
Volume 5 | Issue 1 |1Adv Mach Lear Art Inte, 2024

Encryption and Decryption Algorithm with The Ability of Different Computing
Layers to Send and Receive Data in The Network (Encryption Decryption Multi-
Layer Algorithm)

Research Article

Ahmad Karami Bukani*
Department of Education - Bukan City - West Azarbaijan
(Mukriyan Kurdistan) Province – Iran

*Corresponding Author
Ahmad Karami Bukani, Department of Education - Bukan City - West
Azarbaijan (Mukriyan Kurdistan) Province – Iran

Submitted: 2024 Feb 03; Accepted: 2024 Feb 21; Published: 2024 Mar 05

Citation: Bukani, A., K. (2024). Encryption and decryption algorithm with the ability of different computing layers to send and
receive data in the network (Encryption Decryption Multi-Layer Algorithm). Adv Mach Lear Art Inte, 5(1), 01-12.

Abstract
The encryption Decryption Multi-Layer algorithm is in the form of several layers and each layer performs a specific action,
in total, this algorithm has eight layers, four layers are for encryption and four layers are for decryption, and these layers
guarantee that the best the method of encryption and decryption of very important data.

Keywords: Hide Data, Hide Layer, Gap Data, Gap Layer, Show Layer, Show Data, Encrypt, Decrypt, Multi-Layer, Algorithm

Advances in Machine Learning & Artificial Intelligence
ISSN: 2769-545X

1. Introduction
There are different ways to encrypt and decrypt the data to protect
the data from low-level security to a high level but a new solution
has formed in my mind that helps to encrypt and decrypt the data
in a certain way, according to the existence of four layers for
encryption and four layers for decryption, various operations take
place on the data to ensure that when the data is sent or received
over the wireless network or the wired network when If the data
is eavesdropped or falls into the hands of hackers, it will not be
recoverable, even if part of the two-step encryption is recoverable,
they will not be able to understand the content of the data, Although
it is written in English, misleading and fake information has fallen
into the hands of hackers [1,2].

2. Overview
I used the Python 3.12 programming language and described
the entire set of commands along with the layers of the EDML
algorithm, but the layers of this algorithm include two parts:
Although it is written in English, misleading and fake information
has fallen into the hands of hackers [3].

Part A- Data encryption consists of four layers.
• Adding useless text data to useful text data (INSERT GAP TEXT
LAYER)

• Hiding all useful text data and useless text data and converting all
data to useless data (Hide TEXT LAYER)
• Inserting the encryption of all useless textual data in the format of
step one (INSERT ENCRYPTION RANDOM LAYER) 4-
• insert re-encryption of all encrypted data in the form of the
second step (INSERT ENCRYPTION GAP LAYER)
Part B - Data decryption consists of four layers.
• Delete all encrypted data in the second step for decryption
(DELETE DECRYPTION GAP LAYER)
• Deleting all encrypted data of step one to decrypt and convert
it to all useless text data (DELETE DECRYPTION RANDOM
LAYER)
• Convert all useless data to useful text data and useless text data
and display it (SHOW TEXT LAYER)
• Deleting all useless text data and revealing useful text data
(DELETE GAP TEXT LAYER)

According to (Figure 1), the data encryption layers deliver data
from top to bottom, and the data decryption layers deliver data
from bottom to top, and the act of sending data in networks is done
by the INSERT ENCRYPTION GAP layer, and the operation of
receiving data in the networks is done by the DELETE GAP TEXT
layer.

Volume 5 | Issue 1 |2Adv Mach Lear Art Inte, 2024

According to (Figure 1), the data encryption layers deliver data from top to bottom, and the data

decryption layers deliver data from bottom to top, and the act of sending data in networks is done

by the INSERT ENCRYPTION GAP layer, and the operation of receiving data in the networks

is done by the DELETE GAP TEXT layer.

Figure 1: EDML Algorithm

The complete source code has been attached to this article and since some of the code is to show

the results better and has no effect on the implementation of the algorithm. To shorten the

description of the article, I will omit repetitive codes and codes just for information and graphic

displays with various colors. This algorithm has three libraries for generating random numbers,

generating colors for displaying texts, and inserting time.

Figure 1: EDML Algorithm

The complete source code has been attached to this article and
since some of the code is to show the results better and has no
effect on the implementation of the algorithm. To shorten the
description of the article, I will omit repetitive codes and codes
just for information and graphic displays with various colors.
This algorithm has three libraries for generating random numbers,
generating colors for displaying texts, and inserting time.

import random
import colorama

import time

By default, the colorama library, which is used to produce text
colors, cannot be recognized and its functions cannot be used, and
an error message appears during the output, so the pip command is
used to install or update the libraries, according to Figure 2. I have
entered its command.

pip install colorama

import random

import colorama

import time

By default, the colorama library, which is used to produce text colors, cannot be recognized and

its functions cannot be used, and an error message appears during the output, so the pip

command is used to install or update the libraries, according to Figure 2. I have entered its

command.

pip install colorama

Figure 2: Install Library

The original message with the text content to be encrypted is contained in the MyData variable.

MyData="I Live in Kurdistan , my+name+is Ahmad.Karami.Bukani , I+am a Programmer ,

this+is my algorithm ..."

The words in the MyData variable are separated from each other and placed in the MyDataList

variable, and the sentences are placed in the MyDataList2 variable.

MyDataList = []

MyDataList2 = []

Figure 2: Install Library

The original message with the text content to be encrypted is con-
tained in the MyData variable.

MyData="I Live in Kurdistan , my+name+is Ahmad.Karami.Bu-
kani , I+am a Programmer , this+is my algorithm ..."
The words in the MyData variable are separated from each oth-
er and placed in the MyDataList variable, and the sentences are

placed in the MyDataList2 variable.

MyDataList = []
MyDataList2 = []

The position of code words are stored in dictionary variables,
based on nouns, verbs, adverbs of place, adverbs of time, etc.,

Volume 5 | Issue 1 |3Adv Mach Lear Art Inte, 2024

words are stored in dictionary variables.

MyDictionaryPosition1_1=[]
MyDictionaryPosition2_1=[]

MyDictionaryPosition1_2=[]
MyDictionaryPosition2_2=[]

MyDictionaryPosition1_3=[]
MyDictionaryPosition2_3=[]

MyDictionaryPosition1_4=[]
MyDictionaryPosition2_4=[]

MyDictionaryPosition1_5=[]
MyDictionaryPosition2_5=[]

MyDictionaryPosition1_6=[]
MyDictionaryPosition2_6=[]

MyDictionaryPosition1_7=[]
MyDictionaryPosition2_7=[]

MyDictionaryPosition1_8=[]
MyDictionaryPosition2_8=[]

MyDictionaryPosition1_9=[]
MyDictionaryPosition2_9=[]

MyDictionaryPosition1_10=[]
MyDictionaryPosition2_10=[]

The ElementCounter variable counts the number of words to be
used to encrypt and decrypt data.

ElementCounter=0

Dictionary variables based on nouns, verbs, adverbs of place, ad-
verbs of time, etc. help to convert useful data into useless data and
vice versa, and to hide and reveal useful data. Also, each time the
algorithm is executed, a list of random words is selected based on
nouns, verbs, adverbs of place, adverbs of time, etc.

MyDictionary1 = ["I+am","I+am+not","she+is" ,
"she+is+not","he+is", "he+is+not"]
MyDictionary2=["this+is","this+is+not","those+are","-
those+are+not","there+is", "there+is+not"]
MyDictionary3 = ["my+name+is","my+name+is+not"]
MyDictionary4 = ["Live","Love","Enable","Wish","Ac-
tive","Write","Teaching","Going"]
MyDictionary5 = ["Programmer","Reporter","Worker","Teach-
er","Driver"]
MyDictionary6 = ["We","I","You","They"]
MyDictionary7=["car","cars","airplane","bus","earth","moon","-

ship" ,"book" ,"books" ,"note" ,"mobi le" ,"notes" ,"note-
book","night","day","algorithm"]
MyDictionary8 = ["in","to","from"]
MyDictionary9 = ["Kurdistan","USA","France","UK","Ger-
many","Italy","Norway"]
MyDictionary10=["Ahmad.Karami.Bukani","David","Shaho","E-
leya","Mary","Ako","Nishteman","Nechirvan"]

Each time the algorithm is executed, a list of different random
numbers is placed in the variable key_random_list and variable
key_random_list2 to encrypt and decrypt the data.

key_random_list = []
key_random_list2 = []

Encrypted data is placed in the encrypt variable.

encrypt=""

The decrypted data is placed in the decrypt variable.

decrypt=""

The re-encrypted data is placed in the encrypt_gap variable.

encrypt_gap=""

The re-decrypted data is placed in the decrypt_gap variable.

decrypt_gap=""

The encrypt_gap_send_message variable stores encrypted data
and can send this data over the network.

encrypt_gap_send_message=""

The decrypt_correct_receive_message variable stores the decrypt-
ed data and this data can be received from the network platform.

decrypt_correct_receive_message=""

The number of encryption and decryption max_len is equal to
20, which can be increased more and more, for example, to 1000,
and it will cause long encryption and decryption. The act of deci-
phering the password becomes extremely difficult, although as the
length of the data to encrypt and decrypt the data increases, it is
natural that the value of the max_len variable also increases.

max_len=20

The source variable is responsible for the collection of words of
useful data and useless data and helps to navigate and encrypt and
decrypt the string of useful and useless data.

Volume 5 | Issue 1 |4Adv Mach Lear Art Inte, 2024

source=""
The index variable is used to navigate the encrypted and decrypted
data.

index=0

To delay the execution of the algorithm, the duration variable can
be used in seconds, although instead of the time library, the input
function can be used to execute the next layers of encryption or
decryption.

duration = 5

According to Figure 3, the main data is displayed at the beginning
of the algorithm execution with the command print(MyData) and
it is the main data that is encrypted and decrypted.

print(MyData)

max_len=20

The source variable is responsible for the collection of words of useful data and useless data and

helps to navigate and encrypt and decrypt the string of useful and useless data.

source=""

The index variable is used to navigate the encrypted and decrypted data.

index=0

To delay the execution of the algorithm, the duration variable can be used in seconds, although

instead of the time library, the input function can be used to execute the next layers of encryption

or decryption.

duration = 5

According to Figure 3, the main data is displayed at the beginning of the algorithm execution

with the command print(MyData) and it is the main data that is encrypted and decrypted.

print(MyData)

Figure 3: Main Data

2.1 Data Encryption

Figure 3: Main Data

2.1 Data Encryption
As mentioned, the data encryption section is divided into four
layers, and each layer performs operations related to encryption,
and each layer transfers data from the upper layer to the lower
layer.

2.1.1 Insert Gap Text Layer
The first layer adds useless data to useful data, this layer helps to

insert and add a lot of useless data to useful data. However here
with a simple example and using the GapText variable, the useless
data is inserted and added to the useful data.

Using the choice function in the random library, a short sentence
is created, this is the useless data in the GapText variable, and it is
displayed in the monitor output as shown in (Figure 4).

As mentioned, the data encryption section is divided into four layers, and each layer performs

operations related to encryption, and each layer transfers data from the upper layer to the lower

layer.

2.1.1 Insert Gap Text Layer

The first layer adds useless data to useful data, this layer helps to insert and add a lot of useless

data to useful data. However here with a simple example and using the GapText variable, the

useless data is inserted and added to the useful data.

Using the choice function in the random library, a short sentence is created, this is the useless

data in the GapText variable, and it is displayed in the monitor output as shown in (Figure 4).

Figure 4: Insert Gap Text Layer

GapText = ", "+ random.choice(MyDictionary6)+" "+random.choice(MyDictionary4)+"

"+random.choice(MyDictionary8)+" "+random.choice(MyDictionary9)+" ..."

The two print functions set the text color to yellow and the background color to red, mostly

displayed for the informative aspect of the GapText variable.

print(colorama.Fore.RED+colorama.Back.YELLOW+colorama.Style.BRIGHT+" Gap Text :

"+GapText)

The replace function of the MyData variable helps to combine and add the useless data in the

GapText variable with the useful data of the MyData variable, the same operation of inserting the

useless data into the useful data is done.

Figure 4: Insert Gap Text Layer

GapText = ", "+ random.choice(MyDictionary6)+" "+random.
choice(MyDictionary4)+" "+random.choice(MyDictionary8)+"
"+random.choice(MyDictionary9)+" ..."

The two print functions set the text color to yellow and the back-
ground color to red, mostly displayed for the informative aspect of
the GapText variable.

print(colorama.Fore.RED+colorama.Back.YELLOW+colorama.
Style.BRIGHT+" Gap Text : "+GapText)

The replace function of the MyData variable helps to combine and
add the useless data in the GapText variable with the useful data

of the MyData variable, the same operation of inserting the useless
data into the useful data is done.

MyData=MyData.replace("...",GapText)

MyData variable displays useless data and useful data in the output
using the print function.

Print(MyData)

The split function of the MyData variable separates the words
from each other by using the space letter, and the words are placed
in the MyDataList variable, which is of the list type.

Volume 5 | Issue 1 |5Adv Mach Lear Art Inte, 2024

MyDataList=MyData.split(" ")

The sleep function from the time library creates a delay using the
duration variable, and then after this delay it enters the next stage
of the algorithm and the second layer starts to run, in the following
layers in the main code of this algorithm from the following code
line Used.

time.sleep(duration)

2.1.2 Hide Text Layer
This layer performs the act of hiding and replacing useless data
with useful data, this action helps to protect the data more.

According to (Figure 5), the output of this layer is displayed and
the algorithmic implementation of this layer is that the Element-
Counter variable counts the words processing useful data and use-
less data. The first for loop scrolls the list of words, and for each
word selected, one unit is added to the ElementCounter variable.
The second for loop for the length of the dictionary of the first
replacement words, if the word in the list of useful data and use-
less data is equal to the data list of the first dictionary, a word is
randomly selected from the first dictionary using the choice func-
tion. The selected word in the list of useful data and useless data
and the randomly selected word using the choice function will be
placed in the variables of the first position of the dictionary in the
choice variable. Then the chosen random word is replaced using
the choice variable in the MyDataList variable.

dictionary in the choice variable. Then the chosen random word is replaced using the choice

variable in the MyDataList variable.

Figure 5: Hide Text Layer

ElementCounter=-1

for element in MyDataList:

 ElementCounter=ElementCounter+1

 for i in range(0,len(MyDictionary1)):

 if element == MyDictionary1[i]:

 choice = random.choice(MyDictionary1)

 MyDictionaryPosition1_1.append(element)

 MyDictionaryPosition2_1.append(choice)

 MyDataList[ElementCounter] = choice

As you can see, the next block of code repeats the same routine but instead includes the length of

the second dictionary variable and the position variable of the second dictionary. By using

variable i, like the previous block, words are replaced in MyDataList variable.

ElementCounter=-1

for element in MyDataList:

 ElementCounter=ElementCounter+1

 for i in range(0,len(MyDictionary2)):

 if element == MyDictionary2[i]:

 choice = random.choice(MyDictionary2)

 MyDictionaryPosition1_2.append(element)

Figure 5: Hide Text Layer

ElementCounter=-1
for element in MyDataList:
 ElementCounter=ElementCounter+1
 for i in range(0,len(MyDictionary1)):
 if element == MyDictionary1[i]:
 choice = random.choice(MyDictionary1)
 MyDictionaryPosition1_1.append(element)
 MyDictionaryPosition2_1.append(choice)
 MyDataList[ElementCounter] = choice

As you can see, the next block of code repeats the same routine but
instead includes the length of the second dictionary variable and
the position variable of the second dictionary. By using variable i,
like the previous block, words are replaced in MyDataList variable.

ElementCounter=-1
for element in MyDataList:
 ElementCounter=ElementCounter+1
 for i in range(0,len(MyDictionary2)):
 if element == MyDictionary2[i]:
 choice = random.choice(MyDictionary2)
 MyDictionaryPosition1_2.append(element)
 MyDictionaryPosition2_2.append(choice)
 MyDataList[ElementCounter] = choice

Next, according to the two loops, the third dictionary variable
and the third dictionary position variables also navigate the list of
useful data and useless data. The act of replacing nouns, subjects,
adverbs of time, adverbs of place, etc., using the ElementCounter

variable for the MyDataList variable is performed by the randomly
selected word of the choice variable using the choice function.
The fourth, fifth, and tenth dictionaries perform the replacement of
useful data and useless data, and these replacements cause useful
data and useless data to be replaced with completely useless data.

ElementCounter=-1
for element in MyDataList:
 ElementCounter=ElementCounter+1
 for i in range(0,len(MyDictionary3)):
 if element == MyDictionary3[i]:
 choice = random.choice(MyDictionary3)
 MyDictionaryPosition1_3.append(element)
 MyDictionaryPosition2_3.append(choice)
 MyDataList[ElementCounter] = choice

The for loop for the variable MyDataList is used to show the
replacement of useful data and useless data with completely useless
data, this layer helps to make useful data completely useless and
completely hidden and inaccessible.

for element in MyDataList:
 print(element, end=” “)

2.1.3 Insert Encryption Random Layer
The third layer encrypts completely useless data and turns it into
non-English data, Ascii codes can be used to perform encryption
(Level 1 in Figure 1).

Volume 5 | Issue 1 |6Adv Mach Lear Art Inte, 2024

Figure 6 - INSERT ENCRYPTION RANDOM LAYER

Useless data should be converted from words in the MyDataList variable from a list type to a

string, so using the source variable, the process of converting the list to a string is done.

For element in MyDataList:

 source= source + element + " "

After converting and creating string, completely useless data, using the randint function from the

random library, a random number is selected between zero and fifty. Due to the existence of the

for loop and the value of zero to the maximum length of max_len numbers, random numbers are

generated and added to the key_random_list variable.

for i in range(0, max_len):

 key_random_list.append(random.randint(0,50))

Using the print function, completely useless data strings are displayed in the output.

print(" Text : " + source)

The for loop helps to sum each character in the completely useless source data string, using the

ord function, the ASCII codes of the key_random_list variable with a random number. The sum

Figure 6: INSERT ENCRYPTION RANDOM LAYER

Useless data should be converted from words in the MyDataList
variable from a list type to a string, so using the source variable,
the process of converting the list to a string is done.

For element in MyDataList:
 source= source + element + " "

After converting and creating string, completely useless data, using
the randint function from the random library, a random number is
selected between zero and fifty. Due to the existence of the for loop
and the value of zero to the maximum length of max_len numbers,
random numbers are generated and added to the key_random_list
variable.

for i in range(0, max_len):
 key_random_list.append(random.randint(0,50))

Using the print function, completely useless data strings are
displayed in the output.

print(" Text : " + source)

The for loop helps to sum each character in the completely useless
source data string, using the ord function, the ASCII codes of
the key_random_list variable with a random number. The sum
of these two numbers creates a new random character using the
chr function, and each new random character that is encrypted is
added and pasted with the encrypt variable. If index, which is the

length of the string, is equal to the length of the maximum random
number max_len, index will be zero again and the list of random
numbers will be used again. If the length of the encrypted string is
equal to the index variable using the len function, it means that the
entire string of useless data has been scrolled and encrypted, and it
is exited from the for loop. Of course, every time a character from
the completely useless string is checked, one unit is added to the
index and the initial value of the index variable is zero.

index=0
For char in source:
 if(index==max_len):
 index=0
 encrypt+=chr(ord(char)+key_random_list[index])
 if(index==len(source)):
 break
 index+=1

At the end of this layer, according to (Figure 6), using the print
function, the encrypted string value is displayed in the output in
the format of step one.

print(" Encrypt : " + encrypt)

2.1.4 Insert Encryption Gap Layer
This layer helps to encrypt more and more useless data, the more
useless data is encrypted, the harder and harder it is to discover
useful data (Level 2 in Figure 1).

Volume 5 | Issue 1 |7Adv Mach Lear Art Inte, 2024

Figure 7: Insert Encryption Gap Layer

Using the print function, the encrypted string value is displayed in the output in the format of

step one.

print(“ encrypt : “)

print(encrypt)

The encrypt_gap variable can be initialized empty or with some junk data. Of course, if

initialization is done with junk data, the junk data will be shown next to the encrypted data in the

format of step one. My preference is to use the encrypt_gap variable with an empty value.

#encrypt_gap=" 1234567890 "

encrypt_gap=""

Figure 7: Insert Encryption Gap Layer

Using the print function, the encrypted string value is displayed in
the output in the format of step one.

print(“ encrypt : “)
print(encrypt)

The encrypt_gap variable can be initialized empty or with some
junk data. Of course, if initialization is done with junk data, the
junk data will be shown next to the encrypted data in the format
of step one. My preference is to use the encrypt_gap variable with
an empty value.

#encrypt_gap=" 1234567890 "
encrypt_gap=""

Again, using the randint function from the random library, a ran-
dom number is selected between the numbers zero to fifty, and due
to the existence of the for loop and the value of zero to the maxi-
mum length of max_len numbers, random numbers are generated
and added to the key_random_list2 variable.

for i in range(0,max_len):
 key_random_list2.append(random.randint(0,50))

Again, the for loop helps that every single character in the encrypt-
ed data string is added in the format of the first step of encrypt,
using the ord function, the ASCII codes of the variable key_ran-
dom_list2 with a random number. The sum of these two numbers
creates a new random character using the chr function, and each
new random character that is re-encrypted is appended with the
encrypt_gap variable. If index, which is the length of the string, is
equal to the length of the maximum random number max_len, the
value of index will be zero and the list of random numbers will be
used again. If, using the len function, the length of the encrypted
string is equal to the index variable, that means the entire encrypt-
ed data string of step one has been scrolled and re-encrypted and
exits the for loop. Of course, every time a character from the coded
string is checked in step one format, one unit is added to the index
and the initial value of the index variable is zero.

index=0
for char in encrypt:
 if(index==max_len):
 index=0
 encrypt_gap+=chr(ord(char)+key_random_list2[index])
 if(index==len(encrypt_gap)):
 break
 index+=1

Volume 5 | Issue 1 |8Adv Mach Lear Art Inte, 2024

Using the print function, the value of the encrypted string of the
second step is displayed in the output.

print(" encrypt_gap : ")
print(encrypt_gap)

The amount of encrypted data in the format of the second step in
the encrypt_gap variable is set into the encrypt_gap_send_mes-
sage variable.

encrypt_gap_send_message = encrypt_gap

Finally, according to (Figure 7) in this layer, the amount of en-
crypted data can be sent in the format of the second step, in the
network platform, and the sending message is displayed in red.
The encrypt_gap_send_message variable is displayed with the en-
crypted data in the second step format.

print(colorama.Fore.RED+ " Send Message : ")
print(encrypt_gap_send_message)

2.2 Data Decryption
The data decryption section is divided into four layers, each layer
performs decryption operations, and each layer transfers data from
the lower layer to the upper layer.

2.2.1 Delete Decryption Gap Layer
When this layer receives the encryption data string in the stage
two format, it converts the encryption data string in the stage two

format to the encryption data string in the stage one format and the
encryption data string in the stage one format that remains, then it
is checked in the next layer. Because the data is encrypted in two
layers, then the data is also decrypted in two layers. In the next
two layers, the encryption data string is converted into completely
useless data and then completely useless data into useful data and
useless data. Finally, in the last layer, the useful data is revealed
among the useful data and the useless data, and all the useless data
is removed and the useful data is displayed (Level 2 in Figure 1).

In this layer, as you can see in (Figure 8), by using the index vari-
able, the act of decryption of the encrypted data string is performed
in the second step format. The for loop helps to subtract each char-
acter in the encrypted data string in the format of the second step
in the encrypt_gap variable, using the ord function, the Asciid
codes of the 2key_random_list variable with a random number.
By subtracting these two numbers and using the chr function, each
character is decrypted and the encrypted data string is attached and
added to the decrypt variable in the format of step one. If the index,
which is the length of the string, is equal to the length of the max-
imum random number max_len, the index will be zero again and
the list of random numbers will be used again, and if using the len
function, the length of the coded string in the second step format
is equal to the index variable. It means that the entire encrypted
string has been traversed and the second stage of decryption has
been completed. Then the for loop ends, of course, every time a
character from the encrypted string is checked in the second step
format, one unit is added to the index, but the initial value of the
index is zero.

useful data is revealed among the useful data and the useless data, and all the useless data is

removed and the useful data is displayed (Level 2 in Figure 1).

In this layer, as you can see in (Figure 8), by using the index variable, the act of decryption of

the encrypted data string is performed in the second step format. The for loop helps to subtract

each character in the encrypted data string in the format of the second step in the encrypt_gap

variable, using the ord function, the Asciid codes of the 2key_random_list variable with a

random number. By subtracting these two numbers and using the chr function, each character is

decrypted and the encrypted data string is attached and added to the decrypt variable in the

format of step one. If the index, which is the length of the string, is equal to the length of the

maximum random number max_len, the index will be zero again and the list of random numbers

will be used again, and if using the len function, the length of the coded string in the second step

format is equal to the index variable. It means that the entire encrypted string has been traversed

and the second stage of decryption has been completed. Then the for loop ends, of course, every

time a character from the encrypted string is checked in the second step format, one unit is added

to the index, but the initial value of the index is zero.

Figure 8: Delete Decryption Gap Layer

decrypt=""

Figure 8: Delete Decryption Gap Layer

decrypt=""
index=0
for char in encrypt_gap:
 if index==max_len:

 index=0
 decrypt+=chr(ord(char)-key_random_list2[index])
 if index==len(encrypt_gap):
 break

Volume 5 | Issue 1 |9Adv Mach Lear Art Inte, 2024

 index+=1

print(" decrypt : " + decrypt)

2.2.2 Delete Decryption Random Layer
To delete and decrypt in the first step format, using this layer,
you can get completely useless data and completely decrypt the
encrypted data string in the first step format (Level 1 in Figure 1).

index=0

for char in encrypt_gap:

 if index==max_len:

 index=0

 decrypt+=chr(ord(char)-key_random_list2[index])

 if index==len(encrypt_gap):

 break

 index+=1

print(" decrypt : " + decrypt)

2.2.2 Delete Decryption Random Layer

To delete and decrypt in the first step format, using this layer, you can get completely useless

data and completely decrypt the encrypted data string in the first step format (Level 1 in Figure

1).

Figure 9: Delete Decryption Random Layer

By using the index variable, the process of decryptioning the encrypted data string is done in the

format of step one. The for loop helps to subtract each character in the encrypted data string in

the format of step one in the decrypt variable, using the ord function, the Asciid codes of the

key_random_list variable with a random number. By subtracting these two numbers and using

the chr function, each character is decrypted and appended with the decrypt_gap variable, and

the completely useless data string is recovered. If the index, which is the length of the string, is

equal to the length of the maximum random number max_len, the index will be zero again and

Figure 9: Delete Decryption Random Layer

By using the index variable, the process of decryptioning the
encrypted data string is done in the format of step one. The for
loop helps to subtract each character in the encrypted data string
in the format of step one in the decrypt variable, using the ord
function, the Asciid codes of the key_random_list variable with
a random number. By subtracting these two numbers and using
the chr function, each character is decrypted and appended with
the decrypt_gap variable, and the completely useless data string is
recovered. If the index, which is the length of the string, is equal
to the length of the maximum random number max_len, the index
will be zero again and the list of random numbers will be used
again, and if the length of the coded string in the step one format
is equal to the index variable using the len function, That is, the
entire string encrypted in the form of step one has been scrolled
and decrypted completely, and then the completely useless data
string is retrieved and then the for loop ends. Of course, every
time a character from the encrypted string is checked in the first
step format, a unit is added to the index, but the initial value of the
index is zero.

decrypt_gap=""
index=0

for char in decrypt:
 if index==max_len:
 index=0
 decrypt_gap+=chr(ord(char)-key_random_list[index])
 if index==len(decrypt):
 break
 index+=1

In (Figure 9) the result of this layer is displayed and using the print
function, it displays the decrypted string that has been converted
into completely useless data in the output of the monitor.

print(" decrypt : " + decrypt_gap)

The content of the decrypt_gap variable, which contains completely
useless data, is assigned to the decrypt variable.
decrypt = decrypt_gap

2.2.3 Show Text Layer
In this layer, completely useless data is converted into useful data
and useless data and helps to maintain relative protection for the
data.

Figure 10 - Show Text Layer

The content of the decrypt variable, which contains completely useless data, is set in the MyData

variable.

MyData=decrypt

The content of the MyData variable contains completely useless data, but using the split

function, the set of words will be placed in the MyDataList variable and will contain a set of

words.

MyDataList=MyData.split(" ")

The ElementCounter variable counts words while processing completely useless data, the first

for loop scrolls the list of MyDataList words, and one unit is added to the ElementCounter

variable for each word selected. The second for loop for the length of the dictionary of the first

replacement words, if the word in the useless data list is equal to the data list of the first

dictionary and the word count using the ElementCounter variable is less than the length of the

MyDataList variable of the list type. Using word quantification, the useful data is selected from

the first dictionary and the selected word is placed in the choice variable in the list of useful data,

Then, by using the choice variable, the action of replacing the useless data is done, and in fact,

the useful data has been replaced.

ElementCounter=-1

for element in MyDataList:

 ElementCounter=ElementCounter+1

 for i in range(0,len(MyDictionaryPosition2_1)):

 Figure 10: Show Text Layer

The content of the decrypt variable, which contains completely
useless data, is set in the MyData variable.

MyData=decrypt

The content of the MyData variable contains completely useless
data, but using the split function, the set of words will be placed in
the MyDataList variable and will contain a set of words.

MyDataList=MyData.split(" ")

The ElementCounter variable counts words while processing
completely useless data, the first for loop scrolls the list of
MyDataList words, and one unit is added to the ElementCounter
variable for each word selected. The second for loop for the length
of the dictionary of the first replacement words, if the word in the
useless data list is equal to the data list of the first dictionary and

Volume 5 | Issue 1 |10Adv Mach Lear Art Inte, 2024

the word count using the ElementCounter variable is less than the
length of the MyDataList variable of the list type. Using word
quantification, the useful data is selected from the first dictionary
and the selected word is placed in the choice variable in the list
of useful data, Then, by using the choice variable, the action of
replacing the useless data is done, and in fact, the useful data has
been replaced.

ElementCounter=-1
for element in MyDataList:
 ElementCounter=ElementCounter+1
 for i in range(0,len(MyDictionaryPosition2_1)):
 if element == MyDictionaryPosition2_1[i] and
ElementCounter<len(MyDataList):
 choice = MyDictionaryPosition1_1[i]
 MyDataList[ElementCounter] = choice
 break

In the continuation of the codes of this layer, the next block of
codes is repeated with the same procedure, but instead of that, the
length of the second dictionary variable and the position variable
of the second dictionary are taken into account, and using the i
variable, the words are replaced in the MyDataList variable, as in
the previous block. Each time after the replacement, the inner for
loop is broken and the jump to the outer for loop is performed.

ElementCounter=-1
for element in MyDataList:
 ElementCounter=ElementCounter+1
 for i in range(0,len(MyDictionaryPosition2_2)):
 if element == MyDictionaryPosition2_2[i] and
ElementCounter<len(MyDataList):
 choice = MyDictionaryPosition1_2[i]
 MyDataList[ElementCounter] = choice
 break

It is clear and clear that according to the two loops, the third

dictionary variable and the third variables of the dictionary position
also navigate the list of useful data and useless data, and the action
of replacing nouns, subjects, adverbs of time, adverbs of place, etc.,
using the ElementCounter variable for The MyDataList variable
is handled by the choice variable. The next dictionaries, fourth,
fifth, and up to the tenth dictionaries perform the replacement of
useless data, and these replacements make completely useless data
become useful data and useless data.

ElementCounter=-1
for element in MyDataList:
 ElementCounter=ElementCounter+1
 for i in range(0,len(MyDictionaryPosition2_3)):
 if element == MyDictionaryPosition2_3[i] and
ElementCounter<len(MyDataList):
 choice = MyDictionaryPosition1_3[i]
 MyDataList[ElementCounter] = choice
 break

The for loop navigation for the variable MyDataList is to show
the conversion of useful data and useless data, and in this way,
the string of useful data and useless data is placed in the source
variable.

source=""
for element in MyDataList:
 source = source + element + " "

According to Figure 10, finally, it is displayed in the source
variable, which contains the string of useful data and useless data,
using the print function.

print(" Text : " + source)

2.2.4 Delete Gap Text Layer
In this layer, useful data and useless data are converted into
completely useful data and the algorithm ends.

 if element == MyDictionaryPosition2_3[i] and ElementCounter<len(MyDataList):

 choice = MyDictionaryPosition1_3[i]

 MyDataList[ElementCounter] = choice

 break

The for loop navigation for the variable MyDataList is to show the conversion of useful data and

useless data, and in this way, the string of useful data and useless data is placed in the source

variable.

source=""

for element in MyDataList:

 source = source + element + " "

According to Figure 10, finally, it is displayed in the source variable, which contains the string of

useful data and useless data, using the print function.

print(" Text : " + source)

2.2.4 Delete Gap Text Layer

In this layer, useful data and useless data are converted into completely useful data and the

algorithm ends.

Figure 11 - DELETE GAP TEXT LAYER

Figure 11: DELETE GAP TEXT LAYER

Using the split function from the source variable, the parts of the
sentences are separated using the character and the list of these
sentences is placed in the MyDataList2 variable.

MyDataList2=source.split(",")

The source variable takes a null value.

Volume 5 | Issue 1 |11Adv Mach Lear Art Inte, 2024

source=””

By using the source variable and the length of the MyDataList2
variable and by traversing the MyDataList2 variable using the for
loop, the sentences are combined and pasted together. The last
sentence, which is considered useless data, will be removed from
the useful data, and the source variable will contain only useful
data.

for i in range(0,len(MyDataList2)-1):
 source = source + MyDataList2[i] + ","

By using the \b character, a letter at the end of the sentence, i.e. the
character, is removed, and then the characters ... are added to the
end of the sentence, quite useful data.

source = source +"\b"
source = source +"..."

And the source variable is set in the decrypt_correct_receive_

message variable and the data decryption is done completely.

decrypt_correct_receive_message=source

The amount of completely useful data can be received in the
network platform and the message of the variable decrypt_correct_
receive_message is displayed in red.

print(colorama.Fore.RED+" Receive Message : "+ decrypt_
correct_receive_message)

The algorithm ends here and all the steps are done successfully, the
output of this layer is shown in (Figure 11).

2.3 Keys List
As you can see in Part A and Part B in Figure 12, the list of random
keys for data encryption and decryption as well as the position list
and the list of useful words and useless words are displayed, and
with this algorithm, the success of encryption and the success of
decryption It is guaranteed.

print(colorama.Fore.RED+" Receive Message : "+ decrypt_correct_receive_message)

The algorithm ends here and all the steps are done successfully, the output of this layer is shown

in (Figure 11).

2.3 Keys List

As you can see in Part A and Part B in Figure 12, the list of random keys for data encryption and

decryption as well as the position list and the list of useful words and useless words are

displayed, and with this algorithm, the success of encryption and the success of decryption It is

guaranteed.

Part: A Part: A

Volume 5 | Issue 1 |12Adv Mach Lear Art Inte, 2024

Copyright: ©2024 Ahmad Karami Bukani. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

Part: B

Figure 12 – Keys List for Encryption & Decryption

3. Conclusions

Although this algorithm has memory overheads and occupies additional memory for more data,

this algorithm guarantees that the data is encrypted or decrypted in different layers, and this

encryption and decryption is done in depth.

This algorithm is an example that can be extended and more complex or complete versions

published by others in the future, this algorithm guarantees that if the encrypted text information

Figure 12: Keys List for Encryption & Decryption

3. Conclusions
Although this algorithm has memory overheads and occupies
additional memory for more data, this algorithm guarantees that
the data is encrypted or decrypted in different layers, and this
encryption and decryption is done in depth.

This algorithm is an example that can be extended and more
complex or complete versions published by others in the future,
this algorithm guarantees that if the encrypted text information or
the decrypted text information falls into the hands of hackers or
subversive or terrorist organizations, they will not be able to access
correct information, and if hackers access, misleading textual data

or misleading encryption or misleading decryption will fall into
the hands of subversive organizations or terrorists.

To access the output code and video of this algorithm, you can
refer to the appendix of the article.

References
1.	 Tanenbaum, A. S. (2003). Computer networks. Pearson

Education India.
2.	 Neapolitan, R. (2003). Fundamentals of Algorithms Using

C++ Pseudocode.
3.	 Python.

https://books.google.co.in/books?hl=en&lr=&id=adEk2EbvY98C&oi=fnd&pg=PA1&dq=Computer+Networks,+Andrew+S.+Tanenbaum,+Fourth+Edition,+Prentice-Hall,+2003&ots=CuRij_tryr&sig=QwBmTzKhmR03wpab0S8DJO6fyvs&redir_esc=y#v=onepage&q=Computer%20Networks%2C%20Andrew%20S.%20Tanenbaum%2C%20Fourth%20Edition%2C%20Prentice-Hall%2C%202003&f=false
https://books.google.co.in/books?hl=en&lr=&id=adEk2EbvY98C&oi=fnd&pg=PA1&dq=Computer+Networks,+Andrew+S.+Tanenbaum,+Fourth+Edition,+Prentice-Hall,+2003&ots=CuRij_tryr&sig=QwBmTzKhmR03wpab0S8DJO6fyvs&redir_esc=y#v=onepage&q=Computer%20Networks%2C%20Andrew%20S.%20Tanenbaum%2C%20Fourth%20Edition%2C%20Prentice-Hall%2C%202003&f=false
https://dl.ebooksworld.ir/motoman/JBL.Foundations.Of.Algorithms.5th.Edition.www.EBooksWorld.ir.pdf
https://dl.ebooksworld.ir/motoman/JBL.Foundations.Of.Algorithms.5th.Edition.www.EBooksWorld.ir.pdf
https://www.python.org/

