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Abstract 
This study delves into the integration of Storj and blockchain technology within the context of federated learning (FL) and 
its implications for scalability and efficiency. By leveraging blockchain, we aimed to bolster security and transparency, while 
also addressing storage challenges through the integration of Incremental Learning. Our findings revealed that while the 
utilization of Storj led to marginally higher federated server storage requirements compared to local storage, particularly as 
the number of clients increased, there was also a slight increase in the time required for the federated learning process when 
Storj was integrated, especially with a larger number of clients.
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1. Introduction
Machine learning is a powerful tool in various fields, including 
healthcare, but its accuracy depends on having abundant training 
data. This can raise privacy concerns, especially in healthcare. 
Regulations like the European Union’s General Data Protection 
Regulation (GDPR) aim to protect user privacy. To address these 
concerns, researchers are exploring innovative approaches like 
federated learning and differential privacy. Federated Learning 
(FL) allows models to be trained on decentralized data sources 
without compromising privacy, while differential privacy 
adds noise to training data to protect individual privacy. These 
techniques aim to strike a balance between accuracy and privacy 
in healthcare data usage [1].

FL is a distributed machine learning system that allows 
participants to train models using their local data without sharing 
it, particularly beneficial in healthcare systems where patient data 
privacy and security are paramount. FL enables collaborative 
training using datasets from all participants, leading to improved 
healthcare decisions and diagnoses while keeping sensitive patient 
information secure. However, FL faces privacy challenges, as 
the sharing of model updates between the client and the server 
can potentially be exploited to reconstruct the client’s data. To 
address this issue, blockchain technology has been proposed as 
a privacy and security enhancement method for FL in healthcare 

systems, leveraging the decentralized and immutable nature of 
blockchain to further enhance privacy protection. However, the 
implementation of blockchain in FL for healthcare systems requires 
careful consideration and evaluation to ensure its effectiveness and 
compatibility with existing infrastructure [2-4].

In the healthcare system, blockchain technology has emerged as 
a promising solution, used to preserve and exchange patient data 
across different entities such as hospitals, diagnostic laboratories, 
pharmacy firms, and physicians. By utilizing a decentralized and 
secure network, blockchain enhances data accuracy, identifies 
critical errors in medical records, and improves the performance, 
security, and transparency of sharing medical data, ensuring 
that sensitive information remains protected [5]. Additionally, 
blockchain enables medical institutions to gain valuable insights 
and enhance the analysis of medical records, leading to more 
accurate diagnoses, personalized treatments, and advancements 
in medical research [5]. Overall, the application of blockchain 
in healthcare has the potential to transform the management 
and utilization of patient data, ultimately improving healthcare 
outcomes and patient care.

In traditional FL, a central server aggregates model parameter 
and distributes the global model, posing a single point of failure 
susceptible to attacks or crashes [6]. Blockchain integration 
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addresses this limitation by decentralizing the coordination 
process, replacing the need for a central server. Each participating 
device securely uploads its model parameters to the distributed 
ledger, ensuring accuracy and preventing tampering. The global 
model is then distributed to all devices in a decentralized manner, 
eliminating the risk of a single point of failure [7-9]. Blockchain 
technology offers several strengths when integrated into FL 
systems. Its architecture, including local data storage, cryptographic 
algorithms, and immutability, enhances data privacy and security. 
The transparent nature of blockchain provides visibility into 
model updates and changes, fostering trust and collaboration 
among FL system participants. Smart contract automation can 
enforce data usage policies, ensuring data is shared and utilized 
under predefined rules and regulations. The immutability and 
traceability of blockchain make it resistant to illegal tampering 
attacks, enhancing the security and integrity of the FL process. 
The combination of FL with blockchain provides a robust and 
secure framework that resists single points of failure and illegal 
tampering attacks [10,11].

The use of blockchain and smart contracts in healthcare has 
the potential to revolutionize the security and accessibility of 
patient data stored in Electronic Health Records (EHRs). By 
leveraging blockchain technology, shared health information 
exchange (HIE) can overcome the limitations of traditional 
systems and enable universal and secure data sharing among 
healthcare providers. Blockchain offers a decentralized and 
transparent approach to protecting patient privacy, replacing the 
need for a trusted intermediary with cryptographic algorithms that 
ensure data integrity. However, it’s important to note that while 
blockchain provides strong security measures, complete protection 
of patient privacy information cannot be guaranteed solely 
through blockchain technology. The challenges in implementing 
blockchain technology in healthcare applications, including 
security, privacy, latency, blockchain size, computing power, 
storage, scalability, and interoperability, are significant and require 
further investigation. Security vulnerabilities, privacy concerns, 
and technical limitations related to data migration, integration, and 
scalability need to be addressed to ensure the successful adoption 
of blockchain in healthcare [12]. Overcoming these challenges 
will require continued research and innovation to fully harness the 
potential of blockchain technology in healthcare applications and 
to facilitate collaboration and interoperability within the medical 
and scientific communities.

There are three main types of blockchains: public blockchains, 
permissioned or private blockchains, and consortium or federated 
blockchains. Un-permissioned blockchains, like Bitcoin 
and Ethereum, allow anyone with internet access to validate 
transactions and participate in the approval process, aiming to 
eliminate centralized authority and provide a secure, synchronized 
transaction ledger. Permissioned blockchains restrict access to 
authorized companies or organizations, offering higher efficiency 
in transaction verification and the ability to enforce access controls 
and data privacy. Participants in a permissioned blockchain can 

have different levels of access permissions, making them suitable 
for industries that require strict data confidentiality. However, 
they lack the decentralization and security of public blockchains. 
Despite these limitations, permissioned blockchains have gained 
popularity in various industries due to their ability to provide 
efficiency, privacy, and controlled access. Consortium blockchains 
combine elements of private and public blockchains, acting 
as centralized systems with strong cryptographic models for 
transaction verification, and their reliability and accuracy are still 
being explored [12].

Storj is a decentralized cloud storage platform that allows users 
to store their data in a secure and distributed manner. It uses 
blockchain technology and a network of nodes to store and retrieve 
data, providing a more secure and private alternative to traditional 
cloud storage services [13]. Storj utilizes smart contracts to 
facilitate the storage and retrieval of data on its decentralized 
network. Smart contracts are self-executing contracts with the 
terms of the agreement between buyer and seller being directly 
written into code. In the case of Storj, smart contracts are used 
to automate and enforce the terms of data storage and retrieval 
between users and storage node operators on the network. This 
helps ensure the security and reliability of the storage and retrieval 
process [14].

The rest of this paper is organized as follows, Section 2 covers 
related work on Federated Learning and the integration of 
blockchain with it; Section 3 discusses our approach; Section 4 
discusses our experiments and collected results 5 concludes this 
study and discusses future work.

2. Related work
Federated Learning is a powerful approach that allows multiple 
participants to collaborate on training a shared model without 
sharing their raw data. This decentralized approach addresses 
privacy concerns by keeping data secure and private. However, 
one of the major challenges in FL is ensuring the trustworthiness 
of the participating devices. Malicious participants or infected data 
can have significant effects on the model’s output, introducing 
biases or compromising the integrity of the training process. 
Blockchain technology can play a crucial role in addressing the 
challenges of trustworthiness, privacy, and fairness in FL. By 
leveraging the decentralized and transparent nature of blockchain, 
FL can eliminate the need for intermediaries and create a secure 
environment for participants to contribute their data [15].

The research of Chang, Fang, and Sun introduced an innovative 
FL-chain system that incorporates an adaptive differential privacy 
algorithm specifically designed for the Medical Internet of Things 
(MIoT) environment [16]. This system addresses the challenge of 
maintaining a delicate balance between privacy and accuracy by 
dynamically adjusting the amount of noise added to the gradient. By 
doing so, the FL-chain system ensures that sensitive medical data 
remains protected while still achieving accurate model training. A 
notable strength of this FL-chain system lies in its implementation 
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of a gradient verification-based consensus protocol. This protocol 
serves as a robust defense mechanism against malicious attacks 
and mitigates the risk of a single point of failure. By verifying 
the gradients contributed by participants, the system ensures the 
integrity and reliability of the training process, enhancing the 
overall security of the FL-chain system in the context of MIoT.
Passerat-Palmbach et al. introduced the FL-chain framework, 
which focuses on privacy preservation in electronic health data 
to mitigate bias, enhance security, and ensure persistence [17]. 
This framework consists of six key elements: ”discoverable data 
and analytic process,” ensuring transparency and traceability; 
”fabricated value,” involving the generation of synthetic or 
fabricated data to protect sensitive information; ”compute 
guarantees,” ensuring secure and reliable computations; ”privacy 
guarantees,” implementing privacy-preserving techniques such 
as differential privacy or secure multi-party computation; ”data 
quality,” emphasizing the importance of maintaining high-
quality data throughout the FL-chain process; and ”collaborative 
learning,” enabling secure and privacy-preserving machine 
learning in healthcare. By incorporating these elements, the FL-
chain framework provides a comprehensive approach to privacy 
preservation in electronic health data, addressing the challenges of 
bias, security, and persistence.

Salim and Park proposed a secure Electronic Health Record (EHR) 
scheme for hospitals, combining Federated Learning (FL) and 
blockchain technology [18]. The scheme uses the Interplanetary 
File System (IPFS) to store private data, ensuring confidentiality 
and integrity. The IPFS network records hashed addresses of 
EHRs using a Consortium Blockchain-based network, providing 
a transparent and tamperproof record of the EHRs. Access to the 
EHRs is granted to individual patients through smart contracts, 
ensuring secure and controlled sharing of their medical data. 
The EHR data is trained both locally and globally, leveraging 
the power of FL. Local training allows individual hospitals or 
healthcare providers to train models using their data, preserving 
data privacy, while global training involves aggregating the locally 
trained models to create a more robust and accurate global model.
Lakhan et al. conducted a study on fraud detection within the 
Internet of Medical Things (IoMT) Federated Learning (FL) 
network [19]. They introduced the FLBETS (Federated Learning 
Blockchain-Enabled Task Scheduling) framework, which 
integrates dynamic heuristics to ensure privacy preservation and 
fraud detection at various stages of data processing. By utilizing 
blockchain technology, FL-BETS establishes a transparent and 
tamper-proof record of data transactions, thereby enhancing 
the security and integrity of the FL network. The framework’s 
dynamic heuristics enable efficient fraud detection, facilitating the 
identification of suspicious activities or anomalies in the data.
Guan. explores the application of federated learning (FL) using 
wearable devices and real leg agility data from Parkinson’s disease 
(PD) patients [20]. FL is a privacy-preserving approach that allows 
machine learning models to be trained without compromising the 
privacy of the underlying data. The study successfully demonstrates 
that FL can protect sensitive patient data while still achieving 

reasonably high classification accuracy. It also investigates the 
effects of interruptions in the FL communication process and the 
introduction of noise to the model parameters.

The integration of IoT devices onto the Blockchain increases 
transactions and storage requirements. To address this, Nartey, 
Clement. proposed a hybrid architecture using containerization to 
create a side chain on a fog node, and an Advanced Time-variant 
Multi-objective Particle Swarm Optimization (AT-MOPSO) 
algorithm to determine optimal block transfers to the cloud [21]. 
AT-MOPSO incorporates time variant weights and outperforms 
other algorithms in cloud storage cost and query probability 
optimization.

Pabitha, P. in his work addresses the challenges faced by IoT 
networks, such as limited computing power, data security concerns, 
and scalability issues [22]. To overcome these challenges, the 
authors propose a hybridized conceptual framework called 
ModChain. ModChain modifies the structure of blockchain to 
accommodate the unique requirements of IoT networking. The 
framework includes a node committee responsible for appending 
blocks, ensuring fairness in mining, and preventing fraudulent 
transactions. An incentivization module is defined to discourage 
the leader of the committee from engaging in fake transactions.
Dwivedi proposed a blockchain-based solution for secure 
management and analysis of healthcare big data, emphasizing the 
increasing importance of medical care and the rise of medical big 
data, as well as the adoption of IoT-based wearable technology in 
the healthcare sector [23]. The author highlighted the privacy and 
security risks associated with these technologies and introduced 
a novel framework of modified blockchain models designed for 
resource-constrained IoT devices. This framework leverages 
the distributed nature of IoT devices and incorporates advanced 
cryptographic primitives to enhance privacy and security. The 
aim is to ensure secure and anonymous IoT application data and 
transactions within a blockchain-based network, addressing the 
privacy and security challenges associated with medical data in 
the IoT healthcare domain.

2.1 Modifying our proposed model
The main objective of our work is to enhance our FL approach with 
the integration of blockchain technology. This allowed us to train 
our Deep Neural Network (DNN) model on decentralized data 
sources without compromising privacy and security. Our DNN 
model incorporated a convolutional layer, attention layer, and 
Bidirectional long shortterm memory (BiLSTM) layer. We applied 
a FL approach with the help of blockchain to train our DNN model. 
By leveraging FL, we trained our model on decentralized data 
sources without transferring the data to a central server, ensuring 
privacy and security. The incorporation of blockchain technology 
enhanced transparency and immutability in the training process. 
Our results demonstrate the effectiveness of this approach in 
achieving accurate and robust DNN models while maintaining 
data privacy and security. This research contributes to the field of 
FL and blockchain applications, offering a promising solution for 
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3.3 Matrix Decomposition 

Matrix Factorization decomposes the user-item interaction matrix R into two lower-dimensional 

matrices: a user matrix U and an item matrix V. The user matrix U has dimensions m × k, where 

m is the number of users and k is the number of latent features. The item matrix V has 

dimensions k × n, where n is the number of items. The goal of Matrix Factorization is to find the 

optimal values for the user and item matrices such that their product approximates the original 

user-item interaction matrix R. Each row of the user matrix U represents a user's preferences 

across the latent features. Each column of the item matrix V represents an item's characteristics 

across the latent features. The latent features capture underlying patterns in user preferences and 

item characteristics that are not explicitly observed in the raw data. For example, in a movie 

recommendation system, latent features could represent genres such as action, romance, comedy, 

etc. Once the user and item matrices have been learned, personalized recommendations can be 

generated for users. For a given user, the recommendation system can compute the predicted 

ratings for all items by taking the dot product of the user's row in the user matrix U and the item 

matrix V. The top-rated items can then be recommended to the user based on these predicted 

ratings. A simple mathematical model for MF in the context of a recommender system.  

Given: 

- R is the user-item interaction matrix of size m × n, where mm is the number of users and 

n is the number of items. 

- U is the user matrix of size m × k, where k is the number of latent features. 

- V is the item matrix of size k × n. 

The goal is to find the optimal values for U and V such that their product approximates the 

original user-item interaction matrix R. Mathematically, it can be formulated as an optimization 

problem: 

 

 𝑚𝑚𝑚𝑚𝑚𝑚
𝑈𝑈, 𝑉𝑉 ∑ ( 𝑅𝑅𝑖𝑖𝑖𝑖 −  𝑅̂𝑅𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗

2 + λ (ǁUǁ2
𝐹𝐹 + ǁVǁ2

𝐹𝐹 ) (2) 

 

 

collaborative and secure machine learning. Our application aims 
to improve the communication abilities of individuals with special 
needs and to assist them in comprehending their environment 
more effectively.

In our work, we made use of Storj, a decentralized cloud storage 
platform, and Google Colab, a collaborative environment for 
running Python code. By leveraging Storj’s decentralized storage 
solution, we were able to explore a novel approach to managing 
and storing data for our application. Additionally, utilizing 
Google Colab provided us with a convenient and collaborative 
platform for running and experimenting with our Python-based 
code. This combination of technologies allowed us to tap into 
the benefits of decentralized storage while also taking advantage 
of a collaborative and efficient development environment. 
Storj enhances security and privacy through a combination of 
decentralized storage, client-side encryption, data sharding, access 
control, and blockchain technology. By distributing data across a 
network of nodes, Storj reduces the risk of a single point of failure 
and makes it more resilient to attacks. Client-side encryption 
ensures that data is encrypted before it leaves the client’s device, 
with only the data owner holding the encryption keys, thus adding 
an extra layer of security. Data sharding further strengthens 
security by breaking data into smaller pieces and distributing 
them across multiple nodes, making unauthorized access more 
difficult. Access control mechanisms are in place to ensure that 
only authorized parties can retrieve and modify data stored on the 
network. Additionally, Storj leverages blockchain technology for 
managing and enforcing storage contracts, providing a transparent 
and tamper-resistant record of storage and retrieval activities. 
This comprehensive approach aims to provide users with a more 

secure and private cloud storage solution [18]. In our research, 
we addressed the storage challenge in blockchain by integrating 
Incremental Learning into the FL process using Storj.

We successfully updated machine learning models with a more 
efficient and storage conscious approach by treating the new 
data as the average weights and the older data as the previous 
round clients’ weights. This method allowed for the streamlined 
utilization of storage resources within the blockchain environment, 
as only the average weights needed to be stored, significantly 
reduced the overall storage requirements. Furthermore, to 
optimize storage usage, the clients’ weights from each round were 
systematically deleted after calculating the round average weight, 
ensuring that only essential data was retained, thus addressing the 
storage constraints typically associated with blockchain-based FL. 
Leveraging Storj’s decentralized and encrypted storage capabilities, 
combined with this innovative approach to data storage, proved 
to be an effective solution for overcoming the storage limitations 
in FL processes within blockchain environments. Expanding the 
client count in each experiment allows us to assess the scalability 
of our approach and understand how performance varies with the 
number of clients involved. Furthermore, comparing the results 
of experiments with and without the integration of Storj and 
blockchain enables us to evaluate the impact of these technologies 
on the FL process. Calculating the duration between the start and 
end times of each experiment is a reliable way to measure the time 
taken for each experiment. By comparing the execution times with 
and without Storj and blockchain, we can gain insights into the 
impact of these technologies on the overall time required for the 
FL process.
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As illustrated in Figure 1, the combination of FL with blockchain 
technology involves a meticulously orchestrated series of steps. 
Initially, the model is initialized by transmitting the initial model 
from the FL server to the participating clients (1). Subsequently, 
the participating clients engage in the model learning process (2), 
followed by the uploading of learning weights from the participating 
clients to the blockchain (3). The FL server then retrieves round 
clients’ weights from the blockchain (4) and proceeds to calculate 
the average weight (5), which is subsequently preserved on the 
blockchain (6). This average weight is then utilized to initiate the 
next round by deploying the new model with the updated average 
weights to participating clients (7). Finally, the previous round 
clients’ weights are expunged from the blockchain (8). These 
iterative processes are iterated multiple times, spanning several 
rounds, until the desired model performance is achieved.

3. Experiments and Results
We employed k-fold cross-validation with k=5 for dividing the 
dataset, and conducted 3 learning epochs for each client, repeating 
the process for 3 rounds. We conducted four experiments to 

evaluate the performance of our FL approach. Each experiment was 
run with two options: firstly, without the integration of Storj and 
blockchain, and secondly, by applying Storj and blockchain. The 
first experiment involved 3 clients, training the model for 3 rounds 
and evaluating its performance using various metrics. Building 
upon this, the second experiment expanded the client count to 
5, repeating the FL process and assessing performance using the 
same metrics, also the third experiment expanded the client count 
to 7, repeating the FL process and assessing performance using the 
same metrics. In the fourth experiment, we further increased the 
client count to 10, executing the FL process for the same number 
of rounds and comparing the resulting metrics to those obtained 
previously. To measure the time taken for each experiment, we 
recorded the start and end times. This allowed us to calculate the 
duration of each experiment by subtracting the start time from the 
end time. By comparing the execution times of the experiments 
with and without Storj and blockchain, we were able to assess the 
impact of these technologies on the overall time required for the 
FL process. 

 

 
Figure 2: Model Learning Time. 

As shown in Figure 2, our results showed a slight increase in the time taken 

for the FL process when Storj was integrated, especially with a larger 
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the time efficiency of our approach. 
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Figure 2: Model Learning Time.

As shown in Figure 2, our results showed a slight increase in the 
time taken for the FL process when Storj was integrated, especially 
with a larger number of clients. These findings provide valuable 
insights into the trade-offs between using Storj and local storage in 
an FL setting, shedding light on the time efficiency of our approach.

To quantify the relationship between the time required for the 
Federated Learning (FL) process and key factors such as the 
number of clients and storage type, we employed a linear regression 
model. The constructed equation is given by

where β0 represents the y-intercept, β1 captures the linear effect of 
the number of clients on time, and β2 accounts for the linear effect 
of the storage type on time (with 1 denoting Storj and 0 denoting 
local storage).

This simplified model offers a clear representation of the potential 

impact of these variables on the overall time required for the 
FL process. While more complex models were considered, the 
simplicity of this linear equation aligns with the characteristics 
of our data and allows for straightforward interpretation of the 
relationships between variables.
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Fig.3, shows our resource usage results and reveals a substantial 
difference in storage requirements between the traditional 
approach and the integration of Incremental Learning with 
Storj. Without Incremental Learning, the storage requirements 
increased significantly as the number of clients grew. However, 
with Incremental Learning, the storage requirements become 
small regardless of the number of clients, showcasing a highly 
efficient and storage-conscious approach. The consistent storage 
requirements with Incremental Learning, even as the client count 
increased, underscore the scalability and efficiency of our solution 
in addressing the storage challenge in FL, particularly within the 
blockchain environment. These findings highlight the potential 
of our approach to streamline the utilization of storage resources 
and overcome the storage limitations typically associated with 
FL processes. This information is crucial for making informed 
decisions about the infrastructure and resource allocation for 
FL systems, ultimately contributing to advancing efficient and 
scalable FL methodologies.

4. Conclusion and Future Works
Our study has provided valuable insights into the integration 
of Storj and blockchain technology in the context of FL, 
demonstrating the potential of blockchain to enhance security 
and transparency while addressing storage challenges through 
Incremental Learning integration. The findings underscore the 
importance of carefully considering the implications of utilizing 
Storj and blockchain in FL systems, particularly in terms of 
storage requirements and time efficiency, which are crucial for 
optimizing performance and scalability. While our results show 
promise, further research and development are necessary to fully 
unlock the potential of blockchain technology in FL and address 
the associated challenges. Continuing to explore and refine the 
use of blockchain in FL can lead to more secure, efficient, and 
scalable systems, contributing to advancements in privacy-
preserving machine learning and decentralized data processing. 

Our future work will focus on addressing the challenge of ensuring 
fairness in FL systems by integrating an incentive mechanism with 
blockchain technology. This will involve providing benefits such 
as financial rewards in the form of tokens, data rewards like more 
precise updates, or other unspecified rewards to participants with 
varying computational and data resources [14,15]. It is crucial to 
ensure that those with better resources receive additional benefits 
to maintain their incentive to contribute, thereby preventing 
capable participants from losing motivation to further engage in 
the process.
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