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Abstract  
Object of this work is, to determine, if objects observed more distant are moving away faster than less distant ones. 
The escape velocity Hr is defined by the HUBBLE-Parameter H, locally H0, which is proportional to the reciprocal 
of the age T. The calculations are based on a model of Cornelius LANCZOS, outlined at a lecture on the occasion of 
the Einstein-Symposium 1965 in Berlin [1] and [2]. The model defines the expansion of the universe as a 
consequence of the existence of a metric wave field. That field also should be the reason for all relativistic effects, 
both SR and GR. In the context of this work the propagation function of that wave field is determined. Its phase rate 
is equal to the reciprocal of PLANCK's smallest increment r0. Even the other PLANCK-units set up the basis of the 
model being functions of space and time.With it, the model leads to a quantization of the universe into single line-
elements with the size of r0. Thus, a kind of finite-element-method becomes possible, at which point the single 
elements are explicitly defined by the wave function. As per definition, objects in the free fall, aren't moving either 
with respect to the metrics and are carried-with during expansion. With the help of the propagation function it's 
possible to calculate the HUBBLE-Parameter H even for greater distances. Furthermore the entropy of the universe 
as a whole is determined considering the special topology of the universe.  
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1. Introduction 

1.1. Fundamentals 
 
Object of this work is, to determine, if objects observed more distant than 0.01R (world radius) are moving away 
faster than less distant ones. Mostly astronomers and cosmologists are interested in that question. The escape 
velocity Hr is just defined by the HUBBLE-Parameter H, locally H0, which is proportional to the reciprocal of the 
age T. Hence it’s not about a constant either. Therefore I’m intentionally using the word parameter. Furthermore 
should be examined, if it’s possible, to calculate the entropy of the universe as a whole, and in which regard we 
have to consider its special topology (4D). 

 
The calculations are based on the model published in [2] and [3]. The idea stems from Cornelius LANCZOS [1], 
outlined at a lecture on the occasion of the Einstein-Symposium 1965 in Berlin. This lecture is also prefixed to 
[2]. The model defines the expansion of the universe as a consequence of the existence of a four-legged wave 
field. That field also should be the reason for all relativistic effects, both SR and GR. The temporal function of 
that field is based on the Hankel function, consisting of the sum of two Bessel functions (J0 and Y0). The special 
properties of the Bessel functions lead to an increase of wave length, defined by the distance between two zero-
crossings. The propagation velocity cM of the field depends on space and time being in the range between 
1.09∙10−22ms−1 (nowadays) at the local observer up to 0.851661c at the particle horizon.  
 
That involves, that the wave length λ0 and the phase rate β0 of the propagation function are having different 
values. Its phase rate is equal to the reciprocal of PLANCK's smallest increment r0. Even the other PLANCK-units 
set up the basis of the model being functions of space and time. In the distance r0 in the form of a cubic face-
centered space-lattice (fc) particular vortices are collocated. LANCZOS called them „MINKOWSKIan line elements, 
which are only approximately MINKOWSKIan―, here abbreviated as MLE. Thus it’s rather about a physical object 
and not about that, the MINKOWSKIan line element is actually defined. I nominated the whole wave field as 
metric wave field (metrics). 



 
 

 

With it, the model leads to a quantization of the universe into single line-elements with the size of r0. Thus, a 
kind of finite-element-method becomes possible, at which point the single elements are explicitly defined by the 
wave function. The wave length λ0 and r0 are increasing over time. As per definition, objects in the free fall, 
aren't moving either with respect to the metrics and are carried-with during expansion. With the help of the 
propagation function it's possible to calculate the HUBBLE-Parameter H even for greater distances. Farther 
away we just observe a greater local H0, because H was greater in the old days. Summarized, with greater 
distance even a greater H should turn out, which the calculation confirms. 
 
Because the entropy of wave fields can be calculated, it will be determined too. But we have to consider special 
circumstances at this point. It allows a foresight into the far future of our universe. Finally, the work deals with 
the different kinds of distance vectors and the question is answered, why vectors greater than cT are possible.  

 
A special feature of the model is, that the so called subspace, that’s the space, the metric wave field propagates 
in, disposes of a third property among µ0 and ε0. That’s the specific conductivity κ0 in the size of 
1.23879∙1093 Sm–1, the cause of expansion. Whether and how it doesn’t lead to contradictions with the 
propagation of »normal« EM-waves, is not subject of the work on hand. According to the model they propagate 
as overlaid interferences of the metric wave field. See [1] for more detailed information. There you will find 
even a special section dedicated to the unexpected results of the SN-1a-Cosmology-Experiment. 

 
Before we get to the actual calculation, it’s necessary, to define certain base items of the model, mostly without 
derivation. You read about this in [3]. The PLANCK-units, furthermore the base items of the theoretical electro-
technics play a very special role in this connection. For this reason, as usual there, I’m using the letter j instead 
of i or  as usual in mathematics. 

2. Model 

2.1. Definition of Base Items 
 
At first the base items of the theoretical electro-technics. They apply independently from the model (1). Beneath 
(2) the most important PLANCK-units are shown. The introduction of the specific conductivity of the vacuum 
turns out to be the missing link among each other and even to other values. 
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One single line-element can be specified by the model of a lossy oscillating circuit. One special property of that 
model only is, that the Q-factor of the circuit equals the phase angle 20t of the Bessel function. It applies 
Q0 = 20t. The value 0 corresponds to the PLANCK-frequency in this connection. 
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The numeric value of Q0 according to table 1 is about 7.5419∙1060 and depends on the real value of H0. Except 
for the quantities of subspace μ0, ε0, κ0 and c all other ones are functions of space, time and even of the velocity v 
with respect to the metric wave field. The reason is, that the spatiotemporal function of the metric wave field 
should emulate the relativistic effects. The GR-dependencies aren’t furthermore considered here.  
 
That makes the PLANCK units depend on the frame of reference, which is even defined by them. And all of them 
are bound by the phase angle Q0. But the variations mostly cancel each other creating the impression, that the 
values are constant. Reference-frame-dependent values are marked with a swung dash e.g. Q~0 being constants by 
character.  

 

 

Still important are the values with a phase angle Q1 = 1. They describe the conditions directly at the particle 
horizon. They are constants too, because they are defined only by quantities of subspace. Thus, they are mostly 
qualified for reference-frame-independent conversions of certain values, so-called couplings. An example is the 
conversion of the magnetic flux φ1 to the magnetic field strength H1 = φ1/(μ0r1

2) as basis of a temporal function 
containing reference-frame-dependent elements (r0). r1 would be the so-called coupling-length then. Expression 
(8) shows the relations to the PLANCK-units and to the values of the universe as a whole.  
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The action quantum ħ1 and ħ̂ 1 is not a quantity of subspace, but the initial action, our universe „got― in the early 
beginning. That value is the only one »set-screw«, with which »one« could exert influence on the future 
appearance of the universe. All other values are »hard-wired« with Q0 depending on space and time. There is no 
»fine-tuning« either. With expression (2) right-hand and (8) it’s about an effective value, i.e. ħ, φ0 and q0 are 
temporal functions too. For section 3.2.1. still the definition of NEWTON‘s gravitational constant:  
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2.2. Temporal Function 
 

We get the exact temporal function for the magnetic flux φ0 by solving the differential equation (9). It is based 
on a lossy oscillating circuit with expansion, i.e. the single components R0, L0 and C0 are changing with 
increasing r0. Expression (9) mainly differs from a normal oscillating circuit without expansion, with harmonic 
solution by the factor before φ̇0, 1 with expansion, ½ without.  
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In contrast to the expression without expansion there is no drop-down in the resonance frequency ω0 with (9), 
normally caused by the influence of the loss-resistance R0. But we obtain another as solution: 
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According to [4] applies 
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Jn is the Bessel function of nth order, thus 
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Since it’s about a differential equation of 2nd order and the grade of the Bessel function is integer, the general 
solution is:   

0 i 1 0 0 2 0 0ˆ (c J (2 t) c Y (2 t))         (15) 
 

The factors c1 and c2 may be imaginary or complex even here. According to [5] it’s more favourable, if we 
consider both Hankel functions:  
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as linearly independent solutions composing the general solution 
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with it. Then, the general solution (15) reads then:  
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0 i 0 0 0 0ˆ (H (2 t) H (2 t))           (19) 

 
For our further examinations, we set c1 and c2 in (19) equal to 1 for the moment. Then we get as specific solution 
(20) and for approximation, envelope curve and effective value:  
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The exact course of 0 (20), as well as of the approximate function of the envelope curve (21) and of the 
effective value (22) is shown in Figure 1. Also depicted are the original Bessel functions, which you can't see 
however, because they are completely covered by the approximation. 
 

 
Figure 1:  
Course of Magnetic Flux as Well as of Approximation- 
and Envelope-Functions Across a Greater Time Period 
 

 
Figure 2: 
Course of Flux as Well as of the Approximate- 
and Envelope-Functions Nearby the Singularity 

 

 

Thus, with greater arguments, no differences are statable, neither in the amplitude, nor in the phase. Most 
important for the quality of the approximation is the course in the striking distance of t  = 0. It is shown in Figure 
2 and it turns out to be very good until the particle horizon at Q0 = 1. All data so far are summarized. See [3] for 
details and the exact derivation. 
 

2.3. Propagation Function 

2.3.1. Exact Solution 

2.3.1.1. Temporal Function 
 

In contrast to MAXWELL, which used the first term of the harmonic solution (108 [2]) ejt as ansatz, we now 
choose the first term of expression (19), obtained as an independent solution of the differential equation (9). It’s 
about the temporal function of the magnetic flux φ0 there, relating to one single MLE, from which the charge q0 
can be derived. For the propagation function however we need the magnetic and electric field strength H and E. 
The relation:  
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imaginary part of the Hankel function is coming from infinity, the starting value 0 is defined at the point 
20t = Q0 =1. The coupling-length at this point is r1 as already predicted more above. This value is denominated 
as H1 resp. E1. With respect to the fact, that (23) is an effective value, we obtain the following relations: 
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Here again, the real part of the vector corresponds to an orientation in y-, the imaginary one in z-direction, x is 
the poropagation direction. As already stated, there is an analogy between the exponential function ej2t and the 
Hankel function. Both are transcendent complex functions and periodic resp. almost periodic. Of course, there is 
also a solution of the MAXWELL equations for (26). The detailed derivation can be read in [3] once again. 
Important is the complex wave propagation velocity c and the field wave impedance ZF:  
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We see that the propagation-velocity converges to zero for large t. The same is applied to the field-wave 
impedance too. We have to do it with a quasi-stationary wave-field (standing wave) filling very well the requests 
on a metrics. The propagation-velocity is complex again. A decomposition into real- and imaginary-part works 
out quite difficult, but it’s mathematically possible however. The solution for c reads:   
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turns out a slightly different result  than ex-
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impedance too. We have to do it with a quasi-stationary wave-field (standing wave) filling very well the requests 
on a metrics. The propagation-velocity is complex again. A decomposition into real- and imaginary-part works 
out quite difficult, but it’s mathematically possible however. The solution for c reads:   
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For programming reasons expression (30) 
turns out a slightly different result  than ex-
pression (29) with AB. In order to maximize 
accuracy only the functions (30) are used. 



 
 

 

The factor ½ arises from the 4th root. Expression (27) may be split into a real- and an imaginary part (31). A 
starts at +∞ converging to –1. The course resembles the function 1/A2

<–1 approximately, which cannot be used 
well as approximation however. B has a course like 1/B2 and is converging to zero. The same is applied to 
θ then. The bracketed expression converges to one with it. For Q0 ≥ 5 the approximation 0

2
 Q0
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 ≈ Q0 applies with 

Δ ≤ 1%. 
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Unfortunately (31) cannot be transformed into an expression similar to (179 [3]) with area-functions, so that the 
ambiguity of the arctan-function leads to a partially wrong result. We should better calculate with the following 
substitution therefore: 

   
2 2arctanθ arg 1 A B j2AB                  1 πarg c arccot θ

2 4
   (32) 

 
While the real part of c is defined as the velocity in propagation direction, the imaginary part can be interpreted 
as a velocity rectangular thereto. The appearance of an imaginary part in c means also that there is an attenuation 
anywhere (refer to Figure 4). A numerical handling of (27) even can be processed with »Mathematica« resulting 
in the course figured in Figure 3. Since the Hankel functions, with larger arguments, can be expressed well by 
other analytic functions, we will declare approximate solutions later on. 

 

 
Figure 3: 
Propagation-Velocity 
in Dependence on Time (Logarithmic Time-Scale) 

 
With it, the world-radius (wave-front) of this model doesn’t expand with c but with 0.851661c only. That figures 
no violation of the SRT anyway. This means that wave sections that are emitted later virtually overtake the wave 
front. Since the ratio of  real and imaginary part is different, it does not happen on the same path – rather, the 
wave fronts cross each other. However, a contradiction arises to the usual definition R/2=cT (Radiation 
Universe), which will be solved later on. 
 
2.3.1.2. Propagation Rate 
 
To specify the propagation-function we need both, the temporal function and the propagation rate γ = α+jβ. The 
normal form of the propagation function is given by:  
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In contrast to (33) the argument in the expansion case is real. Strictly speaking, it's not the Hankel function but 
the modified Hankel function M 0

(2) = I0(z) –j K0(z) what's the equivalent to the exponential function. It applies 
I0(z) = J0(jz) but only for purely imaginary arguments. With complex arguments, the real part cannot be placed as 
a factor in front of the Hankel function in the form of ea×ejb, as usual with exponential functions, since the power 
laws don't apply to Hankel functions. This is only possible for larger arguments z. However, the modified 

 

 

Hankel function is generally not used. Therefore, we use for the base the »ordinary« Hankel function adapting 
the propagation-function accordingly. To avoid contra-dictions with the classic definition of propagation rate – 
real-part equals the attenuation rate, imaginary-part equals the phase-rate – the propagation-function should read 
as follows then (analogously for  H— 

):  
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This is not quite the classic expression for a propagation-function. Attention should be paid to the factor 2 which 
can be assigned both to the frequency, as well as the time-constant. With the definition of propagation rate 
 = +j it obviously belongs to the frequency since  depends on phase velocity dx/dt, but not on the half of 
dx/(2dt). By equating both arguments of (34) one gets then: 
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From (31) the reciprocal of c can be determined very easily. Then we get for :  
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Figure 4: 

Phase Rate and Attenuation Rate 
in Dependence on Time (Linear Scale) 

 
Upon closer inspection, we can see, that and , evaluated by its action, are swapped in fact (= phase-rate, 
= attenuation rate). This is caused by a rotation of about 90° (j) occurs during propagation (see next section). x 
turns into y and y into –x. The attenuation , starting at the point of time t=0, starting off infinity, is decreasing 
exponentially. To the present point of time, one can say that there is basically no attenuation anyway. However, 
it doesn't apply considering cosmologic time periods. 

 
At the point of time 0.897 t1 (Q = 0.947), the function  has a zero-passage. This supplies the somewhat 
particular course in logarithmic presentation (Figure 5). It's about a phase-jump of 180° in this case. From the 
point of time 100 t1 on we are able to declare, referring to Figure 4, the following approximation: 
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Figure 5: 
Phase Rate and Attenuation Rate 
in Dependence on Time (Logarithmic) 
 
These relationships can be derived as well graphically from Figure 4, as explicitly using (35) by application of 
(40). However, it's necessary to multiply (35) with j, in order to take account of the 90° turning. Then, to the 
approximation  = 20/c is applied. Phase rate and attenuation rate are the same from 100 t1 on approximately. 
This is the behaviour of an ideal conductor.  
 
For  we have already found an approximation, still remain c and ZF. In Figure 3 we have already figured the 
course of c. To the graphic determination of an approximation, we require the logarithmic representation 
however (Figure 6). To be considered is the fact, that the imaginary part is actually negative. 
 

  
Figure 6: 
Propagation-Velocity in Dependence  
on Time (Double Logarithmic)  
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2.3.2. Expansion Curve 
 
At the world-radius, the universe expands with the maximum velocity of  0.851661c, in the inside with a velocity 
decreasing more and more. Since the wave count in the interior of a sphere with defined radius r (c,t) is 
decreasing, the deficit is balanced by an increase of wavelength. Outside the wave count ascends continuously 
due to propagation. 
 

 
Figure 7:       
Track-Curve Near the Singularity 
in Dependence on Time 
 
For greater t the expansion of the wavefront proceeds nearly rectilinear with an angle of −45° proportionally t3/4. 
But the behaviour looks somewhat different near the singularity. In The track-course of a single sector of wave 
front near the singularity is shown in Figure 7. We see a kind of parabola, with greater t a hyperbola. And there 
is a rotation in propagation direction about an angle of 90°.  

 
2.3.3. Approximative Solution 
 
Now we want to set-up an approximation for the propagation function. The normal form is E=Ê ejωt−γx with 
γ = α+jβ. But with the exact solution (39) there is a case on hand, with which  and  contain both damping- and 
phase-information and the wave function isn’t harmonic either. That way we aren’t able to form a reasonable 
propagation function at all.  
 
In the case t » t1 phase- and attenuation rate are of the same size. Thus, the model behaves similar to a 
metal.There α does not stand for a damping, but for a rotation, namely as long as, with vertical incidence, a value 
of π is reached so that the wave exits the metal in the opposite direction after a minimal intrusion. The depth of 
penetration depends on the material proper-ties, the wave length and the angle of incidence. In case of this model 
the material properties aren‘t constant either, γ decreases with t and x. Hence it suffices to a rotation of  90° only 
and the wave remains in the medium (vacuum). In any case, there is a rotation too.  
 
To cope with it, we do a rotation of the coordinate system about π/4. That corresponds to a Multiplikation with 
√  and we get a purely imaginary solution. So becomes α=0 and γ=jβ and the exponentially related attenuation 
vanishes. Indeed, we still have to multiply the result with √  and to replace x by r. Despite α=0 the amplitudes of 
E and H are decreasing continuously. That’s caused by the Hankel function alone, resp. by the radical expression 
in (43).  
 
With it amplitude and phase are firmly interlinked (minimum phase system). Now the rotation angle in space is 
equal to θ+π/4. But a separation of phase- and damping-information isn‘t possible yet. But we can work with 
very high precision using the approximation equations in this case. To the general Hankel function H 0

(1)(ωt−βx) 
the following approximation applies (analogously for H—): 
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Instead of γx only the product βx with the phase rate appears in the exponent, since the amplitude rate is already 
emulated by the radical expression. With t»0 the angle π/4 can be omitted. After rotation and transition xr 
and ωω0 turns out: 
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E1 is the peak value of E with Q0=1. Indeed are both ω = 2ω0 and β = 2 β0 (with double frequency even the phase 
rate must be doubled) no constants at all. That means, they depend on t and r at the same time, limiting the 
manageability of the approximation very much. You can see that also with the phase velocity vph. It is defined in 
the following manner:  
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Thus, the phase velocity is equal to the double absolute value of propagation velocity. That’s caused by the 
factor 2, since phasing with double frequency propagates with double velocity too. For interest, also the group 
velocity should be stated here:  
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Except for the algebraic sign both results are equal. That means, the propagation takes place free from any bias. 
Further to the approximation. With (22) in Section 2.2. we had already found a very good approximation, almost 
exact, for the same temporal function. 
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Now, expression (47) enables to define an equivalent-α = α0 and, with it, even an equivalent-γ0 = α0 + j2β0, in 
order to get it up to the normal form for propagation functions.   
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That’s already a big step forward. Unfortunately, both 0 and  depend on time. It’s not critical for 20t, 
because it’s multiplied by t anyway. Else with , it should depend on r only. To the substitution of t in (49ff) we 
firstly put (41) left-hand into t = r/|c|. The real propagation velocity becomes effective here and not vph or vgr. 
Then we rearrange after t. Putting into (47) right-hand we get:  
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With it, we obtain for  and the product r the following expressions:  
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Last but not least the time t can be completely eleminated. The value γ is proportional to r –1/3 and, even more 
important, the product γr is proportional to r2/3. Unfortunately, as already said, we can explicitely state γ(r) by 
approximation only. With the exact function (38) a separation, especially from t is impossible. But generally 
speaking, an exact solution is not required at all, since the approximation yields very good results until a striking 
distance to the particle horizon at Q0=1, see Figure 2. Therefore, we will not follow up that matter at this point. 
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All hitherto stated approximations are based on the 4D-expansion-centre {r1,r1,r1,t1}. But it‘s more practicable to 
find a function, related to another centre. Most suitable seems to be the  point, where we are, the »point being«. 
At first we substitute the time according to tT~+t. The swung dash stands for the initial value at the point t=0 
(nowadays) describing an inertial system. Hence it’s about a constant. Because of T~ = t1Q

~
0

2 we are able to factor 
out Q~0. The direction of time doesn’t change. To the temporal part applies:  
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For the spatial part β0 we build up the inertial system once again using the substitution r1R~ . Because of R~ = r1Q
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as well as r̃Q~0 =  −r, now we are measuring from the other end, we can write for 2β0:  
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Approximation     Exactly (Q0 ≪103)  

Actually I should have to write r̃ instead of r. But because it’s the argument of the function the tilde has been 
omitted. The right-hand expression considers the fact, that r0 as smallest increment never can be underrun. The 
value α0 is definitely determined by the envelope curve of the Hankel function, else it would be equal to zero. 
With it, we obtain for  and the product r:  
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With r0 we have already found one elementary length. But LANCZOS speaks about another one [2]. That’s the 
wave length of the metric wave field λ0=2/. The approximation of λ0 must be divided by 2 once again, due to 
the double phase velocity. Hence λ0=2/ applies. To the comparison the expression for r0 once again:  
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Though λ0 is smaller than r0 and not identical to HEISENBERG‘s elementary length with it. λ0 now is in the range 
of 10–68m. Thus, LANCZOS was wrong in that point. But it only has been a guess on his part. In fact, it’s about the 
wave length of the wave function forming the metric lattice itself. Expression (57) until (59) only represent the 
temporal functions. Then, the  functions of time and space read as follows.  
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The wave length λ0 of the metrics is irrelevant for the further contemplations of this work, only β0 matters. The 
double-bracketed expression in (62) is called Navigational Gradient in future. It is the essential expression I was 
looking for. 
 
We only know the local age T, which results from the local HUBBLE-parameter (63). It quasi represents the 
temporal distance to the expansion centre. But we are able to determine the spatial distance to the world radius 
R. This forms a spatial singularity (event horizon) with it. The value arises from the ansatz (64): 
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emulated by the radical expression. With t»0 the angle π/4 can be omitted. After rotation and transition xr 
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Thus, the phase velocity is equal to the double absolute value of propagation velocity. That’s caused by the 
factor 2, since phasing with double frequency propagates with double velocity too. For interest, also the group 
velocity should be stated here:  
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Except for the algebraic sign both results are equal. That means, the propagation takes place free from any bias. 
Further to the approximation. With (22) in Section 2.2. we had already found a very good approximation, almost 
exact, for the same temporal function. 
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Now, expression (47) enables to define an equivalent-α = α0 and, with it, even an equivalent-γ0 = α0 + j2β0, in 
order to get it up to the normal form for propagation functions.   
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That’s already a big step forward. Unfortunately, both 0 and  depend on time. It’s not critical for 20t, 
because it’s multiplied by t anyway. Else with , it should depend on r only. To the substitution of t in (49ff) we 
firstly put (41) left-hand into t = r/|c|. The real propagation velocity becomes effective here and not vph or vgr. 
Then we rearrange after t. Putting into (47) right-hand we get:  
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With it, we obtain for  and the product r the following expressions:  
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Last but not least the time t can be completely eleminated. The value γ is proportional to r –1/3 and, even more 
important, the product γr is proportional to r2/3. Unfortunately, as already said, we can explicitely state γ(r) by 
approximation only. With the exact function (38) a separation, especially from t is impossible. But generally 
speaking, an exact solution is not required at all, since the approximation yields very good results until a striking 
distance to the particle horizon at Q0=1, see Figure 2. Therefore, we will not follow up that matter at this point. 
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All hitherto stated approximations are based on the 4D-expansion-centre {r1,r1,r1,t1}. But it‘s more practicable to 
find a function, related to another centre. Most suitable seems to be the  point, where we are, the »point being«. 
At first we substitute the time according to tT~+t. The swung dash stands for the initial value at the point t=0 
(nowadays) describing an inertial system. Hence it’s about a constant. Because of T~ = t1Q

~
0

2 we are able to factor 
out Q~0. The direction of time doesn’t change. To the temporal part applies:  
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For the spatial part β0 we build up the inertial system once again using the substitution r1R~ . Because of R~ = r1Q
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as well as r̃Q~0 =  −r, now we are measuring from the other end, we can write for 2β0:  
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Approximation     Exactly (Q0 ≪103)  

Actually I should have to write r̃ instead of r. But because it’s the argument of the function the tilde has been 
omitted. The right-hand expression considers the fact, that r0 as smallest increment never can be underrun. The 
value α0 is definitely determined by the envelope curve of the Hankel function, else it would be equal to zero. 
With it, we obtain for  and the product r:  
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With r0 we have already found one elementary length. But LANCZOS speaks about another one [2]. That’s the 
wave length of the metric wave field λ0=2/. The approximation of λ0 must be divided by 2 once again, due to 
the double phase velocity. Hence λ0=2/ applies. To the comparison the expression for r0 once again:  
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Though λ0 is smaller than r0 and not identical to HEISENBERG‘s elementary length with it. λ0 now is in the range 
of 10–68m. Thus, LANCZOS was wrong in that point. But it only has been a guess on his part. In fact, it’s about the 
wave length of the wave function forming the metric lattice itself. Expression (57) until (59) only represent the 
temporal functions. Then, the  functions of time and space read as follows.  
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The wave length λ0 of the metrics is irrelevant for the further contemplations of this work, only β0 matters. The 
double-bracketed expression in (62) is called Navigational Gradient in future. It is the essential expression I was 
looking for. 
 
We only know the local age T, which results from the local HUBBLE-parameter (63). It quasi represents the 
temporal distance to the expansion centre. But we are able to determine the spatial distance to the world radius 
R. This forms a spatial singularity (event horizon) with it. The value arises from the ansatz (64): 
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Hence, the value of β0=1/r0 even can be obtained from (39), in that we replace time with the HUBBLE-parameter 
H0. To R applies:  
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H
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That’s about 13 billion light years for H0 = 71.9963 kms–1Mpc–1. The result (67) for the alternative value of 
H0 = 68.6241 kms–1Mpc–1 has been calculated with the help of ([6] 1049) and the CODATA2018-values. The local 
age has the character of a time-constant and amounts only to the half, namely 6.6/7.1 billion years. The world 
radius (great circle) is equal to cT. More extended time-like vectors up to 2cT are possible due to expansion and 
propagation of the metric wave field. Full particulars in the next sections. 
 
The wave field examined here, forms the metrics of the universe (empty space), the real (nearly) MINKOVSKIan 
line element. We can already declare it here. Further contemplations are done in section 7.2.1. of [3]. We act on 
([3] 0.23) in it’s differential form in that we replace the otherwise usual light speed c with the propagation 
velocity c of the metric wave field:  

ds2 = dx2+ dy2+ dz2 – c2dt2     or    (68) 
 

ds2 = dr2+ r2(d2+ sin2  d2) – c2dt2        (69) 
 

Here immediately becomes clear, which physical meaning is assigned to the MLE. For the exact formula, we 
usefully apply polar-coordinates.. We now substitute the exact expression for c (r=0) obtaining:  
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   because of      ṙ0dt = dr0    (74) 

 
with  = 20t – r. Interesting is the algebraic sign-reversal. The cone turns into a ball. The previous light cone 
however continues to be applied to overlaid signals always propagating with c. It adds up the local propagation-
velocity (not expansion-velocity!). A() and B() determine the rotation near the singularity. The reciprocal of 
the expression in the denominator shows a behaviour like t1/2. Now still the approximation: 
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3. Expansion, Topology and Entropy 
 
In section 2.3.3. we found with (62) an expression for the temporal and spatial dependence of PLANCK's 
elementary-length r0, figuring at least locally a scale for the proportions (distance). On this occasion I refer once 
again to the fact that this is also applied to the size of material bodies, which is changing in the same measure as 
r0. Otherwise we could not observe any expansion either. 
 
Just particularly is this a matter of the mutual distances of material bodies. These follow a function, which differ 
with the considered distance, since quantity and expansion-velocity of the PLANCK elementary-length is 
changing with ascending distance to the coordinate-origin. But only distances with their starting-point in the 
origin should will be considered here. Of considerable importance for deeper contemplations is even the number 
of line elements (MLEs) along an imagined line with the length r (wave count vector Λ).  
 
We distinguish two cases in this connection: Wave count vector with constant r and r with constant wave count 
vector. More final case to the best fits the existing circumstances, since we can assume that no point is 
distinguished to other points in the cosmos. The average relative velocity against the metrics at the coordinate-
origin is equal to zero at free fall. This should be so everywhere then. With it, the expansion of the universe can 
be traced back to the expansion of the metrics alone. This corresponds to the case of a constant wave count 
vector.  

3.1. Expansion 

3.1.1. Constant Distance 
 
Because of the real lattice constant r0 the wave count vector Λ for smaller distances r is defined in the following 
manner: 
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er is the unit-vector. In the following, we consider only the figure  however. For larger distances, we have to 
replace  by d and r by dr using the corresponding expression (62) for r0:  

21
320

1 drd   
r 2r(1 t )

R




  with    
tt
T

       (79) 

 
To the solution we replace as follows (it applies ̃ ̃⁄ ̃ ):  
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Figure 8:      
Wave Count Vector as Function 
of Distance r and t 
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The wave count Λ follows the blue function depicted in Figure 8. Approaching to half the world radius (R/2), it 
seems to be, that Λ strives towards infinity. If we want to define a finite wave count 0, we take only a certain 
part of the world radius to calculate the wave count for it. Because of R/(2r0) = Q0/2 we opt for that value. The 
value amounts to 0.273965 R, that is 54.79% of the distance to the particle horizon (cT). In total however an 
infinite value will not be reached, since r0 becomes smaller and smaller going to r1. Out there, at Q=1 is the back 
of beyond, we reached the particle horizon.  
 
At first I guessed the value to be Λ1= Q0

2, since even R= r1Q0
2 applies. But that’s not the case. The little more 

ambitious calculation for r = R/2−r1 →  1−10−120 under application of the power series for (1−x)⅓, multiple 
substitutions up to the transformation of the function artanh →  arsinh →  ln, turns out Λ1 = ³∕₂ 

  = 1.75495∙1063 using the values from Table 1. For Λ1 applies t' ≡ t ≡ 0 i.e. a constant wave count vector. 
But by expansion and wave propagation »outwards« the phase angle 2ω0T = Q0  t½ increases continuously. And 
because of (4) Λ1(T) = ³∕₂ √   √  applies with b = 2κ0/ε0. 

 

 
Figure 9:   
Temporal Dependence of the Wave Count  
Vector for Several Distances r 
 
The temporal dependence for several initial distances r is shown in Figure 9. The larger the considered length, 
the later on the point of time, the wave count vector is defined from. That’s easy to understand, we can regard a 
length as existent only then, when the world-radius is larger or equal to. If the world-radius is smaller, so such a 
length doesn't exist.  
 
Therefore, lengths larger than 0.5R aren't defined at present and function (82) does not have a real solution 
before a value of e.g. t = 0.75T is reached (t = 0 is the present point of time). Altogether, the wave count 
decreases. That results from the fact that we are considering a constant length with expanding r0. So it happens, 
that MLEs are permanently »scrolled out« at the »tail« leading to a degradation of the wave count vector at the 
same time.   
3.1.2. Constant Wave Count Vector 

3.1.2.1.  Solution 
 
At first we start with the left expression of (82) for t = 0 (a = 1). It specifies the quantity of the wave count vector 
at the present point and at each point of time, if we want to assume it as constant. We just look for the function 
F(a, r  ′) being nothing other as the temporal dependence on a given length r  ′. See (80) for a(t). 
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An explicit reduction by differentiating and zero-setting (the left expression turns to zero on this occasion) leads 
to the trivial solution F = 0. Otherwise, only an implicit solution can be found as solution of the equation: 
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 artanh  ˜ r  ˜ r (F 1)    0     r(t)   ˜ r F3 (t)     (84) 

 
or in »Mathematica«-notation F1[t,r]: 
 

Fa1=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]- 
#2*(x-1)==0,{x,1}, MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];        (85) 
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]]; 

 
In this connection we have to be particular about the method (tangent-method) and the initial value. There was a 
problem using secant method. The temporal course is shown in Figure 10. 
 

 
Figure 10:        
Temporal Dependence  
of a Given Distance r 
 
There is only a limited definition-range for the solution. It is temporally bounded below by the spatial 
singularity, the considered length is greater than the world-radius and doesn’t exist yet. The greater the 
considered length, the smaller the definition range. With world-radius the space-like vector R/2 = cT is meant. 
 
 

3.1.2.2.  Approximative Solutions 
 
A simple solution for small r explicitly arises from (84) under application of the two first terms of the TAYLOR 
series for the function artanh: 
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This exactly corresponds to the behaviour of PLANCK's elementary-length (MLE) and is valid until 0.01R 
approximately. For larger distances, the ascend is larger. First we examine the course in the proximity of t  = 0 
(Figure 11) as well as the ascend r/t with t = 2·10–3. With root-functions the ascend (dr/dt) is equal to the 
exponent m in this point: 
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This is shown in Figure 11. It is in the range of 1/2…3/4. Using the function Fit[] with the help of (88) 
approximations of different precision for the exponent m can be found: 



 
 

 

1
3

11
34

1
4

0

2r
3 t 2rRQ 1 artanh

t2 T R1
T


 



 0
0

0

QRdef 
2r 2

  (82) 

 
The wave count Λ follows the blue function depicted in Figure 8. Approaching to half the world radius (R/2), it 
seems to be, that Λ strives towards infinity. If we want to define a finite wave count 0, we take only a certain 
part of the world radius to calculate the wave count for it. Because of R/(2r0) = Q0/2 we opt for that value. The 
value amounts to 0.273965 R, that is 54.79% of the distance to the particle horizon (cT). In total however an 
infinite value will not be reached, since r0 becomes smaller and smaller going to r1. Out there, at Q=1 is the back 
of beyond, we reached the particle horizon.  
 
At first I guessed the value to be Λ1= Q0

2, since even R= r1Q0
2 applies. But that’s not the case. The little more 

ambitious calculation for r = R/2−r1 →  1−10−120 under application of the power series for (1−x)⅓, multiple 
substitutions up to the transformation of the function artanh →  arsinh →  ln, turns out Λ1 = ³∕₂ 

  = 1.75495∙1063 using the values from Table 1. For Λ1 applies t' ≡ t ≡ 0 i.e. a constant wave count vector. 
But by expansion and wave propagation »outwards« the phase angle 2ω0T = Q0  t½ increases continuously. And 
because of (4) Λ1(T) = ³∕₂ √   √  applies with b = 2κ0/ε0. 

 

 
Figure 9:   
Temporal Dependence of the Wave Count  
Vector for Several Distances r 
 
The temporal dependence for several initial distances r is shown in Figure 9. The larger the considered length, 
the later on the point of time, the wave count vector is defined from. That’s easy to understand, we can regard a 
length as existent only then, when the world-radius is larger or equal to. If the world-radius is smaller, so such a 
length doesn't exist.  
 
Therefore, lengths larger than 0.5R aren't defined at present and function (82) does not have a real solution 
before a value of e.g. t = 0.75T is reached (t = 0 is the present point of time). Altogether, the wave count 
decreases. That results from the fact that we are considering a constant length with expanding r0. So it happens, 
that MLEs are permanently »scrolled out« at the »tail« leading to a degradation of the wave count vector at the 
same time.   
3.1.2. Constant Wave Count Vector 

3.1.2.1.  Solution 
 
At first we start with the left expression of (82) for t = 0 (a = 1). It specifies the quantity of the wave count vector 
at the present point and at each point of time, if we want to assume it as constant. We just look for the function 
F(a, r  ′) being nothing other as the temporal dependence on a given length r  ′. See (80) for a(t). 
 

   0 0
3 3 r F  Q artanh r r    Q a artanh r F     const
2 2 a

          (83) 

 

 

An explicit reduction by differentiating and zero-setting (the left expression turns to zero on this occasion) leads 
to the trivial solution F = 0. Otherwise, only an implicit solution can be found as solution of the equation: 

 
a  artanh  

˜ r F
a

 artanh  ˜ r  ˜ r (F 1)    0     r(t)   ˜ r F3 (t)     (84) 

 
or in »Mathematica«-notation F1[t,r]: 
 

Fa1=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]- 
#2*(x-1)==0,{x,1}, MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];        (85) 
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]]; 

 
In this connection we have to be particular about the method (tangent-method) and the initial value. There was a 
problem using secant method. The temporal course is shown in Figure 10. 
 

 
Figure 10:        
Temporal Dependence  
of a Given Distance r 
 
There is only a limited definition-range for the solution. It is temporally bounded below by the spatial 
singularity, the considered length is greater than the world-radius and doesn’t exist yet. The greater the 
considered length, the smaller the definition range. With world-radius the space-like vector R/2 = cT is meant. 
 
 

3.1.2.2.  Approximative Solutions 
 
A simple solution for small r explicitly arises from (84) under application of the two first terms of the TAYLOR 
series for the function artanh: 
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This exactly corresponds to the behaviour of PLANCK's elementary-length (MLE) and is valid until 0.01R 
approximately. For larger distances, the ascend is larger. First we examine the course in the proximity of t  = 0 
(Figure 11) as well as the ascend r/t with t = 2·10–3. With root-functions the ascend (dr/dt) is equal to the 
exponent m in this point: 
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This is shown in Figure 11. It is in the range of 1/2…3/4. Using the function Fit[] with the help of (88) 
approximations of different precision for the exponent m can be found: 



 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: 
Ascend of Several 
Given Distances in 
the Proximity of t=0 

mmm = {{0, .5}};  
For[x = 0; i = 0, x < .499, (++i), x += 0.01;  
AppendTo[mmm, {x, N[F1[0.0001, x] - F1[0, x]]/0.0001}]]     (88) 
Fit[mmm, {1, m, m^2, m^3, …}, m]   
m ≈ 0.513536 + 0.17937r + 0.490927r2        with  r = r/ R∼  
m ≈ 0.500(980) + 0.50052r  − 1.13082r2 + 2.16233r3          (89)  
m ≈ 0.500(1002) + 0.598206r − 3.45991r2 + 18.3227r3 − 42.6995r4 + 38.0733r5 

 
The third equation of (89) is very exact and suitable even for calculations with more extreme demands. Indeed, 
there is a need to consider the restricted definition-range, which is not being co emulated automatically by the 
approximative solution. It is pointed out here once again that the distances and velocities, regarded in this 
section, are a matter of space-like vectors having nothing to do with the time-like vectors considered in section 
4.3.4.4.6. of [3] Cosmologic red-shift. 
 
3.1.2.3. The Hubble-Parameter 
 
Having defined the HUBBLE-parameter only for small lengths and PLANCK's elementary-length (r0) until now, 
which are following the relationships for a radiation-cosmos (m = 1/2), we have to correct our statements for 
larger distances. With m = m (r) the HUBBLE-parameter H = /r becomes also a function of distance: 
 

 
Figure 12: 
HUBBLE-Parameter as a Function of the 
Distance for t=0, the Values r>0.5R are Extrapolated. 
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The course is shown in Figure 12. The metrics examined by this model is a non-linear metrics. With it, the 
question has become unnecessary, whether our universe is a radiation- or dust-cosmos. The answer is – as well, 
as. It's a question of the dimensions of the considered area. For small lengths, the distance behaves like a 
radiation-cosmos, in the range between zero and 0.5R like a dust-cosmos, with 0.5R like photons overlaid the 
metrics. 
 
However, more latter distance is not an area of infinite red-shift as in other models. It shows with the dilatory-
factor q very well  The course is depicted in Figure 13. 
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Figure 13: 
Dilatory-Factor as a Function of the 
Distance for t=0, the Values r>0.5R are Extrapolated 
 
The expansion-velocity H0r as a function of the distance is shown in Figure 14. The speed of light is reached in 
an essentially minor distance as with the standard-models, but only on paper. While the size of r0 at 0.5 R = cT 
tends to r1, the expansion speed along the time-like world line at this point is not infinite, rather it’s smaller than 
c (0.75c).  
 

 
Figure 14: 
Expansion-Velocity as a Function of the 
Distance for t=0, the Values r>0.5R are Extrapolated 
 
Otherwise we found out, that the maximum propagation speed | cmax | of the metric wave field amounts to 
0.851661c only. But furthermore the world-radius should be cT, whereas time-like vectors with up to 2cT should 
be possible.  
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Figure 14: 
Expansion-Velocity as a Function of the 
Distance for t=0, the Values r>0.5R are Extrapolated 
 
Otherwise we found out, that the maximum propagation speed | cmax | of the metric wave field amounts to 
0.851661c only. But furthermore the world-radius should be cT, whereas time-like vectors with up to 2cT should 
be possible.  



 
 

 

 

So we have to do with four different distances resp. 
velocities, which all does not seem to fit together 
anyhow. But using this model it’s possible to solve this 
conflict. Let’s have a look on Figure 15, which except 
for rK, is a true-to-scale representation. 
 
We assume, that the wave front of the metric wave 
field propagates straight-forward with 0.851661c. It 
corresponds to the vector  in Figure 15 thus to the 
propagation share. Then, the share rM of the world-
radius caused by it would amount to 0.851661cT. 
However, other values are given in the figure – why, we 
will see later. As noticed furthermore, the constant 
wave count vector rK up to the vicinity of R/2 is 
running on the same track as the incoming time-like 
vector rT with 0.75 c (arc length 0.75 cT). 
 
Figure 15:    
Expansion-Velocity and World-Radius in the Model 

 
But it’s tilted about the angle α1, so that we have to sum geometrically. In addition the partial vector  is curved. 
But the object we are looking for is the space-like vector rR (expansion share ). Next we flatten the partial 
vector  bending it up to . Then we project it onto rR, it applies rR = −rK cosφ with the angle 
φ = arg c = α − π/2 = 48.6231° of the metric wave function. With a phase angle of Q = 0.8652911138 we obtain 
with the angle α = 2.419430697 ≙ 138.6231678° the following solution:  

2 2 2 2 2 2 2 2
M R M Kc c c c c cos c 0.85166 0.75 cos 2.41943    (92) 

 
2 2 2c c 0.85166 0.562784 1.02081c = 2.08 10     (93)  

This result isn’t notably exact since values for β, φ and cM have been used, misfitting Q = 1. We will see, if we 
are able to get a more exact result. If we get granular on Figure 15, we see, that rK is curved and, even in this 
state, protrudes significantly beyond rR. As the case may be, we have to impose it with a correction factor, if we 
want to get a correct relation. On the one hand there is the ratio RS = rK ∕ rN, which we can calculate. On the other 
hand there will be a similar case with the classic electron radius in section 3.3.2.3. of [3], where we defined a 
correction factor δ = 1.01619033. Since I wonder about it exactly, I calculated a great many of alternatives, but 
neither the correction factor δ nor RS = rK ∕ rN proved to be particularly helpful. 
 
But there is a version, which delivers an acceptable result even without a correction factor. That’s the case, with 
which the real part of the wave function cM (27) has a zero-crossing (phase-jump). Since it’s the simplest variant, 
it’s probably the right one and I will prioritize it. See [3] for details. Here the exact parameters for this variant: 
 

Q = 0.95013820167858442645 cM = 0.8485439825230016 c cR = 0.529124852680352 c cK  = 0.75 c 
α  = 134.86993657768931460° β   = 31.94634370109298° φ  = 44.8699365776893146° RS = 1.02469672804290424  

2 2 2 2 2
M Kc c c cos c 0.848544 0.529125 1.0000000c 0.000000   (94) 

  

 

The conclusion is, the universe expands behind the 
particle horizon at Q = 0.9501382. That’s between the 
point with the maximum expansion velocity and Q = 1. 
It is reminiscent of a surfer, who does not run on the 
crest of waves, but always a little off. With it, we have 
clarified the contradictions between the various world 
radii and ex-pansion velocities.  
 
According to the name, it's a kind of LEHU (Light 
speed Expanding Hyperspherical Universe) similar to 
[7] but without Standard Model and with totally 
different basics. Please find more information about 
the time-like vector rT in section 5. The knowledge 
gained here has a significant influence on the calcu-
lation of the entropy of the metric wave field. 
 
Figure 16:       
Expansion-Velocity and World-Radius  
Without Correction Factor 

 

 

3.2. Energy and Entropy 

3.2.1. Entropy 
 
Now we will consider the discrete MLE and our model from the energetic point of view. Since entropy is much 
more important than energy for the thermodynamician, we will take it into account by examining entropy first. 
We want to mark entropy with S henceforth. In order to avoid confusions with the POYNTING-vector, we will 
always figure it bold as vector (S). If we write S, we always mean entropy and with S always the POYNTING-
vector. 
 
From the statistic point of view, the entropy of a system is defined by (95) where k is the BOLTZMANN-constant 
and N the number of all possible inner configurations. 
 

S = k ln N           (95) 
 
With a single MLE (N = 1) entropy would be equal to zero theoretically. That’s wrong of course, since statistics 
necessitates a minimum number of N to be applied at all. With N = 1 the result, mathematically can take on a 
whatever value without offending the »statistics«. Therefore we want to try to find out, if there is another 
possibility to determine the entropy of this single MLE. 
 
Strictly speaking the MLE is a matter of a ball-capacitor with the mass m0 moving in its inherent magnetic field. 
We don't know what happens inside the capacitor. Basically it behaves like a (primordial) black hole. According 
to [8] the SCHWARZSCHILD-radius of such a BH is defined as: 
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Now let's substitute m with m0 here (2). We get rs = 2r0, substantiating our foregoing assumption. The surface of 
this black hole yields with it to A = 4π r0

2. It’s interesting that the expression for the SCHWARZSCHILD-radius can 
be derived even without aid of the SRT or URT. Because both, SRT and URT according to this model are only 
emulated by the metric fundamental lattice. Such relationships must be basic qualities of the lattice itself. They 
apply as well microscopically as macroscopically then. 
 
In [9] pp. 211 a method is figured to determine the entropy of a black hole. It is based on quantum physical 
considerations fitting our MLE very well. The author assumes the KERR-NEWMAN-solution of the EINSTEIN-
vacuum-equations Rik =0 with stationary rotating, electrically loaded source and external electromagnetic field 
(97) with R r2

 – 2mr + a2 and 2  r2
 + a2cos2, M =  mGc–2 und a = Lm–1c–1; m is the mass and L the moment of 

momentum. 
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We don't want to engross it here. The author finally comes to the following statements for the radius r± of the 
black hole and its surface A: 
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The result depends thereon, if the MLE disposes of a moment of momentum or not. With m =  m0 under 
application of (2), (4) and (868 [3]) we obtain the following values for the SCHWARZSCHILD-radius: Without 
moment of momentum (L =  0) for r−= 0, r+= rs= 2r0 as well as A = 4π r0

2. With moment of momentum L =  ħ, here 
the brackets apply, we get two identical solutions r± = r0. The surface yields A = π r0

2.  
 
Furthermore, the author refers to a work of BEKENSTEIN (1973), according to which the entropy of a black hole 
should be proportionally to its surface. The exact proportionality-factor has been determined by HAWKING 
(1974) in a quantum physical manner to: 
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k is the BOLTZMANN-constant, the bracketed number applies to L =  ħ. Interestingly enough, the expression 
contains PLANCK's elementary-length and even with ħ according to our definition instead of h. If we now re-
insert the values, we get: 
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k is the BOLTZMANN-constant, the bracketed number applies to L =  ħ. Interestingly enough, the expression 
contains PLANCK's elementary-length and even with ħ according to our definition instead of h. If we now re-
insert the values, we get: 



 
 

 

Sb = 4 k    for  L =  0       as well as        Sb = k      for      L = ħ    (101) 
 
Now we want to examine, whether the MLE actually owns a moment of momentum. We are based on our model 
(effective-value) developed in section 3.2. of [3]. For the moment of momentum L applies generally: 
 

L   r  p   m  (r  v)        (102) 
 
With m  =  m0, r  =  r0, v = c, c  r we get after application of (2) for the amount L: 
 

  L   m0cr0           and because of c = 0r0            (103) 
 

2
0 0 0W m c           (104) 

 
Expression (104) is apparently right. With it, we have explicitly proven, that the MLE owns a moment of mo-
mentum. It’s equal to PLANCK's quantity of action i.e. as with a spin–2–particle or vice-versa: 
 

The PLANCK's quantity of action is defined by the effective-value of the moment of momentum of  
the MLE. The inherent moment of momentum (spin) is identical to the track moment of momentum. 

 
The last statement is justified by the fact that it's a matter of effective-value here. In reality, r0, m0 and the track- 
and inherent moment of momentum are temporally variable, nearly periodic functions. PLANCK's quantity of 
action is the sum of track- and inherent moment of momentum then. It’s equal to , at which point one time the 
track-, the other time the inherent moment of momentum becomes zero. Such an interdependence even is called 
dualism. Naturally, PLANCK's quantity of action can be defined not only as moment of momentum. Another 
possibility is e.g. q00. Because of GIBBS‘ fundamental equation the temperature of the MLE and with it of the 
whole metric wave field is equal to zero [9]. 
 
Going back to entropy. We see that the BOLTZMANN-constant figures an elementary quality of our metric 
fundamental lattice, as elementary as 0, 0 and 0. Here, someone may say, this cannot be correct, since k is a 
purely statistical constant. Just we can answer this interjection: ―The BOLTZMANN-constant is so elementary 
because it’s statistical‖. Even π allows to be defined statistically. 
 

3.2.2. Topology 
 
We have determined the entropy of one discrete MLE. How does it look with a larger length then again? Since 
the single-entropy is a multiple of the BOLTZMANN-constant, we can calculate-on with the already known 
statistical relationships (95). In this connection the (absolute) maximum number of possible inner configurations 
within a volume with the radius r is given by the number of MLE's contained in this volume. With a cubic-face-
centred crystal-lattice, the number within a cube with the edge length d is defined as: 
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 is the lattice constant in this case. The fc-cube just contains 4 elements in total. Then, within a ball with the 
diameter d = Λr0 and the volume /6 d3 there are 
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individual MLE's. As long as ρ is not too large, we can insert (78) for Λ, otherwise (82): 
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That‘s the number of elements within a sphere with the radius r. The course is shown in Figure 17 curve . If 
we insert the expression Λ1 = ³∕₂ into (106), we obtain even a result for N1. Here t ≡ 0 reapplies. Then, 
the whole universe would contain altogether N1 = ⁹∕₄    = 1.13203∙10190 elements. Because of the 
propagation of the metric wave field this value is increasing continuously too (see below), and that according to  
N1(T)  = ⁹∕₄ √   √  with b = 2 κ0/ε0.  

 

 

But for the calculation of the entropy S these values are sparsely helpful. As is known S is about a statistical 
value and (108) violates a basic rule of the statistics: A value must not be counted repeatedly. The relations (96ff) 
namely apply for a »normal« 3D-sphere only.  
 

     
 
Figure 17: 
Number of MLE´s in Dependence on the Radius Linear and Logarithmic 
 
But at the universe we have to take into account the particular 4D-topology. An observer in the free fall only 
imagines to be located in the spatial centre of the universe. In reality he is situated at a temporally singularity, the 
event horizon {0,0,0,T}. He is unable to overcome it, because beyond there is the future. Indeed, it’s not about a 
point, but about a hyper-surface. All other observers at their own 3D-locations reside widespread at the same 
surface. Since T proceeds steadily, the temporal radius increases too and the observers are quasi »surfing« on the 
»time wave«. If one observer wants to visit another, he must accelerate. Thus, his temporally course is slowing 
down. Indeed, he does not travel to the past, but he is only »broken away« from the unbraked time lapse. He 
suddenly finds himself inside the sphere. With v = c the time stands still for him. Now he is situated at the real 
spatial centre, but only, because it came up to him. 
 
That means, the spatial 4D-centre is not with the observer, but in the distance cT at the coordinates 
{cT,cT,cT,0}. More correct would be t1 instead of zero here. With the spatial centre it’s also about a hyper-
surface, a spatial singularity, the particle horizon. We cannot overcome even that. Like the temporal radius it‘s 
expanding steadily. Altogether it’s about a closed system. 
 

 

 
If two observers could swap their positions, 
they would find the same conditions on 
both locations. Since overall in the universe 
the same physical laws apply. Interesting 
there-at is, that we observe different con-
ditions in a definite distance r.  
 
The reason is the finite speed of light. The 
universe is not hot-wired, there is no in-
stantaneous interconnection between what-
ever points (except for quantum entangle-
ment).  
 
For all observers the universe consists of 
the local conditions plus all forces and sig-
nals resulting from prior states, delayed by 
t ≥ r/c. The farther, the elder the condition, 
that caused the impact. 
 
 
Figure 18:  
Factor K in Dependence on the Radius for 
the 3 Solutions (Schematic Presentation) 

 
And exactly that is the reason, why we cannot use expression (108). Approaching the distance cT, the MLE-
density within Λ is in-creasing enormously indeed. But similarly, the universe in that distance, at that time has 
had an essentially smaller world radius, a smaller surface. That means, the cross section must be smaller than at 
solution . The larger the distance r, the smaller the surface A, the opposite way around, as with a »normal« 
sphere. Even e.g. the spherical shell in the distance R/2−r1 namely consists of only one single element. If its con-
dition changes, it has a simultaneous effect on all vectors coming from all directions. But we are allowed to 
count only one element. 



 
 

 

Sb = 4 k    for  L =  0       as well as        Sb = k      for      L = ħ    (101) 
 
Now we want to examine, whether the MLE actually owns a moment of momentum. We are based on our model 
(effective-value) developed in section 3.2. of [3]. For the moment of momentum L applies generally: 
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With m  =  m0, r  =  r0, v = c, c  r we get after application of (2) for the amount L: 
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Expression (104) is apparently right. With it, we have explicitly proven, that the MLE owns a moment of mo-
mentum. It’s equal to PLANCK's quantity of action i.e. as with a spin–2–particle or vice-versa: 
 

The PLANCK's quantity of action is defined by the effective-value of the moment of momentum of  
the MLE. The inherent moment of momentum (spin) is identical to the track moment of momentum. 

 
The last statement is justified by the fact that it's a matter of effective-value here. In reality, r0, m0 and the track- 
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3.2.2. Topology 
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the single-entropy is a multiple of the BOLTZMANN-constant, we can calculate-on with the already known 
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 is the lattice constant in this case. The fc-cube just contains 4 elements in total. Then, within a ball with the 
diameter d = Λr0 and the volume /6 d3 there are 
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individual MLE's. As long as ρ is not too large, we can insert (78) for Λ, otherwise (82): 
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That‘s the number of elements within a sphere with the radius r. The course is shown in Figure 17 curve . If 
we insert the expression Λ1 = ³∕₂ into (106), we obtain even a result for N1. Here t ≡ 0 reapplies. Then, 
the whole universe would contain altogether N1 = ⁹∕₄    = 1.13203∙10190 elements. Because of the 
propagation of the metric wave field this value is increasing continuously too (see below), and that according to  
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Figure 17: 
Number of MLE´s in Dependence on the Radius Linear and Logarithmic 
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suddenly finds himself inside the sphere. With v = c the time stands still for him. Now he is situated at the real 
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expanding steadily. Altogether it’s about a closed system. 
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Figure 18:  
Factor K in Dependence on the Radius for 
the 3 Solutions (Schematic Presentation) 

 
And exactly that is the reason, why we cannot use expression (108). Approaching the distance cT, the MLE-
density within Λ is in-creasing enormously indeed. But similarly, the universe in that distance, at that time has 
had an essentially smaller world radius, a smaller surface. That means, the cross section must be smaller than at 
solution . The larger the distance r, the smaller the surface A, the opposite way around, as with a »normal« 
sphere. Even e.g. the spherical shell in the distance R/2−r1 namely consists of only one single element. If its con-
dition changes, it has a simultaneous effect on all vectors coming from all directions. But we are allowed to 
count only one element. 



 
 

 

In fact that‘s good for MACH’s principle, spatial damping cancels out, the strongest force is coming from the 
»edge«, but not for the statistics. That’s why we are forced to find a function, which considers these special 
conditions. In doing so the reference to the time t should not get lost. Because I’m not a topology-expert, I tried 
to find such a function, at least roughly by introduction of a correction factor K; the whole by trial and error. So 
it’s not about a correct derivation here. With small r a possible solution should run similarly as with a 3D-sphere, 
likewise as solution . In the vicinity of R/2 it should flatten out however. Either the border R/2 should not be passed. 
 
In addition to  two more possible solutions are depicted in Figure 18 to the correction of one single coordinate. 
With solution  (109) I assumed the volume of the inverse sphere to decrease with r. Solution  (110) 
additionally considers the curvature in the vicinity of R/2 under consideration of the angle α. 
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The angle α(r) calculates as follows (applies only in connection with (110)!!!) 
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It’s even only a rule of thumb. The course of both functions is depicted in Figure 18. As we can see, function 
(109) is less suitable, because it exceeds the R/2-border at N = 2/3π (1.1955∙Q0)3

 = 2/3π (2.3909∙Λ0)3 – a crooked 
value. There isn’t a flattening either, but a pole outside R/2.  

 
Function (110) on the contrary fulfils all demands. It proceeds as with a 3D-sphere, like solution  at small r 
and there is a flattening in the direct vicinity of R/2. Indeed, the function is defined beyond R/2, but without 
pole, and the value re-drops to zero at 2cT. That means, it’s about a time-like vector remaining inside the world 
radius. That’s easy to understand. When rushing through the 4D-centre {cT,cT,cT,0} or passing it within spitting 
distance, the vector re-approaches the observer and N has to decline again. The maximum is at the „magic― value 
N0 = 2/3π (Q0/2)3

 = 2/3π Λ0
3

 = 1.51894∙10182. The reason, why the func-tion hits its maximum already on the verge 
of R/2, is its curvature. The arc-length becomes effective here.  

 
By the way, all time-like vectors with the length 2cT, regardless of continuous or discon-tinuous (virtual), are 
coming from a point with the coordinates {r1/2, r1/2, r1/2, t1/4}. That’s behind the particle horizon, previous to the 
phase jump at Q = 1, from a time, at which event- and particle-horizon still overlapped each other (Q = 1/2). The 
real world age is T, the length 2cT is the result of curvature, propagation and expansion (see Figure 24). 
  

 
Figure 19: 
Number of MLEs in Dependence on Time 
According to Solution  

 

 

Thus I’m sure, that (110) fits the actual conditions to the best. Then, N0 would be identical to the total number of 
possible micro-states of the universe and candidate for the calculation of the entropy S0. The temporal 
dependence of N according to (110) for several constant distances is depicted in Figure 19. The course of N0(T) 
and N1(T) in the comparison is shown top right. The rule of N1 has been scaled down about 108, because both 
values gape apart too much.  
 
Needless to say, the temporal functions are defined from N0 on only, above they are cropped. Solution  
proceeds similarly, but N1 is orders of magnitude greater, so that the crop takes place much higher in a range 
running nearly vertical up, which can no longer be processed by the plot program. And there is another 
difference. Distances > R/2 aren’t postponed into future with solution  and  similar to the dashed blue line 
(not to scale). That’s correct. In contrast, solution  shows them, as if it’s about a distance <R/2, which is also 
correct. Of course, there is even such a line with solution  (example 0.8Rʹ), but it’s not being emulated by 
expression (110). That’s correct too, since there is a nearly infinite number of solutions already in the example 
range 0.5…0.8R and beyond, depending on Rʹ. 
 

3.2.3. Entropy 
 
Now let’s get down to the entropy. Generally (95) applies here. As determined more above, the entropy of the 
MLE calculates similar to that of a black hole according to (101) right (Sb). Thus, we have to multiply (95) with 
π. However, that applies to the metric wave field only and not to the CMBR. All other problems may be 
calculated with the conventional ansatz and (95). In doubt just divide the results by π. 
 
The course of the entropy S in dependence on the radius is shown in Figure 48. With r = r0, starting with a value 
of πk = 4.337465∙10−23J K−1 the entropy  rises continuously with increasing r, runs through a phase of minor 
ascend and skyrockets towards infinite with r  cT. But an infinite value will not be achieved, since the number 
of line elements until the edge is limited to S1(Λ1). 
 
Because of the pole the solution  is less suitable. For solution number  we obtain the tremendous value of 
S1 = 3π k (⅔ + ln Q0 + ln ln Q0) ≈ 1375 k = 1.89832∙10−20 J K−1. For solution  the entropy S0 applies. It’s defined 
in the following manner:  
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Figure 20: 
Entropy in Dependence on the Radius 
 
The temporal dependence of S0 for the case r = const is depicted in Figure 21. Interestingly enough the values of 
regions with fixed size decrease steadily. Maybe that’s the »motor« of the evolution from the lower to the higher. 
In the case constant wave count vector the entropy S(r ≠ R/2) remains constant across the whole definition range. 
It calculates according to (113) on the left. For S0 the right expression applies: 
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To calculate S1 we advantageously substitute Q0 with Q̃0 t2 in the expression in the paragraph below Figure 48. 
The entropy with constant wave count vector isn’t defined across all times for all radii either. Certain distances 
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expression (110). That’s correct too, since there is a nearly infinite number of solutions already in the example 
range 0.5…0.8R and beyond, depending on Rʹ. 
 

3.2.3. Entropy 
 
Now let’s get down to the entropy. Generally (95) applies here. As determined more above, the entropy of the 
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of πk = 4.337465∙10−23J K−1 the entropy  rises continuously with increasing r, runs through a phase of minor 
ascend and skyrockets towards infinite with r  cT. But an infinite value will not be achieved, since the number 
of line elements until the edge is limited to S1(Λ1). 
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Figure 20: 
Entropy in Dependence on the Radius 
 
The temporal dependence of S0 for the case r = const is depicted in Figure 21. Interestingly enough the values of 
regions with fixed size decrease steadily. Maybe that’s the »motor« of the evolution from the lower to the higher. 
In the case constant wave count vector the entropy S(r ≠ R/2) remains constant across the whole definition range. 
It calculates according to (113) on the left. For S0 the right expression applies: 
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To calculate S1 we advantageously substitute Q0 with Q̃0 t2 in the expression in the paragraph below Figure 48. 
The entropy with constant wave count vector isn’t defined across all times for all radii either. Certain distances 



 
 

 

don’t exist, until the radius of the expanding universe has reached that length. Then S gets the value S0 resp. S1 
exactly on entry. It applies: The later the entry, the higher starting entropy. Curves are being cropped even here 
in turn. Solution  looks similar like Figure 21. The curve S1 proceeds far beyond the plot however. Initial 
distances > R/2 are moved into future too, with solution  into the range < R/2, just like with N1 and N0. 
 

 
Figure 21:           
Temporal Dependence of the Entropy 
for r=const (Linear Scale) 
 
The temporal functions S0 and S1 are tending to ∞, as we can easily see by application of the limit theorems. 
Concerning the future of the universe we can say, that we don’t have to fear a heat death. A thermodynamic 
equilibrium will never occur. The reason is the propagation of the metric wave field, as well as the expansion of 
the universe. That was a close shave! 
 

4. Horizons of the Universe 

4.1. Particle Horizon 
 
As shown in section 3.2.1. the MLE disposes of an inner SCHWARZSCHILD-radius with the value r± = r0. It has the 
property of a particle horizon. Because of the relations R = r0Q0 and r1 = r0/Q0 it may be possible, that such a 
particle horizon also exists on a macroscopic scale, for the cosmos as a whole. The HUBBLE-parameter H0 = ω0 

Q0
−1 has the character of an angular frequency, just as ω0 = ω1 Q0

−1. Thus, it may be possible, that even the whole 
universe owns an angular momentum in the amount of ħ1 = ħ Q0. The MLE with its spin 2 lets suppose, that the 
universe also owns a spin of the size 2. That would explain a lot of phenomena. Therefore, with this information, 
we want to try, to calculate such a hypothetic SCHWARZSCHILD-radius R± with (L = ħ1 = ħQ0). 
 
We start, in that we multiply (99) with Q0 resetting the bracketed expression to the definition a = ħ m–1c–1. The 
value M1 is determined using the right-hand ansatz and (868 [3]): 
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As result a double solution with R± = R turns out, exactly as with the MLE but on a larger scale. The universe 
inside is larger then outside apparently, maybe due to the curvature of the time-like vectors. Notably interesting 
is the value M1=1.81525∙1053 kg with H0 = 68.6241 kms–1Mpc–1. That’s the total mass of the metric wave field 
and identical to MACH’s counter mass. Dividing it by the volume of the universe V1 = ⁴∕₃ π R3 we obtain a value 
of 1.76907∙10−29

 kg dm−3 for the density. This one is exactly 3/2 times greater than the value G11(R/2) calculated 
in section 7.2.7.2. of [3]. Well, we are living in a black hole actually and we can use nearly 100% thereof. Or is 
there yet an »outside« and the universe is nothing other than a huge line element?  

 

 

4.2. Event horizon 
 
That's the point or better the hyper-surface the observer (we) are living at. In reality it's not a point in space but a 
point in time: The Present. That means, it cannot be overcome because behind there is: The Future. Furthermore 
we must remark that we always assumed the expansion-centre as basis of the coordinate-system for the previous 
contemplations, where actually no length is defined. More essential qualities result from it for the two singular 
points. 
 

 
For the spatial singularity (expansion-centre) applies: Each length, measured from this point, always  
has the quantity R/2. Each period, measured at this point, always has the amount T, each frequency  
2H. It’s about an event-horizon. It’s a drain of the electromagnetic field. To the approximation applies r=∞, t=∞. 
 

 
 
For the temporal singularity (wave-front) applies: Each length, measured from this point, always has  
the quantity r1/2. Each period, measured at this point, always has the amount t1, each frequency 21.  
It’s about a particle-horizon. It’s a source of the electromagnetic field. To the approximation applies r=0, t=0. 
 

 
A particle horizon on the inside is an event horizon on the outside and vice versa. It looks similar to the magnetic 
and electric fields. No matter at which pole you are located, you always believe that you are at the centre, since 
all field lines always converge rectangularly to the observer from all directions (Figure 23). Except that he is unable 
 

  
 
Figure 22: Figure 23: 
Poles and Field Lines in the Electrical Field [10] Horizons and Field Lines in the Gravity Field 
 
to really reach the particle horizon. I can't say whether the two poles are connected in the background like with 
the horseshoe magnet. In any case, there is more than only one event horizon, once for the universe as a whole, 
as well as a huge number what with black holes. 
 

5. Distance-Vectors 
 
Due to the progress in the technical domain taken place in the most recent time, the astronomers are able to look 
into the universe deeper and deeper and with it even farther back in time. The farther one looks however, all the 
more the structure of the universe becomes notably and must be taken into consideration on the interpretation of 
the measuring results. Otherwise the much money would have been poured down the drain. 
 
But before expanding further, just let's have a look at a so simple quantity, like the distance respectively the 
spacing to a stellar object. The astronomer just sits in front of his telescope, observing an object and he tries to 
determine with different methods, how far away it is. And before he can determine the HUBBLE-parameter, he 
must determine the distance respectively the spacing to the object of course. And the first problem already 
appears here: What do we actually mean by distance as well as spacing? And what do we really want to 
determine? 
 
In the close-up range this question can be answered relatively simply: The spacing is equal to the distance and 
the light from the object has covered this, when it has arrived at the observer. But if we leave the close-up range, 
looking at objects farther away, it's no longer like this. At first, we look at the object by means of photons, which 
have moved from the object into our direction. Thus, in reference to the metrics, it's about an (incoming) time-
like vector (Figure 24 and 22 rT red pictured), a negative distance. We call it time-like distance. It corresponds to 
the constant wave count vector of the metrics. On this occasion, we how-ever actually observe the zero vector 
and not the time-like vector. With vanishing curvature both coincides indeed. As it looks like, when there is a 
curvature, will be presented later. 



 
 

 

don’t exist, until the radius of the expanding universe has reached that length. Then S gets the value S0 resp. S1 
exactly on entry. It applies: The later the entry, the higher starting entropy. Curves are being cropped even here 
in turn. Solution  looks similar like Figure 21. The curve S1 proceeds far beyond the plot however. Initial 
distances > R/2 are moved into future too, with solution  into the range < R/2, just like with N1 and N0. 
 

 
Figure 21:           
Temporal Dependence of the Entropy 
for r=const (Linear Scale) 
 
The temporal functions S0 and S1 are tending to ∞, as we can easily see by application of the limit theorems. 
Concerning the future of the universe we can say, that we don’t have to fear a heat death. A thermodynamic 
equilibrium will never occur. The reason is the propagation of the metric wave field, as well as the expansion of 
the universe. That was a close shave! 
 

4. Horizons of the Universe 

4.1. Particle Horizon 
 
As shown in section 3.2.1. the MLE disposes of an inner SCHWARZSCHILD-radius with the value r± = r0. It has the 
property of a particle horizon. Because of the relations R = r0Q0 and r1 = r0/Q0 it may be possible, that such a 
particle horizon also exists on a macroscopic scale, for the cosmos as a whole. The HUBBLE-parameter H0 = ω0 

Q0
−1 has the character of an angular frequency, just as ω0 = ω1 Q0

−1. Thus, it may be possible, that even the whole 
universe owns an angular momentum in the amount of ħ1 = ħ Q0. The MLE with its spin 2 lets suppose, that the 
universe also owns a spin of the size 2. That would explain a lot of phenomena. Therefore, with this information, 
we want to try, to calculate such a hypothetic SCHWARZSCHILD-radius R± with (L = ħ1 = ħQ0). 
 
We start, in that we multiply (99) with Q0 resetting the bracketed expression to the definition a = ħ m–1c–1. The 
value M1 is determined using the right-hand ansatz and (868 [3]): 
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As result a double solution with R± = R turns out, exactly as with the MLE but on a larger scale. The universe 
inside is larger then outside apparently, maybe due to the curvature of the time-like vectors. Notably interesting 
is the value M1=1.81525∙1053 kg with H0 = 68.6241 kms–1Mpc–1. That’s the total mass of the metric wave field 
and identical to MACH’s counter mass. Dividing it by the volume of the universe V1 = ⁴∕₃ π R3 we obtain a value 
of 1.76907∙10−29

 kg dm−3 for the density. This one is exactly 3/2 times greater than the value G11(R/2) calculated 
in section 7.2.7.2. of [3]. Well, we are living in a black hole actually and we can use nearly 100% thereof. Or is 
there yet an »outside« and the universe is nothing other than a huge line element?  

 

 

4.2. Event horizon 
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contemplations, where actually no length is defined. More essential qualities result from it for the two singular 
points. 
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A particle horizon on the inside is an event horizon on the outside and vice versa. It looks similar to the magnetic 
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Figure 22: Figure 23: 
Poles and Field Lines in the Electrical Field [10] Horizons and Field Lines in the Gravity Field 
 
to really reach the particle horizon. I can't say whether the two poles are connected in the background like with 
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and not the time-like vector. With vanishing curvature both coincides indeed. As it looks like, when there is a 
curvature, will be presented later. 



 
 

 

But the object, we observe nowadays, is already located at a completely different position, as our observation-
data want to make believe, since these are already totally »outdated«, when they reach us. One feature of this 
model is now, that this is not the case. Even when the signals are already very old, the object really resides in 
reference to the observer's R4-coordinate-system at that very position, where he observes it. The length of the 
vector from the object to the observer however cannot be influenced by him, because he is just only observer. 

 

 

 
 

 
 
Figure 24: Figure 25: 
Distance-Vectors with an Object Distance-Vectors with an Object 
at the Edge of the Universe (Schematized) in the Close-Up Range of the Observer (Schematized) 

 
But if the observer has the intent, to visit the object, that would be an (outgoing) space-like vector then, a 
positive distance/spacing, this cannot take place on the same way, which the ray of light has covered, because the 
observer would have to move with c thereto and each zero vector is unique. Now, another distance/spacing is 
applied to him. 

 
To the difference between distance and spacing: These are (approximately) equal in the close-up range only. 
With larger distances, objects in the free fall move away from each other according to the distance-function with 
constant wave count vector. That would be the real spacing (rK blue pictured). With it, also the definition of the 
space-like distance turns out (rR green pictured). This is the shortest way between the observer or better the 
traveller and the object. It is an imagined line and coincides with the coordinate r of the coordinate-system. 
Locally, it is equal to the space-like vector of the metrics. 

 
 
1. The zero vector rN is the way a ray of light covers, at which point the velocity in reference to the  
 subspace is c constantly. In the local range it is equal to the geometrical sum of space- and  
 time-like vector. 
 
2. The time-like distance rT is the way a ray of light, starting from the source, has covered, when it  
 has been arrived at the observer. In the local range, it corresponds to the time-like vector of the  
 metrics. But actually the zero vector rN is observed. 
 
3. The spacing rK is the distance between two objects in the free fall. The vector proceeds along the  
 field-lines of the gravitational-field and varies according to the spacing-function with constant wave  
 count vector. It corresponds to the zero vector rN of the metrics. 
 

 4. The space-like distance rR is the shortest vector between a traveller and his destination. It’s about  
  an imagined line. It is identical to the coordinate r of the coordinate-system. In the local range, it  
  corresponds to the space-like vector of the metrics. If one wants to travel along this line, permanent 
  navigation (acceleration) is needed. 

 
 

But this way, the destination cannot be reached in the free fall, as an analogy from the navigation suggests – the 
difference between latitudinal and great-circle-distance. When start and destination are on the same latitude and 
if it’s not exactly about the equator, the great-circle-distance is always smaller than the latitudinal-circle-
distance. During great-circle-navigation however, the captain must change the course continually, just accelerate, 
whereas he could theoretically continue his journey without acceleration on the latitudinal circle, just in the free 
fall, when the water resistance would be zero. Thus, the voyager has the chance, to influence the distance, 
namely by means of navigation. To the better overview the definitions once again: 
 
But let’s descend to the time-like distance once again. This is the distance, the astronomer determines, when he 
analyzes incoming light- or radio-signals (zero vectors). They are subject to a red-shift according to the propa-

 

 

gation-function in section 4.3.4.4.3. resp. 5.3.2. of [3]. The time-like distance is limited to the maximum time-
like distance, which results from the Total-Age 2T. It applies rTmax = R = 2cT.  
 
All these vectors are coming from the same point {r1, r1, r1, 2t1} and are ending at all points of the hyper-surface 
{R, R, R, 2T} at the same time. Both are superimposed for any observer. The point {r1, r1, r1, 2t1} is quasi 
„smeared― across the whole universe, i.e. all points on the hyper-surface are interconnected via {r1, r1, r1, 2t1} 
and, since photons are timeless, even instantaneously. That may be the cause for such effects like quantum 
entanglement etc. 
 
In the course of this work, we had learned that the maximum space-like distance amounts to only the half of it: 
rRmax = R/2 = cT. It would be interesting if we were able to convert the above values into one another. First of all, 
expression (116) would be suitable for this:  
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Considering the two expressions now, one recognizes that these fail at the »edge« of the universe. The left-hand 
expression submits a negative infinite time-like distance for R/2, the right-hand expression a space-like distance 
of  0.447214 R = 0.894427 cT for –R/2. Actually, a value of 0.5 R = cT should arise however. In addition, since rT 
returns to its starting point over time, there should be a second solution for the left expression.  
 
With the time-like vector we must pay attention to the following: This can be both, an incoming (negative 
distance), as well as an outgoing vector (positive distance). An observer always is concerned with an incoming 
vector, whose length is limited to –2cT. The light has traversed the entire universe then and has been rearrived at 
it’s starting point, a space-like singularity (event horizon). The farthest (rR) starting point of an incoming time-
like vector is in the distance –cT. The maximum length of an outgoing time-like vector on the other hand is 
unlimited because it directs to future. Of course, it is even subject to the parametric attenuation. It’s impossible 
to send signals back in time. 
 
Of particular interest are the signals directly from the Big Bang –2T. These have reached their starting point 
again and are to be observed as cosmologic background-radiation, although with extreme red-shift. The picture, 
which it generates, is really the view of the point of observer to the point of time –2T, however mirror-inverted 
in all four dimensions (an outgoing time-like vector becomes an incoming one). The range between –2T and –T 
is also accessible indeed, but these signals come from areas at the opposite end, with a lower distance than –R/2, 
at which point the signal is coming »from behind« on a detour. In this case applies, the older the signal, the 
nearer the source (neater). 
 
With it, both expressions are been suitable only conditionally for the calculation of problems involving the 
universe as a whole. For further considerations we need the correct expression 
 

  
 
Figure 26: Figure 27: 
Angle α as a Function of Q0 Functions sin α and cos α with Respect to Q0  

 
considering the angle α. It can be determined with the help of (30) as a function of Q. Since Q in turn depends on 
the distance r, it has the value Q0 at the observer, at the distance R/2 it is equal to one, we need a function 
Qr = Q(r). We get it by rearranging (895 [10]) to (117), since r is oriented in the opposite direction in this case.  
 
The expression         is only effective at a microscopic distance from R/2, so it can be neg-lected. We apply Q0 
for Qmax, which we assume to be pretty much the maximum value (844 [3]). I chose this form in order to be able 
to calculate the course even for other reference frames and to create equality with the RhoQ function. The course 
of  as a function of Q0 is depicted in  Figure 153 and 146.  
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data want to make believe, since these are already totally »outdated«, when they reach us. One feature of this 
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Figure 24: Figure 25: 
Distance-Vectors with an Object Distance-Vectors with an Object 
at the Edge of the Universe (Schematized) in the Close-Up Range of the Observer (Schematized) 
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positive distance/spacing, this cannot take place on the same way, which the ray of light has covered, because the 
observer would have to move with c thereto and each zero vector is unique. Now, another distance/spacing is 
applied to him. 

 
To the difference between distance and spacing: These are (approximately) equal in the close-up range only. 
With larger distances, objects in the free fall move away from each other according to the distance-function with 
constant wave count vector. That would be the real spacing (rK blue pictured). With it, also the definition of the 
space-like distance turns out (rR green pictured). This is the shortest way between the observer or better the 
traveller and the object. It is an imagined line and coincides with the coordinate r of the coordinate-system. 
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 field-lines of the gravitational-field and varies according to the spacing-function with constant wave  
 count vector. It corresponds to the zero vector rN of the metrics. 
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  an imagined line. It is identical to the coordinate r of the coordinate-system. In the local range, it  
  corresponds to the space-like vector of the metrics. If one wants to travel along this line, permanent 
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gation-function in section 4.3.4.4.3. resp. 5.3.2. of [3]. The time-like distance is limited to the maximum time-
like distance, which results from the Total-Age 2T. It applies rTmax = R = 2cT.  
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In the course of this work, we had learned that the maximum space-like distance amounts to only the half of it: 
rRmax = R/2 = cT. It would be interesting if we were able to convert the above values into one another. First of all, 
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Considering the two expressions now, one recognizes that these fail at the »edge« of the universe. The left-hand 
expression submits a negative infinite time-like distance for R/2, the right-hand expression a space-like distance 
of  0.447214 R = 0.894427 cT for –R/2. Actually, a value of 0.5 R = cT should arise however. In addition, since rT 
returns to its starting point over time, there should be a second solution for the left expression.  
 
With the time-like vector we must pay attention to the following: This can be both, an incoming (negative 
distance), as well as an outgoing vector (positive distance). An observer always is concerned with an incoming 
vector, whose length is limited to –2cT. The light has traversed the entire universe then and has been rearrived at 
it’s starting point, a space-like singularity (event horizon). The farthest (rR) starting point of an incoming time-
like vector is in the distance –cT. The maximum length of an outgoing time-like vector on the other hand is 
unlimited because it directs to future. Of course, it is even subject to the parametric attenuation. It’s impossible 
to send signals back in time. 
 
Of particular interest are the signals directly from the Big Bang –2T. These have reached their starting point 
again and are to be observed as cosmologic background-radiation, although with extreme red-shift. The picture, 
which it generates, is really the view of the point of observer to the point of time –2T, however mirror-inverted 
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is also accessible indeed, but these signals come from areas at the opposite end, with a lower distance than –R/2, 
at which point the signal is coming »from behind« on a detour. In this case applies, the older the signal, the 
nearer the source (neater). 
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Figure 26: Figure 27: 
Angle α as a Function of Q0 Functions sin α and cos α with Respect to Q0  

 
considering the angle α. It can be determined with the help of (30) as a function of Q. Since Q in turn depends on 
the distance r, it has the value Q0 at the observer, at the distance R/2 it is equal to one, we need a function 
Qr = Q(r). We get it by rearranging (895 [10]) to (117), since r is oriented in the opposite direction in this case.  
 
The expression         is only effective at a microscopic distance from R/2, so it can be neg-lected. We apply Q0 
for Qmax, which we assume to be pretty much the maximum value (844 [3]). I chose this form in order to be able 
to calculate the course even for other reference frames and to create equality with the RhoQ function. The course 
of  as a function of Q0 is depicted in  Figure 153 and 146.  
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Now we come to the actual calculation. However, only the function rR(rT) can be presented explicitly. 
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                  (117) 

 
Qr = Function[#1/Q0/2/#2]; 
PhiQ = Function[If[# >10^4, -Pi/4-3/4/#, Arg[1/Sqrt[1-(HankelH1[2, #]/HankelH1[0, #])^2]]- Pi/2]]; 
PhiR = Function[PhiQ[Qr[#1, #2]]]; 
AlphaR = Function[N[Pi/4 - PhiR[#1, #2]]]; 
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rtrr = Function[# (# Cos[AlphaR[Q0, #]] + Sqrt[1 - #^2 Sin[AlphaR[Q0, #]]^2])^(1/3)]; 

 
I determined expression (118) based on (110) in combination with (698 [3]). There was already a similar 
problem with the calculation of entropy. The inverse functions rT1 (RTR1) and rT2 (RTR2) we obtain with the 
help of Interpolation[list] by calculating rR(rT) and swapping the x and y values in the list of support points: 
 

inrt1={}; 
For[d=0.001; i=0,d<.739,(++i),d+=.001; AppendTo[inrt1,{rtrr[d],d}]] 
inrt2={}; 
For[d=0.739; i=0,d<.999,(++i),d+=.001; AppendTo[inrt2,{rtrr[d],d}]] 
RTRR1=Interpolation[inrt1]; 
RTRR2=Interpolation[inrt2]; 
RTR1=Function[If[#<=0.49034 ,RTRR1[#],Null]];  
RTR2=Function[If[#<=0.49034 ,RTRR2[#],Null]];             

 
For the constant wave count vector rK we obtain: 
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rkrr = Function[# (1 - (3/4 #)^2)^(2/3)]; 

 
The factor ¾ results from our finding that the HUBBLE-parameter H1 has the value ¾T–1 at the edge of the 
universe in contrast to the local value H0 = ½T–1. Or rather, the entire distance between the observer and R/2 
expands with the exponent ¾ with respect to T. With H0 = ½T–1, rK would not reach the edge at R/2 at all and 
would take an earlier »turn«. Even with rK the inverse function can be defined using the function 
Interpolation[list] only. Since rK points away from the observer, we don’t need it either. The course of the above 
mentioned functions is shown in Figure 28. 
 

 
Figure 28: 
Distance-Vectors in the Universe (1D) 

(119) 

 

 

It can be seen that all three vectors coincide at close range and far beyond. At a distance of e.g. 400 Mpc, the 
deviation between rR and rT is only 2% and thus far below the observation error. The function rT does not leave 
the universe, which is correct, but it does not reach R/2 either, but is redirected back to the starting point shortly 
before. With it, we are able to observe 94.31% of the universe.  
 
The faster expansion just after the BB is also taken into account. The turning point, i.e. the greatest distance, is 
already reached in the first third. Thus, expression (118) fulfils the requirements placed on it. But what’s about 
rK? Because of H1 = ¾T–1 the edge at R/2 is reached and passed with the angle φ, see Figure 16 and Figure 29. 
The space beyond is in the future of the observer. Figure 28 was created using the following program: 
 

GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];  
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]]; 
x01=.35 (* The example distance *); 
y02=FindMaximum[rtrr[r], {r,.5,.8}] 
y2=First[y02]; 
x2=r/.First[Rest[y02]]; 
y03=FindMaximum[rkrr[r], {r,.5,.8}] 
y3=First[y03]; 
x3=r/.First[Rest[y03]]; 
z3=xx/.FindRoot[R3[2Pi xx]-.5==0, {xx,0.5,.7}] 
Plot[{RTR2[r]}, {r,0,1}, PlotRange->{0,1.03}, ImageSize->Large]; 
Plot[{RTR1[r], r, rtrr[r], rkrr[r]}, {r,0,1}, 
PlotRange->{0,1.03}, ImageSize->Large, PlotStyle->{Thickness[0.0038]}]; 
Show[%, %%, GH[y2,0,2], GH[1/2,0,2], GH[1,0,2], GH[x2,0,2], 
GV[.5,-1,2], GV[x2,-1,2], GV[1,-1,2], GV[y2,-1,2], GV[x01,-1,2], GV[z3,-1,2], 
Graphics[{PointSize[0.01], Blue, Point[{{x01,RTR1[x01]}, {x01,RTR2[x01]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{x2,y2}]}], 
Graphics[{PointSize[0.01], ColorData[2,2], Point[{z3,0.5}]}], 
PlotLabel->„Blue Rt(Rr), Orange Rr(Rr), Green Rr(Rt), Red Rr(Rk)“, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large] 

 
Figure 29 shows the 2D-presentation r(T) in polar coordinates, whereat the time T is represented by the angle ϑ. 
The observer is located a the point {0,0}. The Age 2T equals to one complete revolution. Every observer always 
has the impression to be at the point 2T (event horizon). That’s correct. Therefore there is no continuation of rK 
along the dashed black line. The vector rR mutates to the generic logarithmic spiral.  
 

 
Figure 29: 

2D-Course of the Distance-Vectors  
rR, rK and rT as a Function of Time 
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Now we come to the actual calculation. However, only the function rR(rT) can be presented explicitly. 
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Qr = Function[#1/Q0/2/#2]; 
PhiQ = Function[If[# >10^4, -Pi/4-3/4/#, Arg[1/Sqrt[1-(HankelH1[2, #]/HankelH1[0, #])^2]]- Pi/2]]; 
PhiR = Function[PhiQ[Qr[#1, #2]]]; 
AlphaR = Function[N[Pi/4 - PhiR[#1, #2]]]; 
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rtrr = Function[# (# Cos[AlphaR[Q0, #]] + Sqrt[1 - #^2 Sin[AlphaR[Q0, #]]^2])^(1/3)]; 

 
I determined expression (118) based on (110) in combination with (698 [3]). There was already a similar 
problem with the calculation of entropy. The inverse functions rT1 (RTR1) and rT2 (RTR2) we obtain with the 
help of Interpolation[list] by calculating rR(rT) and swapping the x and y values in the list of support points: 
 

inrt1={}; 
For[d=0.001; i=0,d<.739,(++i),d+=.001; AppendTo[inrt1,{rtrr[d],d}]] 
inrt2={}; 
For[d=0.739; i=0,d<.999,(++i),d+=.001; AppendTo[inrt2,{rtrr[d],d}]] 
RTRR1=Interpolation[inrt1]; 
RTRR2=Interpolation[inrt2]; 
RTR1=Function[If[#<=0.49034 ,RTRR1[#],Null]];  
RTR2=Function[If[#<=0.49034 ,RTRR2[#],Null]];             

 
For the constant wave count vector rK we obtain: 
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rkrr = Function[# (1 - (3/4 #)^2)^(2/3)]; 

 
The factor ¾ results from our finding that the HUBBLE-parameter H1 has the value ¾T–1 at the edge of the 
universe in contrast to the local value H0 = ½T–1. Or rather, the entire distance between the observer and R/2 
expands with the exponent ¾ with respect to T. With H0 = ½T–1, rK would not reach the edge at R/2 at all and 
would take an earlier »turn«. Even with rK the inverse function can be defined using the function 
Interpolation[list] only. Since rK points away from the observer, we don’t need it either. The course of the above 
mentioned functions is shown in Figure 28. 
 

 
Figure 28: 
Distance-Vectors in the Universe (1D) 
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It can be seen that all three vectors coincide at close range and far beyond. At a distance of e.g. 400 Mpc, the 
deviation between rR and rT is only 2% and thus far below the observation error. The function rT does not leave 
the universe, which is correct, but it does not reach R/2 either, but is redirected back to the starting point shortly 
before. With it, we are able to observe 94.31% of the universe.  
 
The faster expansion just after the BB is also taken into account. The turning point, i.e. the greatest distance, is 
already reached in the first third. Thus, expression (118) fulfils the requirements placed on it. But what’s about 
rK? Because of H1 = ¾T–1 the edge at R/2 is reached and passed with the angle φ, see Figure 16 and Figure 29. 
The space beyond is in the future of the observer. Figure 28 was created using the following program: 
 

GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];  
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]]; 
x01=.35 (* The example distance *); 
y02=FindMaximum[rtrr[r], {r,.5,.8}] 
y2=First[y02]; 
x2=r/.First[Rest[y02]]; 
y03=FindMaximum[rkrr[r], {r,.5,.8}] 
y3=First[y03]; 
x3=r/.First[Rest[y03]]; 
z3=xx/.FindRoot[R3[2Pi xx]-.5==0, {xx,0.5,.7}] 
Plot[{RTR2[r]}, {r,0,1}, PlotRange->{0,1.03}, ImageSize->Large]; 
Plot[{RTR1[r], r, rtrr[r], rkrr[r]}, {r,0,1}, 
PlotRange->{0,1.03}, ImageSize->Large, PlotStyle->{Thickness[0.0038]}]; 
Show[%, %%, GH[y2,0,2], GH[1/2,0,2], GH[1,0,2], GH[x2,0,2], 
GV[.5,-1,2], GV[x2,-1,2], GV[1,-1,2], GV[y2,-1,2], GV[x01,-1,2], GV[z3,-1,2], 
Graphics[{PointSize[0.01], Blue, Point[{{x01,RTR1[x01]}, {x01,RTR2[x01]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{x2,y2}]}], 
Graphics[{PointSize[0.01], ColorData[2,2], Point[{z3,0.5}]}], 
PlotLabel->„Blue Rt(Rr), Orange Rr(Rr), Green Rr(Rt), Red Rr(Rk)“, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large] 

 
Figure 29 shows the 2D-presentation r(T) in polar coordinates, whereat the time T is represented by the angle ϑ. 
The observer is located a the point {0,0}. The Age 2T equals to one complete revolution. Every observer always 
has the impression to be at the point 2T (event horizon). That’s correct. Therefore there is no continuation of rK 
along the dashed black line. The vector rR mutates to the generic logarithmic spiral.  
 

 
Figure 29: 

2D-Course of the Distance-Vectors  
rR, rK and rT as a Function of Time 
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Figure 29 has been created using the following program: 
 

z31=r/.FindRoot[R3[r]-.5==0, {r,.1,.5}] 
z32=r/.Chop[FindRoot[R3[r]-.5==0, {r,5,6}]] 
z33=r/.First[Rest[FindMaximum[R3[r], {r,5,6}]]] 
R2=Function[rtrr[#/2/Pi]]; 
R3=Function[rkrr[#/2/Pi]]; 
 
Plot[{Pi*r+Pi/2}, {r,-.6,-.45}, ImageSize->Large, 
PlotRange->{-0.52,0.52}, PlotStyle->{Thickness[0.001],Black}, AspectRatio->1]; 
PolarPlot[{Null,r/2/Pi,R2[r],R3[r]}, {r,0,8/3 Pi}, PlotRange->0.59,  
ImageSize->Large,AspectRatio->1]; 
Show[%, %%, GV[-0.5,-0.6,0.6], 
Graphics[{Circle[{0,0},1], Circle[{0,0},0.5], Circle[{0,0},x01]}], 
Graphics[{PointSize[0.01], Orange, Point[{{-.5,0}}]}], 
Graphics[{PointSize[0.01], Red,Point[{ 
{R3[z31]Cos[z31], R3[z31]Sin[z31]}, 
{R3[z32]Cos[z32], R3[z32]Sin[z32]}, 
{R3[z33]Cos[z33], R3[z33]Sin[z33]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{{0,0}, 
{y2 Cos[2 Pi RTR1[y2]],  y2 Sin[2 Pi RTR1[y2]]},  
{x01 Cos[2 Pi RTR1[x01]], x01 Sin[2 Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]], x01 Sin[2 Pi RTR2[x01]]}}]}], 
LabelStyle->{FontFamily->"Chicago", 10, GrayLevel[0]}, ImageSize->Large] 

 
The 2D-representation gives the impression that the incoming vector rT is coming from the direction in which it 
was originally emitted. But that’s not the case. In fact, he’s coming from the opposite direction. This can be seen 
very well in the 3D-representation in Figure 30. 
 

 
 

Figure 30: 
3D-Course of the Distance-Vectors  
rR, rK and rT as a Function of Time 
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At this point we make use of the fact that H0 is an angular frequency. And for every observer, no matter in which 
reference system or where he is, the universe has always completed exactly one revolution around all three 
spatial axes. However, only two of them are shown in Figure 158, giving the impression that the maximum 
observable radius rR is at the point C. However, the images arriving from one direction are actually from a circle 
of diameter 0.490339 R passing through point C. Therefore, an exact localization of the sources actual position is 
impossible. 
 
But we can not only observe objects on this circle. Since it’s about an R4-universe, we have one additional 
degree of freedom left, which means, the circle also rotates about its diameter. With it, we are able to observe all 
objects within a sphere with the radius 0.490339 R, whereby the signals then arrive from the entire solid angle 4π. 
 
Figure 30 shows the example sphere and the R/2 sphere. As in Figure 29, the extrema and the intersections are 
marked with coloured dots and letters. Unfortunately it was not possible to show the section D-F-z as a dashed 
line. One can also see that the vector rR deviates extremely from rK very early on, a challenge for navigation. 
Figure 30 has been created with the following program: 
 

z1=Line[{{{0,0,-.7},{0,0,.7}},{{0,-.7,0},{0,.7,0}},{{-.7,0,0},{.7,0,0}}}]      (*Axes cross*); 
ParametricPlot3D[{{1,1,1}, {r Cos[r]Sin[r/2], r Sin[r]Sin[r/2], r Cos[r/2]}, 
{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}, 
{R3[r]Cos[r]Sin[r/2],R3[r]Sin[r]Sin[r/2],R3[r]Cos[r/2]}}, 
{r,0,8/3 Pi}, PlotRange->0.6, ImageSize->Large, AspectRatio->1, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large]; 
Show[%, 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, 0.5]}], 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, x01]}], 
Graphics3D[{Thickness[0.0025], Blue,z1}],  
Graphics3D[{PointSize[0.0125], Orange, Point[{ 
{.5 Cos[.5]Sin[.25],.5 Sin[.5]Sin[.25],.5 Cos[.25]}}]}], 
Graphics3D[{PointSize[0.0125], Red, Point[{ 
{R3[z31]Cos[z31]Sin[z31/2],R3[z31]Sin[z31]Sin[z31/2],R3[z31]Cos[z31/2]}, 
{R3[z32]Cos[z32]Sin[z32/2],R3[z32]Sin[z32]Sin[z32/2],R3[z32]Cos[z32/2]}, 
{R3[z33]Cos[z33]Sin[z33/2],R3[z33]Sin[z33]Sin[z33/2],R3[z33]Cos[z33/2]}}]}], 
Graphics3D[{{PointSize[0.0125],ColorData[1,12],Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], y2 Cos[Pi RTR1[y2]]}, 
{x01 Cos[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Sin[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Cos[Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]],  
x01 Sin[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]], 
x01 Cos[Pi RTR2[x01]]} }]}}]] 

 
But there is an additional way of presentation. If we replace the temporal dimension by the third spatial one, we 
can let rotate the rT-curve obtaining a body of revolution with interesting properties: 
 

  
 
Figure 31: 
Possible Shape of the Electron  
and/or of the PLANCK Charge 
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Figure 29 has been created using the following program: 
 

z31=r/.FindRoot[R3[r]-.5==0, {r,.1,.5}] 
z32=r/.Chop[FindRoot[R3[r]-.5==0, {r,5,6}]] 
z33=r/.First[Rest[FindMaximum[R3[r], {r,5,6}]]] 
R2=Function[rtrr[#/2/Pi]]; 
R3=Function[rkrr[#/2/Pi]]; 
 
Plot[{Pi*r+Pi/2}, {r,-.6,-.45}, ImageSize->Large, 
PlotRange->{-0.52,0.52}, PlotStyle->{Thickness[0.001],Black}, AspectRatio->1]; 
PolarPlot[{Null,r/2/Pi,R2[r],R3[r]}, {r,0,8/3 Pi}, PlotRange->0.59,  
ImageSize->Large,AspectRatio->1]; 
Show[%, %%, GV[-0.5,-0.6,0.6], 
Graphics[{Circle[{0,0},1], Circle[{0,0},0.5], Circle[{0,0},x01]}], 
Graphics[{PointSize[0.01], Orange, Point[{{-.5,0}}]}], 
Graphics[{PointSize[0.01], Red,Point[{ 
{R3[z31]Cos[z31], R3[z31]Sin[z31]}, 
{R3[z32]Cos[z32], R3[z32]Sin[z32]}, 
{R3[z33]Cos[z33], R3[z33]Sin[z33]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{{0,0}, 
{y2 Cos[2 Pi RTR1[y2]],  y2 Sin[2 Pi RTR1[y2]]},  
{x01 Cos[2 Pi RTR1[x01]], x01 Sin[2 Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]], x01 Sin[2 Pi RTR2[x01]]}}]}], 
LabelStyle->{FontFamily->"Chicago", 10, GrayLevel[0]}, ImageSize->Large] 

 
The 2D-representation gives the impression that the incoming vector rT is coming from the direction in which it 
was originally emitted. But that’s not the case. In fact, he’s coming from the opposite direction. This can be seen 
very well in the 3D-representation in Figure 30. 
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At this point we make use of the fact that H0 is an angular frequency. And for every observer, no matter in which 
reference system or where he is, the universe has always completed exactly one revolution around all three 
spatial axes. However, only two of them are shown in Figure 158, giving the impression that the maximum 
observable radius rR is at the point C. However, the images arriving from one direction are actually from a circle 
of diameter 0.490339 R passing through point C. Therefore, an exact localization of the sources actual position is 
impossible. 
 
But we can not only observe objects on this circle. Since it’s about an R4-universe, we have one additional 
degree of freedom left, which means, the circle also rotates about its diameter. With it, we are able to observe all 
objects within a sphere with the radius 0.490339 R, whereby the signals then arrive from the entire solid angle 4π. 
 
Figure 30 shows the example sphere and the R/2 sphere. As in Figure 29, the extrema and the intersections are 
marked with coloured dots and letters. Unfortunately it was not possible to show the section D-F-z as a dashed 
line. One can also see that the vector rR deviates extremely from rK very early on, a challenge for navigation. 
Figure 30 has been created with the following program: 
 

z1=Line[{{{0,0,-.7},{0,0,.7}},{{0,-.7,0},{0,.7,0}},{{-.7,0,0},{.7,0,0}}}]      (*Axes cross*); 
ParametricPlot3D[{{1,1,1}, {r Cos[r]Sin[r/2], r Sin[r]Sin[r/2], r Cos[r/2]}, 
{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}, 
{R3[r]Cos[r]Sin[r/2],R3[r]Sin[r]Sin[r/2],R3[r]Cos[r/2]}}, 
{r,0,8/3 Pi}, PlotRange->0.6, ImageSize->Large, AspectRatio->1, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large]; 
Show[%, 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, 0.5]}], 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, x01]}], 
Graphics3D[{Thickness[0.0025], Blue,z1}],  
Graphics3D[{PointSize[0.0125], Orange, Point[{ 
{.5 Cos[.5]Sin[.25],.5 Sin[.5]Sin[.25],.5 Cos[.25]}}]}], 
Graphics3D[{PointSize[0.0125], Red, Point[{ 
{R3[z31]Cos[z31]Sin[z31/2],R3[z31]Sin[z31]Sin[z31/2],R3[z31]Cos[z31/2]}, 
{R3[z32]Cos[z32]Sin[z32/2],R3[z32]Sin[z32]Sin[z32/2],R3[z32]Cos[z32/2]}, 
{R3[z33]Cos[z33]Sin[z33/2],R3[z33]Sin[z33]Sin[z33/2],R3[z33]Cos[z33/2]}}]}], 
Graphics3D[{{PointSize[0.0125],ColorData[1,12],Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], y2 Cos[Pi RTR1[y2]]}, 
{x01 Cos[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Sin[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Cos[Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]],  
x01 Sin[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]], 
x01 Cos[Pi RTR2[x01]]} }]}}]] 

 
But there is an additional way of presentation. If we replace the temporal dimension by the third spatial one, we 
can let rotate the rT-curve obtaining a body of revolution with interesting properties: 
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The representation is similar to Figure 8 in [3], which would close the circle. The model has the property of 
logarithmic periodicity, i.e. there are similarities between the microcosm and the macrocosm. 

 
My assumption is therefore that the object in Figure 31 could be identical to the PLANCK’s charge and/or the 
electron, as its freely occurring form, just on a different scale. Instead of rotating with H0 it would rotate with ω0 
then and a part of the charge would reside in the interior, so that the observable part would depend on the 
viewing angle. This would also explain the need to correct re. Then, the electron would be the 3D-manifestation 
of a 4D-object. But as I said, this is just a guess on my part. The object can be displayed with the following 
program: 
 

Pl1=ParametricPlot3D[{{R2[r]Cos[s]Sin[r/2],R2[r]Sin[s]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, {s,0,2 Pi}, PlotRange->0.5, ImageSize->Large,  
PlotStyle->{Opacity[1],FillingStyle->Opacity[0.1]}, AspectRatio->1,  
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
Pl2=ParametricPlot3D[{{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, PlotRange->0.5, ImageSize->Large, AspectRatio->1,  
PlotStyle->{ColorData[1,8],Thickness[0.005]}, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
Show[Pl2, Pl1, Graphics3D[{Opacity[0.075], Sphere[{0,0,0},0.5]}], 
Graphics3D[{Thickness[0.0025],Blue,z1}], 
Graphics3D[{{PointSize[0.013],ColorData[1,8], Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], 
y2 Cos[Pi RTR1[y2]]} }]}}]] 

 
6. Summary 

 
In the course of this work, with the help of the model from [3], we succeeded in the definition of the propagation 
function of the metric wave field, postulated by LANCZOS. That, on the other hand, was the base for the 
determination of the HUBBLE-parameter for greater distances. It was shown, that this depends on the initial 
distance. The exact function could be determined. Furthermore the entropy of the metric wave field was 
determined – under consideration of the special 4D-topology of the universe. Its value will increase steadily even 
in future and there is no fear of a heath death anyway. The reason is the expansion of the universe, the 
propagation of the metric wave field and the curvature of the constant wave count vector in turn. 
 

7. The Concerted International System of Units 
 
A variety of formulas for the calculation of various variables and graphics are specified in the course of this 
work. These in turn access certain values and natural constants whose mea-ning or values are not shown in the 
text, but which are required to carry out the calculations correctly.  

 
Using the MLE model of [3] it has been possible to calculate a series of natural constants associated with the 
electron, the proton and the 1H atom via their relation to the reference frame Q0 and that exactly. The model is 
based on the basic variables of the subspace, which are fixed values, independent of the reference system. It is 
sufficient to define only five genuine constants (μ0, c, κ0, ħ1 and k) as base variables plus a so-called Magic 
value, in this case me to specify the reference system Q0. All values are related via Q0; if one value changes, they 
all change. If an influence is added, it is yet another reference system. With it, all values except for the fixed 
ones form a so called canonical ensemble, the Concerted System of Units. 

 
The program that makes these basic constants and functions available can be found in the appendix. It can also 
be used in other of my publications. The numerical values calculated with it, in comparison with the 
corresponding CODATA2018-values are shown in Table 1. When preparing the table, I added further values to the 
system that are simply dependent on those already defined, including σe, ae, ge, γe, µe, µN, Φ0, G0, KJ and RK. 
Except for re, whose definition is misstated in all editions, I used the expressions and symbols from the 
CODATA2018-document [11] for the other values. Please find the definition of the formula symbols from there. 
 

8. Notes to the Appendix 
 

The basic formulas and definitions used in this work, are shown in the appendix. It’s about the source code for 
Mathematica. The data from the .pdf may be converted into a text file (UTF8), which can be opened directly. 
Data is presented as a single cell then. However, it is not advantageous to evaluate the entire source code in one 
single cell. To split, use the Cell/Divide Cell function (Ctrl/Shift/d). However, with this procedure there may be 
problems with special characters, not correctly transferred (e.g. ε, ϵ) or even lead to the conversion being 
aborted. It is more advantageous to copy and paste data page by page into the text file via clipboard. However, 
then each line is present as a separate cell. With the command Cell/Merge (Ctrl/Shift/m) the cells belonging 
together can be merged, ideally in blocks between the headings. Then, the values shown in the »Variable« 
column are available for own calculations.  
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Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 
ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 
κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 
μ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 
k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 
ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 
Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 
Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 
G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 
G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 
G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 
me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 
M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 
M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 
mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 
me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 
m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 
MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 
Tp2 Tp2 9.855642915740690·10153 C n.a. n.a. unusual K 
Tp1 Tp1 1.181665011421291·1093 C n.a. n.a. unusual K 
Tp0 Tp0 1.416784486973613·1032 C 1.416784486973588 ·1032 1.1·10–5   +1.75415·10–14 K 
Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 
Tk0 Tk0 2.725436049425770 C 2.72548                          © 4.3951∙10−5   –1.61258·10–5   K 
r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 
r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 
re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 
C ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 
C ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 
a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 m 
R R 1.348032988422084·1026 C n.a. at issue at issue m 
R RR 4.368617335409830 C n.a. at issue at issue Gpc 
t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 
t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 
T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 
T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 
R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 
ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 
cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 
H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 
H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 
q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 
e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 
U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 
U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 
W1 W1 1.360717888312544·10131 F n.a. n.a. unusual W 
W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 W 
S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 
ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 



 
 

 

The representation is similar to Figure 8 in [3], which would close the circle. The model has the property of 
logarithmic periodicity, i.e. there are similarities between the microcosm and the macrocosm. 

 
My assumption is therefore that the object in Figure 31 could be identical to the PLANCK’s charge and/or the 
electron, as its freely occurring form, just on a different scale. Instead of rotating with H0 it would rotate with ω0 
then and a part of the charge would reside in the interior, so that the observable part would depend on the 
viewing angle. This would also explain the need to correct re. Then, the electron would be the 3D-manifestation 
of a 4D-object. But as I said, this is just a guess on my part. The object can be displayed with the following 
program: 
 

Pl1=ParametricPlot3D[{{R2[r]Cos[s]Sin[r/2],R2[r]Sin[s]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, {s,0,2 Pi}, PlotRange->0.5, ImageSize->Large,  
PlotStyle->{Opacity[1],FillingStyle->Opacity[0.1]}, AspectRatio->1,  
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
Pl2=ParametricPlot3D[{{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, PlotRange->0.5, ImageSize->Large, AspectRatio->1,  
PlotStyle->{ColorData[1,8],Thickness[0.005]}, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
Show[Pl2, Pl1, Graphics3D[{Opacity[0.075], Sphere[{0,0,0},0.5]}], 
Graphics3D[{Thickness[0.0025],Blue,z1}], 
Graphics3D[{{PointSize[0.013],ColorData[1,8], Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], 
y2 Cos[Pi RTR1[y2]]} }]}}]] 

 
6. Summary 

 
In the course of this work, with the help of the model from [3], we succeeded in the definition of the propagation 
function of the metric wave field, postulated by LANCZOS. That, on the other hand, was the base for the 
determination of the HUBBLE-parameter for greater distances. It was shown, that this depends on the initial 
distance. The exact function could be determined. Furthermore the entropy of the metric wave field was 
determined – under consideration of the special 4D-topology of the universe. Its value will increase steadily even 
in future and there is no fear of a heath death anyway. The reason is the expansion of the universe, the 
propagation of the metric wave field and the curvature of the constant wave count vector in turn. 
 

7. The Concerted International System of Units 
 
A variety of formulas for the calculation of various variables and graphics are specified in the course of this 
work. These in turn access certain values and natural constants whose mea-ning or values are not shown in the 
text, but which are required to carry out the calculations correctly.  

 
Using the MLE model of [3] it has been possible to calculate a series of natural constants associated with the 
electron, the proton and the 1H atom via their relation to the reference frame Q0 and that exactly. The model is 
based on the basic variables of the subspace, which are fixed values, independent of the reference system. It is 
sufficient to define only five genuine constants (μ0, c, κ0, ħ1 and k) as base variables plus a so-called Magic 
value, in this case me to specify the reference system Q0. All values are related via Q0; if one value changes, they 
all change. If an influence is added, it is yet another reference system. With it, all values except for the fixed 
ones form a so called canonical ensemble, the Concerted System of Units. 

 
The program that makes these basic constants and functions available can be found in the appendix. It can also 
be used in other of my publications. The numerical values calculated with it, in comparison with the 
corresponding CODATA2018-values are shown in Table 1. When preparing the table, I added further values to the 
system that are simply dependent on those already defined, including σe, ae, ge, γe, µe, µN, Φ0, G0, KJ and RK. 
Except for re, whose definition is misstated in all editions, I used the expressions and symbols from the 
CODATA2018-document [11] for the other values. Please find the definition of the formula symbols from there. 
 

8. Notes to the Appendix 
 

The basic formulas and definitions used in this work, are shown in the appendix. It’s about the source code for 
Mathematica. The data from the .pdf may be converted into a text file (UTF8), which can be opened directly. 
Data is presented as a single cell then. However, it is not advantageous to evaluate the entire source code in one 
single cell. To split, use the Cell/Divide Cell function (Ctrl/Shift/d). However, with this procedure there may be 
problems with special characters, not correctly transferred (e.g. ε, ϵ) or even lead to the conversion being 
aborted. It is more advantageous to copy and paste data page by page into the text file via clipboard. However, 
then each line is present as a separate cell. With the command Cell/Merge (Ctrl/Shift/m) the cells belonging 
together can be merged, ideally in blocks between the headings. Then, the values shown in the »Variable« 
column are available for own calculations.  

(125) 

 

 

Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 
ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 
κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 
μ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 
k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 
ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 
Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 
Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 
G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 
G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 
G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 
me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 
M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 
M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 
mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 
me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 
m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 
MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 
Tp2 Tp2 9.855642915740690·10153 C n.a. n.a. unusual K 
Tp1 Tp1 1.181665011421291·1093 C n.a. n.a. unusual K 
Tp0 Tp0 1.416784486973613·1032 C 1.416784486973588 ·1032 1.1·10–5   +1.75415·10–14 K 
Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 
Tk0 Tk0 2.725436049425770 C 2.72548                          © 4.3951∙10−5   –1.61258·10–5   K 
r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 
r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 
re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 
C ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 
C ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 
a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 m 
R R 1.348032988422084·1026 C n.a. at issue at issue m 
R RR 4.368617335409830 C n.a. at issue at issue Gpc 
t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 
t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 
T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 
T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 
R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 
ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 
cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 
H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 
H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 
q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 
e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 
U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 
U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 
W1 W1 1.360717888312544·10131 F n.a. n.a. unusual W 
W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 W 
S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 
ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 



 
 

 

Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 
ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 
γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 
µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 
Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 
G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 
KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω  
α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 
δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 
x~ xtilde 2.821439372122070` F 2.821439372 ……..  exactly exactly 1 
ζ  ζ  5.670366673885495·10–8 C 5.670366673885496·10–8 exactly exactly W m–2

 K –4 

 
S   Subspace value (const)     M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable)     C   Calculated (calculated)                
 
Table 1: 
Concerted International  
System of Units 

 
 

„ The Concerted International System of Units " 
" 

< Declarations" 
 
Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
 

" Units " 
 
km = 1000; 
pc = 3.08572*10^16; 
Mpc = 3.08572*10^19 km; 
minute = 60; 
hour = 60 minute; 
day = 24*hour; 
year = 365.24219879*day; 
F0 = 2.51*10^-8  (*Zero flux brightness Wm^-2*); 
L0 = 3.09*10^28  (*Zero luminosity W*); 
L1a= 6.40949*10^35  (*Standard candle SNIa W*); 
 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 
my0=4 Pi 10^-7;    (*Permeability of vacuum*);  
ka0=1.3697776631902217*10^93;    (*Conductivity of vacuum*);  
hb1=8.795625796565464*10^26;    (*Planck constant slashed init*);  
k=1.3806485279*10^-23;    (*Boltzmann constant*);  
me=9.109383701528*10^-31;    (*Electron rest mass with Q0 Magic value 1*);  
mp=1.6726219236951*10^-27;    (*Proton rest mass Magic value 2*); 
 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 
ma=1822.8884862171988 me;  (*Atomic mass unit*); 
ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;  (*RnB angle ϵ null(fix)*); 
γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 
xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 

 

 

alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 
delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2ω0t during calibration*);*) 
Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2ω0t after calibration*); 
 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 
ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 
Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 
Om0=Om1/Q0;  (*Planck’s frequency*); 
OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 
cR∞=c R∞;  (*Rydberg frequency*); 
H0=Om1/Q0^2;  (*Hubble parameter local*); 
H1=3/2*H0;  (*Hubble parameter whole universe*); 
r1=1/(ka0 Z0);  (*Planck’s length subspace*); 
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 
ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 
ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 
r0= r1 Q0;  (*Planck’s length vac*); 
R= r1 Q0^2;  (*World radius*); 
RR=R/Mpc/1000;  (*World radius Gpc*); 
t1=1/(2 Om1);  (*Planck time subspace*); 
t0=1/(2 Om0);  (*Planck time vacuum*); 
T=1/(2 H0);  (*World time constant*); 
TT=2T/year;  (*The Age*); 
hb0=hb1/Q0;  (*Planck constant slashed*); 
h0=2Pi*hb0;  (*Planck constant unslashed*); 
q1=Sqrt[hb1/Z0];  (*Universe charge*); 
q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 
 
qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 
M2=my0 ka0 hb1;  (*Total mass with Q=1*); 
M1=M2/Q0;  (*Mach mass*); 
m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 
mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 
MH=M2/Q0^3;  (*Hubble mass*); 
G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 
G1=G0/Q0^2;  (*Gravity constant Mach*); 
G2=G0/Q0^3;  (*Gravity constant Init*); 
U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 
U1=U0*Q0;  (*Planck voltage Mach*); 
W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 
W0=W1/Q0^2;  (*Planck energy*); 
S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 
S0=S1/Q0^5;  (*Poynting vector metric actual*); 
Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                  (*Poyntingvec CMBR initial*); 
Sk0=Sk1/Q0^4/Q0^3/E^2;                                  (*Poyntingvec CMBR actual*); 
wk1=Sk1/c ;                                         (*Energy density CMBR initial*); 
wk0=Sk0/c ;                                          (*Energy density CMBR actual*); 
Wk1=wk1*r1^3;                                               (*Energy CMBR initial*);  
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 
µN=-µB*mep;  (*Nuclear magneton*); 
µe=1.0011596521812818 µB  (*Electron magnetic moment*); 
Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 
Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 
Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); 
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 
GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 
KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 
RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 
σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 
ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 
ge=-2(1+ae);  (*electron g-factor*); 
γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 
σ1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;   (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 
Qr=Function[#1/Q0/2/#2]; 



 
 

 

Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 
ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 
γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 
µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 
Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 
G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 
KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω  
α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 
δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 
x~ xtilde 2.821439372122070` F 2.821439372 ……..  exactly exactly 1 
ζ  ζ  5.670366673885495·10–8 C 5.670366673885496·10–8 exactly exactly W m–2

 K –4 

 
S   Subspace value (const)     M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable)     C   Calculated (calculated)                
 
Table 1: 
Concerted International  
System of Units 

 
 

„ The Concerted International System of Units " 
" 

< Declarations" 
 
Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
 

" Units " 
 
km = 1000; 
pc = 3.08572*10^16; 
Mpc = 3.08572*10^19 km; 
minute = 60; 
hour = 60 minute; 
day = 24*hour; 
year = 365.24219879*day; 
F0 = 2.51*10^-8  (*Zero flux brightness Wm^-2*); 
L0 = 3.09*10^28  (*Zero luminosity W*); 
L1a= 6.40949*10^35  (*Standard candle SNIa W*); 
 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 
my0=4 Pi 10^-7;    (*Permeability of vacuum*);  
ka0=1.3697776631902217*10^93;    (*Conductivity of vacuum*);  
hb1=8.795625796565464*10^26;    (*Planck constant slashed init*);  
k=1.3806485279*10^-23;    (*Boltzmann constant*);  
me=9.109383701528*10^-31;    (*Electron rest mass with Q0 Magic value 1*);  
mp=1.6726219236951*10^-27;    (*Proton rest mass Magic value 2*); 
 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 
ma=1822.8884862171988 me;  (*Atomic mass unit*); 
ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;  (*RnB angle ϵ null(fix)*); 
γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 
xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 

 

 

alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 
delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2ω0t during calibration*);*) 
Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2ω0t after calibration*); 
 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 
ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 
Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 
Om0=Om1/Q0;  (*Planck’s frequency*); 
OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 
cR∞=c R∞;  (*Rydberg frequency*); 
H0=Om1/Q0^2;  (*Hubble parameter local*); 
H1=3/2*H0;  (*Hubble parameter whole universe*); 
r1=1/(ka0 Z0);  (*Planck’s length subspace*); 
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 
ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 
ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 
r0= r1 Q0;  (*Planck’s length vac*); 
R= r1 Q0^2;  (*World radius*); 
RR=R/Mpc/1000;  (*World radius Gpc*); 
t1=1/(2 Om1);  (*Planck time subspace*); 
t0=1/(2 Om0);  (*Planck time vacuum*); 
T=1/(2 H0);  (*World time constant*); 
TT=2T/year;  (*The Age*); 
hb0=hb1/Q0;  (*Planck constant slashed*); 
h0=2Pi*hb0;  (*Planck constant unslashed*); 
q1=Sqrt[hb1/Z0];  (*Universe charge*); 
q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 
 
qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 
M2=my0 ka0 hb1;  (*Total mass with Q=1*); 
M1=M2/Q0;  (*Mach mass*); 
m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 
mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 
MH=M2/Q0^3;  (*Hubble mass*); 
G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 
G1=G0/Q0^2;  (*Gravity constant Mach*); 
G2=G0/Q0^3;  (*Gravity constant Init*); 
U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 
U1=U0*Q0;  (*Planck voltage Mach*); 
W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 
W0=W1/Q0^2;  (*Planck energy*); 
S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 
S0=S1/Q0^5;  (*Poynting vector metric actual*); 
Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                  (*Poyntingvec CMBR initial*); 
Sk0=Sk1/Q0^4/Q0^3/E^2;                                  (*Poyntingvec CMBR actual*); 
wk1=Sk1/c ;                                         (*Energy density CMBR initial*); 
wk0=Sk0/c ;                                          (*Energy density CMBR actual*); 
Wk1=wk1*r1^3;                                               (*Energy CMBR initial*);  
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 
µN=-µB*mep;  (*Nuclear magneton*); 
µe=1.0011596521812818 µB  (*Electron magnetic moment*); 
Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 
Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 
Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); 
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 
GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 
KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 
RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 
σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 
ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 
ge=-2(1+ae);  (*electron g-factor*); 
γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 
σ1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;   (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 
Qr=Function[#1/Q0/2/#2]; 



 
 

 

PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,                                                       
Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]];  (*Angle of c arg θ(Q)*); 
PhiR=Function[PhiQ[Qr[#1,#2]]]; 
RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-
HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  
RhoR=Function[RhoQ[Qr[#1,#2]]]; 
AlphaQ=Function[Pi/4-PhiQ[#]];  (*Angle α*); 
AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; 
BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; 
GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 
HPC=Function[Om1/#^2/km*Mpc]; (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
rq={{0,0}}; 
For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*RhoQ[10^x]]}]]; 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]];  (*Interpolation RhoQ*); 
Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; 
Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 
RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]];  
alphaF=Function[Sin[Pi/2+ϵ-(*RNBP*)RnB[#]]^2 /(4Pi)];  (*RNBP def further below*); 
deltaF=Function[4Pi/alphaF[#]*mep];     (*Correction factor QED ΔQ)*); 
 

" End of Metric System Definition " 
_________________________________________________________________________________________________________________ 
 
rn={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rn,{d,RnB[10^d]/Pi}]] 
RNB1=Interpolation[rnb];        (*RnB angle ϵ nullvector from Q*); 
RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]]; 
RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]]; 
alphaF=Function[Sin[Pi/2+ϵ-RNBP[#]]^2/(4Pi)];  (*Redfinition for faster calculation*); 
 

" End of Optional Metric System Definition  
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