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Abstract 
Background: Lisinopril is a drug used to lower blood pressure by blocking the angiotensin-converting enzyme (ACE). 
It measures the response of myeloid inflammation to bone marrow stem cells. L-asparaginase is a chemotherapeutic 
agent used to treat acute lymphoblastic leukemia (ALL) by increasing the genotoxicity of bone marrow stem cells. The 
purpose of this study was to find out the effect of Lisinopril on the genotoxicity of L-asparaginase (ASNase) in bone 
marrow cells.

Materials and Methods: 60 Syrian hamster males’ are divided into three groups. The first group was treated with Lis-
inopril 10 mg / kg / day for 14 days. The second group was injected with L-asparaginase 3000 IU / kg. The third group 
was treated with Lisinopril for 14 days following the intraperitoneal injection of L-asparaginase (ASNase) at the end 
of day 13. Genotoxicity was assessed by calculating the micronucleus (MN) percentage and the mitotic index (MI).

Results and Discussions: ASNase significantly increased genotoxicity by increasing% MN and lowering MI. When 
lisinopril was taken at 10 mg / kg / day, no significant effect was observed. However, a significant decrease in genotoxic 
effects was observed when mice received Lisinopril injected with 3000 IU / kg ASNase compared with the group treated 
with ASNase only. This result is shown by reducing% MN and increasing MI.
Conclusion: The use of Lisinopril in the treatment of high blood pressure and its cancer treatment agent, L-asparagi-
nase, was found to lower its genotoxicity in bone marrow cells.

Keywords: Lisinopril, L-asparaginase, Angiotensin-Converting Enzyme, Genotoxicity, Stem Cells, Bone Marrow, Mitotic Index and 
Mononucleosis.
Introduction
Lisinopril is one of the drugs used to treat high blood pressure. It 
is an angiotensin-converting enzymes (ACE) inhibitor. Lisinopril 
works by preventing the conversion of angiotensin I (ANG 
I) into angiotensin II (ANG II) which is considered a powerful 
vasoconstrictor. It stimulates aldosterone production thus reducing 
sodium release in the gut. Lisinopril lowers hypotension by 
decreasing the absorption of sodium and potassium by the kidneys 
[1-2]. ACE inhibitors usually target stem cells. They correct the 
inflammatory response of myeloid cells and myeloid precursor 
in their final location [3]. In tissue culture, ANG II causes cell 
cycle arrest that leads to cellular hypertrophy [4]. This may be that 
ANGII causes DNA damage caused by a significant increase in 
DNA strand breaks [5].

Numerous studies have been linked to high blood pressure and 
cancer and have found a high rate of cancer deaths in patients with 
high blood pressure and a link between an increased risk of kidney 
cancer and high blood pressure [6-8].

Complex reorganization of DNA patterns and mitotic defects are 
factors associated with multiple carcinomas and DNA double-
strand break, which poses a significant risk of genomic instability 
[9-11]. In the present study Micronuclei (MN) and Mitotic Index 
(MI) were used as indicators of DNA instability and mitotic 
abnormalities. MN is a biological marker commonly used to 
identify DNA damage to radiation and chemical reactions [12]. 
Micronuclei are tiny nuclear bodies containing DNA that have 



Int J Clin Med Edu Res 2022 Volume 1 | Issue 5 |146

been separated from the main nucleus [13]. They are produced in 
acentric fragments, left untreated following DNA damage, or on 
dormant chromosomes during mitosis. MN nuclear envelopes are 
fragile compared to those of the main nucleus, leading to increased 
chances of tearing and DNA release into the cytosol [14, 15].

On the other hand, MI (the percentage of cell division in 
metaphase) provides a good signal for optimal cell proliferation 
and a description of the solid state of cell division and its relation 
to cancer progression, which can worsen the condition and spread 
to others body parts [16].
 
L-asparaginase is an enzyme that can make asparagine into aspartic 
acid and ammonia. It is used to treat lymphoblastic leukemia, as 
these cells use asparagine for survival and this enzyme lowers 
them leading to an increase in genotoxic effects [17]. Tumor cells 
cannot synthesize these amino acids; therefore, tumor cells are 
killed by L-asparagine deficiency. Deterioration of L-asparagine 
causes cell cycle arrest in the G1 stage and increases apoptosis, all 
leading to cell death [18]. As a result, bone marrow compression 
is caused by inhibition of normal stem cell secretion caused by 
L-asparaginase [19]. L-asparaginase also induces micronucleus 
formation in normal cell lines and tumor and causes genotoxic 
effects and DNA breaks. According to the above, the use of 
L-asparaginase increases genotoxicity by creating micronuclei and 
cell division. The aim of the present study was to investigate the 
effect of lisinopril on the genotoxicity produced by L-asparaginase 
in normal bone marrow cells.

Materials and methods
Laboratory animals
Sixty Syrian hamster males’ mice were purchased from a private 
laboratory that supplied laboratory animals for research purposes 
in Damascus, Syria. They were housed under a light / dark cycle 
of 12h at a temperature of 24 ± 1 ° C with free food and reverse-
osmosis water. Mice were divided into five groups (12 mice per 
group).
All mice in both groups were killed 14 days later and bone marrow 
transplants were performed. The bone marrow was removed from 
the bones by wishing using phosphate buffer saline.

Mice used in the study were divided into the following groups and 
mice were housed for 14 days without treatment.
1- Control group
2- Group I: Wrong control group
 Mice in this group provided drinking water containing 0.1% of 
alcohol without further treatment for 14 days [20]. Alcohol increases 
the dissolution of Lisinoprol in water and this concentration has no 
effect on stem cell function (20).
3- Group II: Lisinopril
 Mice were treated with Lisinopril using 10 mg tablets, 
manufactured by AstraZeneca, UK. Tablets dissolved in 0.1% 

ethanol water as reported by Rafael-Fortney et al . [20]. Water 
bottles are changed three times a week. Mice were measured and 
the amount of water used was recorded to calculate the average 
dose of Lisinopril, which was found to be 10 mg / kg / day; a dose 
with an active dose similar to that previously reported [20].
4. Group III: L-asparaginase
A container containing 10000 IU L-asparaginase (Fehlandtstr, 
Germany). Untreated mice were incubated for 14 days and injected 
intraperitoneally with L-asparaginase 3000 IU / kg at the end of 
day 13 [21].
5. Group IV: Treatment of Lisinopril and L-asparaginase
Mice treated with Lisinopril at 10mg / kg / day for 14 days and at 
the end of day 13 were injected intraperitoneally with 3000 IU / 
kg ASNase.
C. Genotoxicity assay:
To determine the percentage of MI and MN, five slides of bone 
marrow cells were repaired and 12000 cells were tested per mouse.
1- Mitotic index assay:
Percentage of MI was calculated according to the method of Allen 
et al, 1977 [22]. The percentage of cell division in metaphase is 
calculated using the following calculation.
                                  Number of metaphase cells
Mitotic Index (%) = [-------------------------------------- x 100
                                      Total number of cells counted

Micronucleus Test
Bone marrow was extracted using inactive plasma, as previously 
described by Schmid, 1975 [23]. Percentage of MN is calculated 
as follows:
                                             Number of micronuclei
Micronucleus Index (%) = [------------------------------------ X 100
                                               Total number of cells counted

Mathematical Analysis
The mathematical package of version 24 social science (SPSS 24) 
was used to analyze the data. Continuous variables are presented 
as a standard deviation and different variables are presented as 
numbers and percentages. An independent Chi-square was used to 
examine the significance of the relationship between the different 
variants. One-way ANOVA has been used is to examine the 
significant differences between schools and variables. The p < 0.05 
values were considered significant.

Results and Discussion
The total number of cells tested in each test group was 12000 
(12x1000cells). MI and MN school numbers and their percentages 
are given in Table 1. There are no significant values of MI (p = 
0.09) and MN (p = 0.07) and their percentages are reflected in both 
controls.
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Table 1: Shows Reliability and Validity Coefficients of the Four Scales
Scale Items Reliability Validity

1 Organizational Behavior 8 0.66 0.81
2 Organizational Trust 6 0.88 0.94
3 Organizational Commitment 10 0.74 0.81
4 Job Motivation 9 0.89 0.94

aNo Significant difference when compared with control group 
(p<0.05)
bSignificant difference when compared with control group (p<0.05)
cSignificant difference when compared with group injected 
ASNase (p<0.05)

When mice were treated with Lisinopril of 10 mg/kg/day for 14 
days, an insignificant decrease in the percentage of MN (p=0.057) 
and an insignificant increase in the percentage of MI (p=0.06) 
were obtained when compared to the control groups. Perversely, 
a significant increase in the percentage of MN (p=0.007) and a 
significant decrease in MI (p=0.009) were observed when mice 
were injected with ASNase 3000 IU/kg at the end of the 13th 
day. However, when mice treated with Lisinopril for 14 -days 
and injected with ASNase at the end of the 13th day a significant 
decrease in MN (p=0.03) and a significant increase in MI (p=0.01) 
were seen as compared with group given ASNase alone.

The chemical and physical changes of DNA lead to DNA 
damages, which affect its infrastructure and lead to losing its 
function. Distinct forms of DNA damages can be produced by 
a variety of exogenous and endogenous factors including free 
radicals, radiation, chemicals, and topological changes [24]. 
Reactive oxygen species (ROS) have been reported to directly 
induce other forms of DNA damage through oxidizing nucleoside 
as well [25]. Chemotherapy drugs also increase ROS levels, which 
contribute to genotoxicity [26]. Genotoxicity and cytotoxicity 
can be produced by MN induction [27]. Therefore, MN assay is 
widely used to study the clastogenic and aneugenic potentials of 
chemicals and other agents that cause DNA damage, as it gives 
a good image of the genotoxicity that occurs [28]. Accordingly, 
MN assay is employed as a very suitable test to measure genotoxic 
potential in human peripheral blood lymphocytes [29]. This assay 
is considered a specific measurement of genotoxicity for many 
mutagens and carcinogens as well.  It is worth noting, however, 
that MN formation is associated with the defects and losses of 
genetic material and can be used together with MI to enhance the 
results obtained, especially when studying genotoxicity in blood 
cells [30].

Solvent containing 0.1% ethanol water did not show any effect on 
the MN and MI formation rate as clearly shown in Table 1. The 
absence of any genotoxic effect of this concentration of alcohol is 
consistent with the results reported by Rafael-Fortney et al. [20].

Lisinopril insignificantly decreased genotoxicity through 
decreasing MN and increasing MI compared with the control 
group, as shown in Table 1. The changes in these values of MN 

and MI are worthy considering because the mice appeared in a 
normal condition as if they were not treated with any substance. 
This insignificant reduction in genotoxicity could be attributed to 
that Lisinopril scavenges free radicals that have the ability to cause 
great damage to the DNA [24].

L-Asparaginase induced highly significant genotoxicity 
via increasing MN and decreasing MI, as noted in Table 1. 
L-Asparaginase is known to induce DNA damage and abnormality 
in the cell cycle, which is manifested by cell cycle arrest and 
DNA breaks. Moreover, L-Asparaginase can induce micronucleus 
formation in normal cells and increase DNA breaks [17]. These 
DNA damages degrade the level of l-asparagine in the cell 
membrane leading to depletion of its concentration followed by 
protein dysfunction and cells death [31]. It is worth mentioning 
that the process of converting asparagine into aspartic acid and 
ammonia by L- asparaginase is accompanied by an increase in 
oxidation levels and a decrease in the reduction state [32]. This 
oxidation state may increase ROS level and induce DNA damage 
[25-26]. 

When mice treated with Lisinopril for 14 -days and injected 
intraperitoneally with ASNase at end of the 13th day, a significant 
reduction in genotoxicity of L- asparaginase was observed, as 
given in Table 1.  Significant decrease of MN and increase of MI 
can clearly be noticed when compared with the group that received 
L- asparaginase alone. This reduction in genotoxicity may be due 
to the capability of Lisinopril to inhibit Angiotensin converting 
enzyme (ACE). It is well documented that ACE can increase DNA 
degradation and affects its stability; this is why ANGI is converted 
to ANGII, which induces DNA damage caused by an increase in 
DNA breaks [5].

Furthermore, Lisinopril decreases mitotic errors, which are 
hallmarks of most carcinoma and DNA double strand breaks. 
Usually, high blood pressure is caused by an increase in the ANGII. 
Lisinopril inhibits ANGII production and protects bone marrow 
stem cells. On the other hand, ACE inhibition can protect myeloid 
precursor cells from ANGII high concentration which may justify 
the good relationship between kidney cancer and hypertension 
[7-8]. This may also suggest that reducing blood pressure by 
Lisinopril could lessen the possibility of having cancer. 

Conclusion 
 Lisinopril can reduce genotoxicity induced by L- asparaginase in 
bone marrow stem cells. This effect may imply that using Lisinopril 
to reduce high blood pressure in patients with acute lymphoblastic 
leukemia who are receiving treatment with L-Asparaginase can 
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compromise the effectiveness of their cancer therapy.
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