but according to the latest study it is known that gem5 is not 
the cycle accurate it’s a model accurate simulator we can validate 
any model on gem5 because it is not cycle accurate but we can 
build a different model and test it on the gem5.

RISC is far better than CISC when it come into the highly intense 
computing [4]. The concept of RISC is normally integrated in the 
CISC. In some early research the author compares the in-order and 
out-order CPU available in gem5.

Early investigations have suggested that in the realm of highly 
parallel computing environments, RISC architectures may 
offer advantages over CISC counterparts [4]. Furthermore, the 
incorporation of RISC principles into CISC designs seems to be an 
ongoing trend in the field [6].

A comprehensive study conducted by [7] extensively compared 
ARM and x86 microprocessors within the gem5 framework. 

The assessment encompassed both in-order and out-of-order 
CPU models and featured an evaluation based on four critical 
performance metrics: average cycles-per- instruction (CPI), L2 
cache miss rate, throughput, and total energy consumption. Their 
analysis, executed using the MiBench benchmark suite, notably 
showcased the ARM microprocessor's superior performance 
across most scenarios when compared to its x86 counterpart.

Another comprehensive exploration, undertaken by [5], involved 
an in-depth analysis of x86, ARM, and RISC-V Instruction 
Set Architectures (ISAs) within the gem5 framework. This 
investigation employed three distinct configurations: in-order, 
out-of-order1, and out-of-order2. McPAT was utilized to estimate 
power consumption, and simulations relied on benchmarks drawn 
from SPEC2006 and BEEBS. The findings from this research 
point towards the remarkable performance and energy efficiency 
of the ARM ISA, surpassing both RISC-V and x86 architectures. 
Interestingly, the performance distinction between ARM and 
RISC-V proved to be marginal.

In subsequent research efforts, [3] and [8] leveraged the gem5 
framework to delve into the ramifications of altering cache 
parameters on overall system performance. These studies provided 
valuable insights into the intricate relationship between cache 
configurations and the optimization of hardware architectures for 
improved system performance.

In this research paper we used different benchmarks and run the 
Radix Sort Algorithm with the help of Timing CPU. This algorithm 
sort the given reverse sorted array. For the comparison of different 
ISA, we use the C language code of the Radix Sort of different 
number of arrays then compile it with the compiler. As my host 
machine is X86 so for X86, we simply compiled my C code by the 
following command:

gcc RadixSort.c -o Radixsort
For the ARM and RISC-V we used the cross compiler we cross 
compiled our C code to form the corresponding binaries. For ARM 
we used the following command: aarch64-linux-gnu-gcc --static 
-o RadixSort RadixSort.c For the RISC-V we used the cross-
compiler for RISC-V to compile our C code riscv64-linux-gnu-
gcc --static -o RadixSort RadixSort.c

The binaries that we made are then simulate by the gem5.

A. Configuration of gem5
Initially, we prepared the gem5 program executables. Specifically, 
we utilized the gem5.fast executable for all three Instruction Set 
Architectures (ISAs). To create these executables, we executed the 
following commands:

For RISCV: scons build/RISCV/gem5.fast -j{nproc} For ARM: 
scons build/ARM/gem5.fast -j{nproc} For X86: scons build/X86/
gem5.fast -j{nproc}

To determine the appropriate number of threads to use, we 
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employed the "nproc" command in the terminal. This command 
provided us with the number of available threads on our machine, 
helping us optimize the build process.

IV. Results
A. Timing simple CPU with no cache hierarchy :
We created a Python script where we utilized a Simple CPU 

configuration that doesn't include any cache. The CPU operated at 
a clock frequency of 1 gigahertz (1GHz).

1) Sim Ticks
The data in Table 1 SimTicks illustrates fluctuations in Sim- Ticks, 
with values presented in billions.

No elements in Array ARM RISCV X86
100 11.029 13.811 23.117
512 54.340 69.035 81.831
1024 116.730 148.843 161.609
2048 230.617 297.148 13.506
4096 464.469 599.624 618.778
8192 1040.880 1268.804 1315.286
16384 2055.154 2639.056 2717.258
32768 3989.682 5093.749 5238.690

Table 1 SimTicks

 

 

Figure 1 visually represents the fluctuation of Sim-Ticks 
across different ISA configurations. 

2) SimOps 
The data in the Table 2 illustrates the fluctuations in SimOps, 
with values presented in Millions. 

Table 2 SimOps 1 

No of elements in array ARM RISCV X86 

100 0.1883 0.1733 0.5057 

512 0.9288 0.8753 1.8168 

1024 1.9839 1.8829 3.7387 

2048 3.9561 3.7591 7.2972 

4096 7.9682 7.5095 14.4239 

8192 17.0019 16.0371 30.8756 

16384 34.0607 32.1598 61.8142 

32768 61.1621 64.31044 123.6229 
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a) Histograms to compare results 
The Figure 3 shows the histogram for efficient comparison of 
the ARM, X86 and RISC-V architectures  
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The Figure 4 shows the histogram to compare SimOps   
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3) CPI (Cycle per Instruction) 
We run the Radix sort on different sizes of array then 
calculate the average CPI (cycle per instruction) of each ISA. 
The average CPI value for ARM is 65.23, RISC-V 77.01 and 
for X86 is 83. 
The figure 5 shows the histogram to compare the average CPI 
(Cycle per Instruction) of different ISA’s  
 
 

Table 3 CPI 

Cycle per Instruction ARM RISCV X86 

1- 65.23 77.01 83 

 
 
The cycle per instruction (CPI) statistics in gem5 provide 
critical insights into the efficiency and performance of 
computer architectures and microarchitectures. CPI is a 
fundamental metric that quantifies the average number of 
clock cycles required to execute a single instruction. It serves 
as a key indicator of how effectively a processor utilizes its 
computational resources. By analyzing CPI statistics in 
gem5, researchers and engineers can gain a deeper 
understanding of the instruction execution efficiency within 
a given simulation or real-world scenario. These statistics are 
instrumental in pinpointing performance bottlenecks, 
optimizing processor designs, and benchmarking various 
architectural configurations, making CPI a cornerstone 
metric for performance evaluation and improvement in 
computer systems. 
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3) CPI (Cycle per Instruction)
We run the Radix sort on different sizes of array then calculate the average CPI (cycle per instruction) of each ISA. The average CPI 
value for ARM is 65.23, RISC-V 77.01 and for X86 is 83.

The figure 5 shows the histogram to compare the average CPI (Cycle per Instruction) of different ISA’s

Cycle per Instruction ARM RISCV X86
1- 65.23 77.01 83

Table 3 CPI

The cycle per instruction (CPI) statistics in gem5 provide critical insights into the efficiency and performance of computer architectures 
and microarchitectures. CPI is a fundamental metric that quantifies the average number of clock cycles required to execute a single 
instruction. It serves as a key indicator of how effectively a processor utilizes its computational resources. By analyzing CPI statistics 
in gem5, researchers and engineers can gain a deeper understanding of the instruction execution efficiency within a given simulation 
or real-world scenario. These statistics are instrumental in pinpointing performance bottlenecks, optimizing processor designs, and 
benchmarking various architectural configurations, making CPI a cornerstone metric for performance evaluation and improvement in 
computer systems.  
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4) Overall performance 
Upon a comprehensive examination of various performance 
metrics and statistics produced by gem5, a clear pattern 
emerges regarding the performance of the three different 
Instruction Set Architectures (ISAs). 
 
First and foremost, ARM stands out as the top performer 
among the trio. It consistently exhibits significantly higher 
speed and efficiency compared to both RISC-V and X86. 
This superior performance can be attributed to ARM's 
architectural advantages and optimizations. 
While ARM takes the lead, RISC-V follows closely behind. 
RISC-V demonstrates commendable performance and 
efficiency, making it a strong contender. Although it may not 
match ARM's speed, it still outpaces X86 by a notable 
margin. 
Conversely, X86 emerges as the least performing ISA in this 
evaluation. The primary factor contributing to X86's slower 
performance is its reliance on CISC (Complex Instruction Set 
Computing) architecture. This inherently complex 
architecture results in slower execution times when compared 
to the more streamlined and efficient ARM and RISC-V 
architectures. 
In conclusion, the assessment reveals a clear hierarchy in 
terms of performance, with ARM leading the pack, followed 
by RISC-V, and X86 trailing as the slowest ISA. These 
findings underscore the importance of selecting the 
appropriate ISA for specific computing tasks to achieve 
optimal performance. 
 

IV. CONCLUSION 
In conclusion, this paper presented a comprehensive 
comparative analysis of three prominent CPU architectures: 
X86, ARM, and RISC-V. The study focused on evaluating 
the performance of these architectures through the execution 
of a specific application, Radix Sort, utilizing a simplified 
CPU timing model. The key performance parameters 
investigated included Sim-Ops (simulation operations), Sim-
Ticks (simulation ticks), and CPI (cycles per instruction). 
After an in-depth examination and analysis of these 
parameters, it is evident that the ARM architecture emerges 
as the clear leader in terms of speed and efficiency. Following 

ARM, the RISC-V architecture demonstrates commendable 
performance, albeit slightly behind ARM. In contrast, the 
X86 architecture lags behind both ARM and RISC-V in terms 
of performance for the Radix Sort application. This research 
underscores the significance of architecture selection when 
considering the execution of specific applications. The 
findings highlight that, for Radix Sort, opting for the ARM 
architecture would result in the fastest execution, while 
RISC-V offers a competitive alternative.  
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ARM, the RISC-V architecture demonstrates commendable 
performance, albeit slightly behind ARM. In contrast, the 
X86 architecture lags behind both ARM and RISC-V in terms 
of performance for the Radix Sort application. This research 
underscores the significance of architecture selection when 
considering the execution of specific applications. The findings 
highlight that, for Radix Sort, opting for the ARM architecture 
would result in the fastest execution, while RISC-V offers a 
competitive alternative.
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