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Introduction
In human population epidemiology studies play an important role 
to understand the disease in human population. Often the work of 
mathematical epidemiology consists of model building, estimation of 
parameters and investigation of the sensitivity of models to change 
in the parameters and numerical simulations. Epidemiologists use 
mathematical models to understand previous outbreaks of diseases 
and to better understand the dynamics of how infections spread 
through populations [1]. The research of this kind helps to understand 
the ratio of disease spread in the population and to control their 
parameters [2, 3]. These types of diseased models are often called 
infectious diseases (i.e. the disease which transferred from one 
person to another person). Measles, rubella, chicken pox, mumps, 
aids and gonorrhea syphilis are the examples of infectious disease 
[4, 5]. Rubella virus is highly infectious illness which is also known 
as morbilli or measles. The virus can be found in the mucus of 
the throat, nose of an infected adult and child. Measles symptoms 
caused by Rubeola virus always included fever, coryza (runny nose), 
conjunctivitis and at least one of the three Cs-coughs. Symptoms 
appear after the initial infection about 9-11 days [6]. Complications 
of measles are fairly common but the patients have weak immune 
system are more likely to be worse such as those with HIV/AIDS 
or leukemia and those with vitamin deficiency. Healthy children 
over the age of 5 are less likely to have complications than adults 
over the age of 20. It is the first and worst eruptive fever occurs 
during childhood [7, 8].

The NSFD schemes preserve main properties of the differential 
counterparts, such as positivity, monotonicity, periodicity, stability, 
and some other invariant including energy and geometrical shapes. It 

should be emphasized that NSFD schemes can preserve all properties 
of continuous models for any discretization parameters. The discrete 
models with these properties are called dynamically consistent [9]. 
For the last two decades NSFD methods have attracted attention 
for many researchers and achieved significant results [10]. The 
property of stability of the set of equilibria of differential equation 
is one of these results because it plays the essential role in the 
study of asymptotical behavior of the solutions of the differential 
equations [11-13]. The construction of differences schemes, which 
preserve the stability of the equilibrium points, is important in 
numerical simulation of differential equations. There are many works 
concerning the elementary stable schemes. The typical results are for 
general dynamical systems and for other specific systems [14, 15].

Mathematical Model
W.O Kermack and A.G.MecKendric are those persons who are 
inventor of the diseases models, and they played an important role in 
Mathematical epidemiology. In perposed model population is divided 
into three groups which denoted by S (susceptible), I (infected) and 
R (recovered). The class S of susceptible is increased by birth at a 
rate πN where both rate π and death rate μ are same, so susceptible is 
increased by μN. It is decreased by infection following contacts with 
infected individuals I at rate α. This class is decreased by recovery 
from infection at a rate γ and dimensioned by natural death rate μ. 
This generate a class R of individuals who have complete protection 
against disease [16]. The flow chart of the model is representing 
in (figure 1).

Figure 1: flow chart of model
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Following are the equations of the system:

                                                                                           (1)

                                                                                           (2)

                                                                                           (3)

Where μ ,α and γ represents the per capita removal rate, transitivity 
rate ant per capita recovery rate respectively.
where N=S+I+R
With initial conditions
S(0)=990, I(0) = 10, R(0)=0

Qualitative Analysis of the Model 
For equilibrium we have, 

This state that the population is disease free that is infection dies 
out of the population and is such that
0=μN-αSI-μS                        
0=αSI-(γ+μ)I                        
0=γI-μR                    

By simplifying the above equations we get disease free equilibrium 
denoted by E0 i.e E0= (N,0,0) and the endemic equilibrium point 
denoted by E1 i.e

Reproductive number
Consider the jacobian matrix J.

Since the jacobian matrix is J = F - V where

We know that K = FV-1 and using the relations |K-λI| = 0 for the 
Eigen values, which represents reproductive number R0 i.e

Sensitivity analysis of R0
The sensitivity of R0 is as follows

It can be seen that R0 is most sensitive to change of its parameter, 
here R0 is increasing with α, N and decreasing with μ, γ. In other 
words it found that the sensitivity analysis shows that prevention 
is better than to control the disease.

Stability at the Endemic Equilibrium
To examine the local stability of endemic equilibrium E1  we evaluate 
the jocabian matrix at 

The Matrix which is called Jacobian is of the form:

We have the stability result that shows that our model is locally 
asymptotically stable

Theorem 1:
The endemic equilibrium E1 is locally asymptotically stable for 
R0>1 otherwise unstable.
Proof:

E1 is locally asymptotically stable if Re (λ)<0 where λ can be 
calculated from the relation |J-λI| = 0 i.e

The equation which is given above is called characteristic equation. 
By substituting the values of endemic equilibrium E1 we get values 
of λ as follows

Real parts are                                                      if  λi < 0.Therefore, since 
all the Eigen values are negative. So E1 is locally asymptotically 
stable. This proves the proposition.
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Nonstandard finite difference (NSFD) scheme 
Nonstandard difference (NSFD) methods for the numerical 
integration of differential equations had their genesis in a paper 
published in 1989 [17-20]. The basic rules to construct such schemes 
and their application to specific nonlinear equations appear in a 
variety of publications [9, 14]. In recent years, NSFD discrete models 
have been constructed and or tested for a wide range on nonlinear 
dynamical systems [21]. In this section, we design the NSFD scheme 
that replicates the dynamics of continuous model (1)-(3). Let Yk=(Sk 
, Ik , Rk)

t denoted the approximation of X(tk) where tk=k∆t, with kϵN, 
h=∆t >0 be a step size then 
                                                                                                 (4)

                                                                                                 (5) 

                                                                                                 (6)

Which is the purposed NSFD scheme for the given model, where

The discrete method (4-6) is indeed an NSFD scheme because it is 
constructed according to Mickens rules [17] formalized as follows 
in [16].

Rule 1
The standard denominator h = Ø(t) of the discrete derivatives is 
replaced by the complex denominator function in Equation (35) 
which satisfies the asymptotic relation
                                     
                                       Ø(h) = h + 0 (h2 )

Note that the denominator function Ø is expected to better capture 
the dynamics of the continuous model through the presence of the 
underlying parameters γ,μ. In fact, exact schemes for a wide range 
of dynamical systems involve such complex denominator functions 
[17-19].
	
Rule 2
Non-linear terms of the right hand side of equation (1)-(3) are 
approximated in a non-local way. For instance, we have

Analysis of the Scheme
Theorem 2: The NSFD scheme (4)-(18) is a dynamical system on 
the biological feasible domain κ of the continuous model (1)-(3).

Proof: First we prove the positivity of the scheme (16)-(18). It is 
to show that the NSFD scheme (16)-(18) takes the explicit form3

                                                                                                 (7)

                                                                                                 (8)

                                                                                                 (9)

Thus Sk+1≥ 0, Ik+1 ≥ 0, Rk+1 ≥0, whenever the discrete variables 
are non-negative at the previous iteration. It remains to prove the 
positive invariance of κ. 

Adding equation 4 & 5 we get

Therefore 

                             H k+1 ≤  N, whenever  Hk  ≤ N 	  
 
The priori bounds for Rk+1 follow readily from the fact that Rk+1 and 
Ik+1 are less than or equal to Hk+1. This complete the proof.

Numerical Simulations 
The mathematical analysis of epidemic measles SIR model with 
non-linear incidence has been presented. To observe the effects of 
the parameters using in this dynamics measles SIR model (1)-(3), 
conclude several numerical simulations with parameters values 
α=0.003, μ=0.05, γ=1 ,N=1000 are given in [16]. Hence R0=2.85 and 
unique equilibrium point E1=(350 ,30.95,619.04) is asymptotically 
stable, this result enhance Theorem 1. Figure 1-2 shows the 
convergence solution using NSFD scheme at h=10 and h=1 for 
true equilibrium point. It can be easily seen that by labeled points 
in figure 1-2, which shows fast convergence by decreasing the value 
ofh. Figure 1-2 shows that the model presented gradually approaches 
the steady states for different values of h. In figure 1-2 clearly shows 
that infected individuals at latent period are diagnosed and treated, 
the number of susceptible individuals decreases significantly, the 
infected decreases steadily while the recovered increased steadily. 

Figure 2: Numerical solutions for susceptible, infected individual, 
recovered population in a time t for Ø = Ø(h), where h=10

Figure 3: Numerical solutions for susceptible, infected individual, 
recovered population in a time t for Ø = Ø(h). h = 1

Conclusion
This paper deals with the mathematical model of measles disease to 
investigate the occurrence of diseases in population. The analysis 
of the system is well established. Qualitative analysis and stability 
analysis of the model according to equilibrium point are discussed 
and where it is locally asymptotically stable forR_0>1. The 
nonstandard finite difference scheme is dynamically consistent, 



Int J Diabetes Metab Disord, 2018 Volume 3 | Issue 3 | 4 of 4

easy to implement and show a good agreement to control the spread 
of measles disease for long period of time. Finally we presented 
the numerical simulation and verified all the analytical results 
numerically by using nonstandard finite difference scheme to reduce 
infected rate for endemic equilibrium. While this conclusion may 
have practical implications for the control of measles infections, 
more realistic models that are specific for measles infection.
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