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Abstract
In this study, the biochemical behavior and stability of gold nanoparticles with intrinsic peroxidase-like activity were 
evaluated as potential native enzyme alternatives. The gold nanoparticles were synthesized at physiological temperature 
using bovine serum albumin as the stabilizer and then characterized by the TEM imaging method. Afterward, their 
peroxidase-like activity was checked upon irreversible oxidation of 3,3’-diaminobenzidine to produce a brown-colored 
indamine polymer, and the specific enzyme-like activity of the as-prepared nanoparticles was also calculated. The results 
showed a specific activity as high as 0.4212 UI µM-1 for the as-prepared gold nanoparticles. Thereafter, their stability 
and biochemical performances were evaluated considering their enzyme-like activity as a reliable index. The as-prepared 
nanoparticles showed their maximal activity at pH=5.0 and 20.0±1.0 ℃ according to the results of pH and thermal 
stability studies, in order. Besides, the nanoparticles saved above 80.0% of their maximal activity over pH=3.0-4.0. 
As a significant advantage compared to the natural enzymes,  the as-synthesized gold nanoparticles revealed a pH-
independent enzyme-like activity over a wide pH range of pH=7.0-10.0 along with a temperature-independent activity 
over t=23-28℃. The salt stability studies showed that their activity was not affected by variations in the ionic strength 
of the reaction media. The kinetics results showed a Vmax of 83.3 µM min-1 and a Km as very low as 0.005 M for the 
gold nanoparticles. Considering the above results, the as-prepared gold nanoparticles can be considered high stable 
nanozymes with high intrinsic peroxidase-like activity and excellent catalytic efficiency. 
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1. Introduction
Concerning the fast and great development of nanotechnology as 
well as considering the significant applications of nanomaterials 
in modern life, the research on the development of novel nanoma-
terials and the design of new economical synthesis methods for 
important nanomaterials was attracted the attention of scientists 
and researchers [1, 2].  In this regard, several novel nanoscale 
materials were synthesized and characterized by researchers, for 
instance, noble-metal-based nanomaterials, carbon dots, quantum 
dots, metal-organic frameworks, magnetic nanoparticles [1-11] 
etc. Besides, the synthesis of novel materials, scientists focused 
on the evaluation of potential properties of the nanomaterials such 
as catalytic properties, optical properties, anti-cancer features 
anti-bacterial characteristics biocompatibility and enzyme-like 
properties [6,7,12-18]. The importance of these types of research 
can be understandable when a nonmaterial needs to be practically 
or commercially used for a real application, for instance, using 
a nanomaterial as a nanodrug toward cancer treatment or appli-
cation for water safety considerations [19-22].  Among various 
nanoparticles with different properties, recently, nanomaterials 

with enzyme-like properties were introduced as enzyme alter-
natives for catalyzing industrial, clinical, and environmental en-
zyme-mediated reactions at harsh conditions with lower cost and 
higher efficiency along with recyclability [23, 24]. In this regard, 
several nanoparticles with peroxidase-like activity such as silver 
nanoparticles , MnO2 nanoparticles, metal-organic frameworks , 
and silica-coated-Fe3O4 nanoparticles were introduced after the 
first report of nanozymes in 2007 [22,25-28]. Besides, recently, 
the excellent peroxidase-like activity of gold-based nanozymes 
attracted good attention for application as alternatives to natural 
peroxidase toward different applications in sensing, biosensing, 
organic dye degradation, and catalysis [2,29-31]. However, de-
spite the wide potential application of gold-based nanozymes as 
enzyme alternatives, unfortunately, up to now, there is no report 
on their biochemical behavior and stability.  Hence, in this study, 
the biochemical behavior and stability of gold nanoparticles with 
intrinsic peroxidase-like activity were evaluated considering their 
enzyme-like activity as an index for estimation of their stability 
and biochemical performances. In this regard, gold nanoparticles 
were synthesized at physiological temperature using bovine serum 
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albumin as the stabilizer and then characterized by the TEM imag-
ing method. Afterward, their peroxidase-like activity was checked 
upon irreversible oxidation of 3,3’-diaminobenzidine to produce 
a brown-colored indamine polymer, and the specific enzyme-like 
activity of the as-prepared nanoparticles was also calculated. Be-
sides, their biochemical stability was also checked by evaluating 
the pH stability, thermal stability, and salt stability of the as-pre-
pared nanoparticles. Moreover, kinetics studies were performed 
to investigate the catalytic efficiency and substrate affinity of the 
as-mentioned gold nanoparticles. Considering the obtained results, 
the as-prepared gold nanoparticles can be considered high stable 
nanozymes with high intrinsic peroxidase-like activity and excel-
lent catalytic efficiency. 

2. Experimental
2.1. Materials and Instrumentations
NaCl, hydrogen peroxide, HAuCl4.4H2O, bovine serum albumin, 
and NaOH from Merck, 3,3'-diaminobenzidine and phosphor-
ic acid from Sigma Aldrich, and deionized water from Zolal Teb 
Shimico (Iran) company were obtained. A Chrom Tech UV–Vis 
spectrophotometer (model: UV 3300) was utilized for nanozyme 
activity assay, stability studies, and kinetics evaluation. Besides, 
the TEM micrographs of the as-prepared gold nanoparticles were 
recorded using a transmission electron microscope (Zeiss, model 
EL10C) operated at an accelerating voltage of 80 kV.

2.2. Synthesis of Gold Nanoparticles With Intrinsic Peroxi-
dase-Like Activity
To synthesize the gold nanoparticles, 10.0 mM HAuCl4.4H2O 
(5.0 mL) was introduced to 50 mg mL-1 bovine serum albumin 
(5.0 mL), followed by stirring at 37 °C and adding 1.0 M NaOH 
to adjust pH. The solution was incubated at 37 °C for 12 hours to 
complete the synthesis process.

2.3. Nanozyme Activity Assay
In a typical test, 80.0 µL of gold nanoparticles, 200.0 µL DAB 
(with a final concentration of 0.245 mM), and 40.0 µL of 30% 
HP were introduced into 1300 µL of 0.4 M phosphate buffer (pH 
7.0), followed by ambient mixing for 25.0 min. After that, the ab-
sorbance of the brown-colored product was recorded at 460.0 nm 
considering a molecular extinction coefficient ɛ=5500 molar cm-1. 
Notably, the nanozyme relative activity was calculated using the 
following formula [32]; 
Relative activity= (activity/maximal activity)×100

3. Results and Discussion
3.1. Characterization of As-Prepared Gold Nanoparticles
The as-prepared gold nanoparticles were characterized by the TEM 
imaging method. The results shown in Figure 1 revealed that the 
as-prepared nanoparticles are approximately uniform and small in 
size with a size distribution over 4.6-37.3 nm and a mean size of 
12.4 nm (n=21). To obtain a better view of the size distribution of 
the as-prepared nanoparticles, the histogram of the particle size as 
a function of frequency was provided (inset of Figure 1), as can be 

seen from this histogram, the as-prepared nanoparticles have a me-
dian size as small as 13.9 nm with a narrow size distribution which 
makes them suitable for application in nanozyme-based systems 
because the multi-size distributed nanoparticles commonly show 
lower peroxidase-like activity than the nanoparticles with a narrow 
size distribution, as reported [29].

Figure 1: TEM image of the as-synthesized gold nanoparticles, 
inset: histogram of the particle size as a function of frequency.

3.2. Investigation of Peroxidase-Like Activity
The applicability of the as-prepared nanoparticles toward poten-
tial application in nanozyme-based catalysis was investigated by 
evaluation of their peroxidase-like activity via spectrophotometric 
probing the oxidation process of DAB with hydrogen peroxide in 
the presence of the as-prepared nanoparticles. In this regard, the 
brown-colored oxidation product of DAB (polyDAB) with max-
imal absorbance at 460.0 nm was selected as an analytical probe 
system to quantify the activity of the as-prepared nanoparticles for 
the peroxidase-mediated oxidation process of DAB. The results 
are shown in Figure 2, as shown in this figure, the DAB oxidation 
in the absence of the as-prepared nanoparticles cannot proceed and 
the absorbance at 460.0 nm cannot be observed. In contrast, by 
introducing the as-prepared nanoparticle in the reaction media, the 
oxidation was catalyzed and the characteristic absorbance of poly-
DAB at 460.0 nm appeared, revealing the successful catalyzing of 
the process by the as-prepared nanoparticles. It is mentionable that 
initially, the as-prepared gold nanoparticles act on the hydrogen 
peroxide to produce the active hydroxyl radical, then the produced 
hydroxyl radicals react with DAB via a 2-electron process to pro-
duce a DAB cation (DAB+), the reaction was followed by inter-
acting the produced DAB+ with a DAB molecule, resulting in a 
DAB dimer ((DAB)2). The above-mentioned cycle was repeated to 
produce the final polymeric product of the oxidation process with a 
considerable absorbance at 460.0 nm [26, 27,29,30].  Considering 
these results, it can be concluded that the as-prepared nanoparti-
cles show significant peroxidase-like activity and can be used in 
enzyme-mediated catalytic processes instead of the natural perox-
idase enzymes.  
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Figure 2: Evaluation of the peroxidase-like activity of the as-pre-
pared gold nanoparticles

3.3. Calculating Specific Enzyme-Like Activity
To explore more precise on the catalytic activity of the as-pre-
pared nanoparticles, it is necessary to quantify their specific en-
zyme-like activity. To calculate the specific enzyme-like activity, 
the plot of nanozymatic activity (in µM min-1 =UI) as a function 
of nanoparticle amount (µM) was constructed and the nanoparti-
cles' enzyme-like specific activity was estimated from its slope. 
The results are shown in Figure 3, revealing a specific enzyme-like 
activity as high as 0.4212 µM min-1 µM-1 nano or simply 0.4212 
UI µM-1nano. Considering these results, the as-prepared nanopar-
ticles show very high peroxidase-like activity with a high specific 
enzyme-like activity which makes it appropriate for its application 
as an enzyme alternative in enzyme-catalyzed reactions.

Figure 3: Quantification of the specific enzyme-like activity of the 
as-prepared gold nanoparticles.

3.4. pH Stability
The pH effect on the enzyme-like activity of the as-prepared gold 
nanoparticles was evaluated by measuring their relative activity 
over a pH range of 3.0-12. The above-mentioned studies were 
performed to provide insight into the stability of the enzyme-like 
nanoparticles against environmental pH changes (Figure 4). The 

results shown in Figure 4 revealed a maximum enzyme-like ac-
tivity at pH =5.0 for the as-prepared gold nanoparticles. It should 
be noted that the as-synthesized enzyme-like nanomaterials saved 
about 80.0% of their maximal activity over pH=3.0-4.0. Notably, 
As a significant advantage compared to the natural enzymes,  the 
as-synthesized gold nanoparticles revealed a pH-independent en-
zyme-like activity over a wide pH range of pH=7.0-10.0.

Figure 4: The effect of pH on the enzyme-like activity of the 
as-prepared gold nanoparticles

3.5. Thermal Stability
The thermal stability of the as-mentioned gold nanoparticles was 
investigated by calculating the relative activity of the as-prepared 
enzyme-like nanoparticles over a temperature range of 18±1.0 
-28±1.0 ℃. The results shown in Figure 5 exhibited a maximum 
enzyme-like activity for the as-prepared nanoparticles at 20.0±1.0 
℃. As a significant advantage compared to the natural enzymes, 
the as-synthesized gold nanoparticles revealed a temperature-inde-
pendent activity over a wide temperature range as wide as 23±1.0 
-28±1.0 ℃, showing their high thermal stability.

Figure 5: The effect of temperature on the enzyme-like activity of 
the as-prepared gold nanoparticles

3.6. Salt Stability
The stability of the as-mentioned gold nanoparticles against high 
salt concentrations as a serious problem of the native enzymes was 
investigated over 5-500 mM of NaCl as a model salt. To probe 
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the salt stability, the enzyme-like activity of the as-mentioned gold 
nanoparticles was calculated after exposure to high salt concentra-
tion. The results of this study are shown in Figure 6, revealing that 
the as-mentioned gold nanoparticles can save their maximal activ-
ity over a salt concentration range as wide as 5-500 mM. Based 
on the above results it can be concluded that the 5-500 mM can be 
used for catalyzing the peroxidase-mediated oxidation reactions 
at high salt concentrations without any decrease in catalytic ef-
ficiency and nanozymatic activity instead of the unstable native 
peroxidase. 

Figure 6: The salt stability results for the as-mentioned gold 
nanoparticles

3.7 Calculating the Kinetic Factors
Kinetic studies were carried out to estimate the kinetic param-
eters (i.e., Km and Vmax) of the as-prepared MnO2 nanozyme as 
pseudo-peroxidase nano enzyme toward n-electron irreversible 
oxidation of 3,3’-diaminobezedine. It is well known that the Vmax 
value reflects the intrinsic properties of the enzyme/nanozyme and 
is defined as the highest possible rate of the nanozyme-catalyzed 
reaction (i.e., catalytic efficiency) when all enzyme molecules or 
all nanozyme particles are saturated with the substrate. The high-
er value of Vmax is assigned to the higher catalytic efficiency of 
the enzyme/nanozyme. In contrast, the affinity of the substrate of 
an enzyme/nanozyme to interact with its active site is represent-
ed by the Km value, the lower values indicate a higher affinity of 
the substrate for binding to the enzyme/nanozyme. To evaluate the 
kinetics performances of the as-prepared gold-nanozymes, the Mi-
chaelis–Menten plot was constructed by plotting the velocity of 
the nanozymatic reaction as a function of DAB concertation. The 
results are shown in Figure 7. As seen in Figure 7A, the rate of 
gold-nanozyme-mediated oxidation reaction was increased by in-
creasing the substrate concertation and then leveling off. Besides, 
to explore more precise on the kinetic performances of gold-nano-
zymes toward DAB oxidation, the Lineweaver–Burk plot was also 
constructed for gold-nanozymes mediated reaction for accurate 
estimation of Km and Vmax of the gold enzymes-mediated oxi-
dation reaction. The results shown in Figure 7B revealed a Vmax 

of 83.3 µM min-1 and a Km as very low as 0.005 M for the gold 
nanoparticles.

Figure 7: (A) Michaelis–Menten plot and (B) Lineweaver-Burk 
linear plot for gold-nanozymes mediated reaction.

4. Conclusions
In this study, the biochemical behavior and stability of gold 
nanoparticles with intrinsic peroxidase-like activity were eval-
uated. The gold nanoparticles were synthesized at physiological 
temperature using bovine serum albumin as the stabilizer and 
then characterized by the TEM imaging method. Afterward, their 
peroxidase-like activity was checked upon irreversible oxidation 
of 3,3’-diaminobenzidine to produce a brown-colored indamine 
polymer, and the specific enzyme-like activity of the as-prepared 
nanoparticles was also calculated. The results showed a specif-
ic activity as high as 0.4212 UI µM-1 for the as-prepared gold 
nanoparticles. The as-prepared nanoparticles showed their maxi-
mal activity at pH=5.0 and 20.0±1.0 ℃ according to the results of 
pH and thermal stability studies, in order. Besides, the nanoparti-
cles saved above 80.0% of their maximal activity over pH=3.0-4.0 
and t=23-28℃ along with a constant activity over a pH range of 
7.0-10.0. The salt stability studies showed that their activity was 
not affected by variation in the ionic strength of the reaction media. 
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The kinetics results showed a Vmax of 83.3 µM min-1 and a Km 
as very low as 0.005 M for the gold nanoparticles. Considering 
the above results, the as-prepared gold nanoparticles can be con-
sidered high stable nanozymes with high intrinsic peroxidase-like 
activity and excellent catalytic efficiency. 
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