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Abstract
In essence, smart grids are electrical networks that transmit and distribute electricity in a reliable, effective manner using 
information and communication technology (ICT). Trust and security are of the utmost importance. False data injection 
(FDI) attacks are one of the most serious new security problems, and they can drastically raise the price of the energy dis-
tribution process. However, rather than smart grid infrastructures, the majority of current research focuses on FDI defenses 
for conventional electricity networks. By utilizing spatial-temporal correlations between grid components, we create an 
effective and real-time technique to identify FDI attacks in smart grids called a deep learning framework. We show that the 
suggested method offers an accurate and dependable solution using realistic simulations based on the smart grid compared 
to the benchmarked techniques.
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Introduction
The needs of the present cannot be satisfied by the conventional 
power grid infrastructure from the 20th century. New technolo-
gies are constantly being implemented, such as electric vehicles 
(EVs), intelligent inverters, and generators powered by renew-
able energy [1]. They add bi-lateral power flow, alter power sys-
tem operation paradigms, and produce a dynamic operational 
structure that was not initially intended [2]. Power systems now 
have additional measurement, communication, and control ca-
pabilities to address these problems. This allows for the acqui-
sition of more precise information regarding the grid's current 
state and the making of decisions in quasi-real time [3]. The 
Smart Grid (SG)  is the aggregate name for this contemporary 
power system configuration. The term "SG idea" is used to de-
scribe a variety of things, including "A network where all con-
sumers may reach efficient, affordable, accessible, and reliable 
energy by using control and communication technology" [4]. As 
an alternative, SG is a system that is adaptable, dependable, and 
interactive, and enables the integration and optimization of re-
newable energy sources [5, 6].

The National Institute of Standards and Technology (NIST) 
provides a broad perspective and categorizes SGs in addition 
to these categories. Additionally, the application characteristics 
and SG infrastructure requirements are separated into many lev-
els [7].

1.	 Application
2.	 Security
3.	 Communication
4.	 Control of Power
5.	 Power system

It is expected that some cybersecurity flaws will become more 
common than others given the large geographic range of SGs 
and the volume of devices they host. All businesses with ener-
gy-providing authorities concur that security breaches in such 
essential infrastructure will have serious repercussions [8]. SG 
can be viewed as an electrical system that employs cyber secure 
information and communication technologies, according to [9]. 
The system aims to combine a computational intelligence sys-
tem with energy transmission, generation, and distribution sub-
stations that is safe, dependable, and effective. The requirements 
of SG communication systems are tough for current cyberse-
curity solutions to satisfy. It is clear from recent research that 
traditional cybersecurity techniques and algorithms have typi-
cally been explored, and there have been independent studies on 
power and communication concerning cyber dangers. Tradition-
al risks are now taken into account in risk assessments if there 
are cybersecurity risks in vital systems like the communication 
infrastructure for the power system. However, the security of SG 
communication systems is a topic that is still in its infancy; there 
aren't many academic or experimental investigations available 
[10].
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Since Liu et al. suggested that an attacker can use FDIAs against 
state estimation to avoid being discovered by the estimation re-
sidual-based bad data detection (BDD) methods, a lot of studies 
are being done to investigate the building and defensive mecha-
nism of FDIAs [11]. While current work in AC transmission sys-
tems has emerged as a result of their reactively correct analytical 
models, some research on FDIA construction has been reported 
in various application situations in DC power systems. A thor-
ough study of FDIA construction techniques was carried out by 
[12, 14]. On the other hand, numerous results utilizing various 
statistical and probabilistic techniques, such as sparse optimiza-
tion claimed to fight against FDIA in DC system state estima-
tion. However, because these techniques depend on knowledge 
of measurement data distributions and system operation states, 
they may become obsolete and ineffectual if these prerequisites 
change [15, 16].

The rapid development of advanced metering infrastructure, 
which produces a great amount of data, has led to an increase in 
the application of machine learning and data-driven methodol-
ogies to improve the operation of power systems [17, 18]. This 
is a result of their strong capacity for information extraction and 
adaptable extension. To discover FDIAs in transmission sys-
tems, several learning-based techniques, including deep belief 
networks (DBN) support vector machines (SVM) and deep neu-
ral networks (DNN) have been developed [19-22]. However, AC 
power system models are extensively used by real-world utili-
ties, and algorithms that are performed on DC power systems, 
including overlook the sophistication of unobservable attacks 
or the complexity of power system complexity. When dealing 
with unobservable attacks in AC transmission systems uses 
wavelet transform and DNN approaches to address this short-
coming by examining the state dynamics to capture the discrep-
ancy between abnormal and normal observations. The method 
in  nevertheless imposes a heavy computing cost and calls for 
measurements with labels from continuous samplings that may 
not be accessible in actual operation. It is crucial to remember 
that the majority of supervised machine learning techniques for 
detecting FDIAs, such as those in evaluate anomalous data that 
differs in some manner from the labeled data used for training.

The datasets obtained from actual cyber-physical systems are 
only partially labeled due to high labeling expenses [23]. In 
practice, unlabeled data are typically much larger in scale than 
labeled data, and the supervised learning approach hardly ever 
employs this enormous unlabeled data. This absence results in 
severe data loss, which ultimately leads to the failure of the pro-
cess.
The main contributions of the proposed method are listed:
• This paper presents a novel learning-based FDIA detection al-
gorithm for unobservable attacks or outliers that bypass the con-
ventional BDD mechanism. This method enables the detection 
of these attacks within milliseconds and thus can be implement-
ed online.
• In contrast to supervised learning, the proposed semisupervised 
detection method only requires a limited number of labeled data 
to detect the attacked measurement data. Specifically, with as 
few as 1,000 labeled training data, this method self-learns with 
an accurate detection ability.

• The proposed algorithm is fully data-driven and thus extensible 
and does not depend on the information of network topology and 
parameters in distribution systems.
• We benched the proposed deep learning framework called 
DLLD with other FDIA detection techniques.

In other words, the proposed method can use the few to detect 
the many, thanks to the generative models.
The remainder of this article is organized as follows. We briefly 
introduce the conventional state estimation method and its vul-
nerability against FDIA in Section II. In Section III, we illus-
trate the architecture and implementation issues of the proposed 
FDIA locational detection mechanism. The simulation results 
with parameter sensitivity are presented in Section IV. Finally, 
this article is concluded in Section V.

State Estimation and FDIA
The master's program known as the energy management system 
(EMS) is at the core of the power system. EMS is a high-per-
formance critical application that oversees all of the electric 
grid monitoring control and optimization activities it receives 
redundant readings from numerous phasor measurement units 
(PMUs) and SCADA devices field instrument transformers 
are being sampled for current, voltage, and power flow. When 
compared to standard  SCADA devices the PMUs sample at a 
rate of 30/60/120/240 messages per second with a substantially 
higher degree of accuracy and are thus widely used by utilities 
to improve real-time monitoring [24, 25]. A local phasor data 
concentrator (PDC) at the substation level receives data packets 
from PMUs and synchronizes and aligns them. Before sending a 
report to a data concentrator at the main control center, regional 
PDCs collect and assemble data from station-level PDCs. Figure 
1 displays the architecture of the PMU-PDC.

Figure 1: The architecture of the PMU-PDC
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where e is a m x 1 vector of random Gaussian errors, z is a m x 1 
vector of measurements, H is the m x n Jacobian matrix, x is then 
a n x 1 vector of state variables, and m,n is the total number of 
measurements and states, respectively. The following presump-
tions are true for DC state estimation: (1) the voltage magnitudes 
at all buses in the network are assumed to be constant and equal 
to 1 per unit (p.u. ); (2) the shunt susceptances and series re-
sistances of transmission lines are neglected; (3) the bus angle 
differences between two buses are thought to be very small; (4) 
reactive power is entirely neglected, and (5) state variables only 
consist of bus voltage angles.

The measurement residual arising from the difference between 
measured and estimated states is defined as,

The state variables can be estimated by minimizing the objec-
tive function J,

Straightforwardly for DC state estimation, the states are esti-
mated as,

AC State Estimation    
The oversimplified DC state estimation model might not be suit-
able for real-time power system state estimation since measure-
ments in power systems are related to their states by a non-linear 
function. The link between the state variables and the states can 
be stated as (5) for AC state estimation[26].

where z is an m x 1 vector of measurements from SCADA me-
ters and PMUs, h is a set of non-linear power flow functions 
relating measurements to state variables, x is an n x 1 vector of 
state variables, e is an m x 1 vector of random Gaussian errors, 
and m, n is a total number of measurements and states respec-
tively [26].

The non-linear functions h(x) which relate the measurement to 
the state variables comprise active and reactive power injections 
at the bus, active and reactive power flow in transmission lines, 
and branch real and imaginary currents. The real and reactive 
power injection at bus m is,

The real and reactive power flow from bus m to bus n is,

The real and imaginary branch current between bus m and bus 
n is,

The weighted least squares method is used to minimize the mea-
surement residuals to accurately estimate the states with the ob-
jective function defined as [27].

where R is the measurement error covariance matrix. The es-
timates of the state are found by an iterative process like the 
Newton-Raphson method,

where H is the measurement Jacobian matrix and is defined as 
H = (∂h(x))/∂x ,

In matrix H, the first and the sixth columns are related to bus 
voltage magnitude and angle-system states which are directly 
measured by the PMUs, and hence have an identity relation with 
the estimated states.

Bad Data Detection
Bad PMU and SCADA data can naturally occur as the result 
of instrumentation errors, thermal degradation of equipment, or 
random electrical noise. One of the most popular techniques for 
detecting erroneous measurements is comparing the L2 (norm) 
of the measurement residuals to a detection threshold    For DC 
state estimation, no bad data is detected when[27].

Similarly, for AC state estimation, no bad data is detected 
when,
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In general, the threshold  is determined and obtained from the cumulative chi-square distribution for m - n de-

grees of freedom [26]. Residuals that satisfy (16) and (17) are assumed to be free of bad data while those that 

fail to satisfy this condition are excluded from the data set for subsequent calculations. The discarded bad data is 

often substituted by pseudo-measurements obtained from historical values to ensure that SE converges [27]. 

 

False Data Injection Attack 

The objective of FDIA is to mislead the system operator into considering a compromised state estimate 

 ̂      as a valid estimation, where c  0 is the deviation of the power system state. To achieve this, an at-

tacker changes the received measurements at the control center to  ̂      where a = (              is the 

compromised attack vector. Then, the observation model can be described as 
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and thus the attacker can bypass the BDD. Accordingly, the power system operator would mistake x+c for a 

valid estimate, and thus an error vector c is introduced. 

 

In this article, we develop a new data-driven mechanism that can detect the location of FDIA in a SCADA sys-

tem. It is formulated as a multilabel classification problem that determines whether each meter measurement is 

compromised. The problem is formulated and solved in Section III.   
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In general, the threshold   is determined and obtained from the 
cumulative chi-square distribution for m - n degrees of free-
dom [26]. Residuals that satisfy (16) and (17) are assumed to 
be free of bad data while those that fail to satisfy this condition 
are excluded from the data set for subsequent calculations. The 
discarded bad data is often substituted by pseudo-measurements 
obtained from historical values to ensure that SE converges [27].

False Data Injection Attack
The objective of FDIA is to mislead the system operator into 
considering a compromised state estimate x̂ = x + c as a valid es-
timation, where c ≠ 0 is the deviation of the power system state. 
To achieve this, an attacker changes the received measurements 
at the control center to ẑ = z + a where a = (a1,a2,…,an  )

T is the 
compromised attack vector. Then, the observation model can be 
described as

In general, an unstructured a is likely to be identified by the tra-
ditional BDD (16). To circumvent the BDD mechanism, the at-
tack vector should be structured, such as a = Hc. In such cases, 
the l2 -norm of the residual is unchanged

and thus the attacker can bypass the BDD. Accordingly, the 
power system operator would mistake x+c for a valid estimate, 
and thus an error vector c is introduced.

In this article, we develop a new data-driven mechanism that can 
detect the location of FDIA in a SCADA system. It is formulated 
as a multilabel classification problem that determines whether 
each meter measurement is compromised. The problem is for-
mulated and solved in Section III. 

Proposed Detection Mechanism

Figure 2: The Proposed Detection Mechanism

To identify unobservable FDIAs in three-phase distribution sys-
tems, this section suggests a deep learning detection method; 
Fig.2 gives a summary of the suggested detection mechanism. 
We formulate the detection problem as a binary classification 
problem with the detection indicator ω for unobservable FDIAs 
or outliers represented by the attack vector a.

The measurement vector z, which includes three-phase voltages, 
currents, and powers, is gathered as the input of the deep learn-
ing measurement classifier-based detection algorithm. Only a 
small portion of them are labeled with ω = 0 or 1.

Locational Detection
Mathematically, classifying the entire measurement vector, x, 
into the categories of 1) exists or 2) not is equivalent to detecting 
the presence of FDIA. From the standpoint of machine learning, 
this is a single-label classification issue. To pinpoint the attack's 
location, we must divide each component of the measurement 
vector, xi, into two groups. The intricacy and broad applicability 
of multilabel classification continue to be of significant interest 
to researchers, despite the decade-long success of deep learning 
algorithms in single-label classification.

To solve the issue of BDD circumvention, we painstakingly cre-
ated the CNN structure in Fig. 3 to extract and characterize the 
relevant data information and generate successful multi-label 
classification results. In addition, we will assess how well our 
numerical trials compare to the other techniques for label ap-
proaches.

Figure 3: The Convolution Neural Net-work Achitecture

Proposed Mechanism
Fig. 2 shows the suggested FDIA locational detection mecha-
nism. The suggested system collects data from a series of dis-
crete sampling time instances, i.e. the times when the tradition-
al state estimation occurs. This demonstrates that the proposed 
mechanism does not rely on any previous statistical assump-
tions, together with the fact that the CNN classifier's training 
procedure simply needs measurements and ground-truth labels 
(e.g., H). The real-time measurement input data first passes via 
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the BDD detector at sampling time instance t. As stated in (17), 
BDD determines the measurement residuals l2norm and com-
pares it to a predefined threshold τ to determine the quality of the 
measurement data. If R ≥ τ2 , BDD classifies the present meter 
as compromised or noisy. Because of their high residual values, 
sampling and communication mistakes as well as potential un-
structured FDIA can be efficiently detected in this way [28]. A 
CNN-based multilabel classifier will identify the presence and 
position of structured FDIAs by examining the data's inconsis-
tency and co-occurrence dependency if the measurement data 
pass the BDD.

The CNN theory proposes using CNN to separate and examine 
the high-dimensional contextual highlights of the FDIA. 

1). Data: We refer to the data (also known as the estimations), 
ground truth labels (also known as meter classes), and yields 
(also known as CNN period t classifications) as mt=(m1

t,…,mn
t ), 

ωt=(ω1
t,…,ωn

t ), and, ωt=(ω1
t,…,ωn

t) respectively. For instance, 
because there are 180 measurements inside the IEEE 118-bus 
system, thus in our simulation settings in section IV, the input 
and output data dimensions for the IEEE 118-bus system adhere 
to the actual parameters. According to the following rule, the 
ground-truth label of meter i at time t is determined:

CNN's output is a continuous range of values between 0 and 
1. In line with this, the classifier establishes a discrimination 
threshold to categorize the outputs as either 0 or 1. One can 
change the discrimination threshold to make it higher or lower 
the responsiveness to application variables. The discriminating 
threshold in this article is set to 0.5, as is customary unless oth-
erwise stated.

2. Architecture: Figure 3 depicts the deep CNN's architectural 
design for FDIA locational identification. There are numerous 
convolutional layers, a flattening layer, a fully linked hidden lay-
er, and an output layer in addition to the input layer,n integers re-
flecting the n measurements at each time occurrence are fed into 
the input layer. Windows in the input layer are subjected to each 
filter in the first convolutional layer, which produces features by 
convolution, batch normalization, and nonlinear transformation 
with the rectified linear unit (ReLU) activation function [29]. 
The first convolutional layer's feature mappings c1, j were creat-
ed from the input data z and are expressed as:

Here, h1,j is the jth convolution kernel, which is essentially a 
1-D filter, and b1,j is the proper scalar bias. The convolution 
output is all given a deep learning representation known as a 
scalar bias, or b1,j, in equation (22). The equation states that the 
convolution operation is denoted by * and the output at point i 
is defined as

Here, l1,j, and × denote the length of the filter h1,j, and the inner 
product operation, respectively. The hidden features generated 
by filters in the (q − 1) convolutional layer are then used as the 
input to the qth convolutional layer and processed similarly. The 
output can be written as

where cq,j is the jth feature map at the qth convolutional layer. 
The number of filters in each layer and the depth of convolution-
al layers are hyperparameters, which will be further discussed 
in the simulation section. The extracted features learned by the 
last convolutional layer, i.e., the qmax th convolutional layer, are 
merged into one single vector in the flattened layer and fed into 
a fully connected hidden layer (also known as the dense layer) 
with the activation function ReLU. That is

where cF,j, wF, and bF denote the feature maps, weights, and 
biases of the flattened layer, respectively. The nodes in the dense 
layer are also fully connected to n nodes in the output layer. The 
sigmoid function is applied to the nodes in the output layer to 
classify the type of each measurement. For meter j at time t, the 
final multilabel classification result ωj

t is

where wD and bD denote the weights and biases of the dense lay-
er, respectively.

First point: In addition to the convolutional layers, pooling and 
dropout layers are significant elements of standard CNN archi-
tectures. However, for the reasons listed below, they are absent 
from our design. First, downsampling high-dimensional com-
putations, such as 2-D and 3-D convolution computations, typ-
ically uses pooling layers. All of the convolutional layers in our 
challenge are 1-D convolutional layers, whose processing on a 
GPU is highly effective. Second, one of the primary methods 
used to achieve nonlinear mapping in deep CNN has historically 
been layer pooling.

But the well-liked ReLU activation function also adds nonlin-
earity to deep models. Because pooling layers may reject es-
sential details, rendering up pooling layers occasionally results 
in even higher performance [30]. Third, a common method for 
preventing overfitting is a dropout. The suggested DLLD has al-
ready used the mini-batch overfitting control mechanism, which 
purposefully adds enough noise to each gradient update.

Indeed, we investigated the effectiveness of pooling and dropout 
and discovered that there is no performance benefit.

Training
Before classifying the measurements with the proposed FDIA 
locational detection system, we must first tune the learning pa-
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rameters, specifically the filters h, weights w, and biases b, in 
each layer. Training is the process of tuning parameters to iden-
tify the best parameters that match the input and output in the 
training data.

•	 Mini-Batch and Cross-Validation: We train the network 
using a mini-batch gradient descent technique to speed 
convergence rates and avoid overfitting. Each mini-batch 
in our simulations has 200 data instances. The gradient is 
computed for each iteration using a fixed number of training 
samples, or a mini-batch, that are randomly chosen from the 
training set.

•	 We split the data from each batch into two sets, as is typical 
in machine learning: a training set that contains 7/10 of the 
data and a validation set that contains 3/10 of the data. The 
Adam optimizer is then used to do fitting with a learning 
rate of 0.001 and patience of 5.

•	 Loss Function: To determine the best set of learning param-
eters, we incorporate a loss function that calculates the dif-
ference between each mini-actual batch's output and ground 
truth output. The proposed CNN's loss function is select-
ed as the cross-entropy function to incorporate multi-label 
classification into our system. More specifically, the cross 
entropy loss function over a mini-batch θ= {t1,…,t200 }  is 
defined as follows:

We can use the Adam [29] optimizer to determine the best set-
tings given a mini-batch if the loss function is explicitly stated.

Experiments 
In this section, we briefly describe the design of the software, 
and the architecture of the deep learning model employed to 
build a classification model to identify secure data and attacked 
data.

Datasets
In 118-bus power grids, the suggested FDIA locational detector 
is evaluated in this section. You may get the grid topologies from 
MATPOWER [31]. These are the power topologies, summed up 
as follows:
IEEE118-bus system:

• The number of transmission lines and buses is 186 lines and 
118 buses, respectively.
• The number of total meters measurements is 180, of which 110 
are flow measurements and 70 are injected measurements.
• The training and testing datasets are adopted from [32] and can 
be summarized as follows:
• The network topology is used to index meter readings. First, 
starting with k = 1, the line flow meters are indexed as follows:
• The policy goes back to the first stage if k > 118, at which 
point the indexing procedure is ended, and the unindexed meters 

connecting bus k are indexed and set to k = k + 1. The injection 
meters are then labeled using the bus index in ascending order 
after continuing the index from line meters [32].
• By artificially boosting the loads on each bus, 110,000 sets of 
pristine data are generated by extending the real-world data. The 
generated loads are normally distributed, with a mean equal to 
the base load and a standard deviation equal to one-sixth of the 
base load's size [33, 34].
• Ten thousand sets of loads are randomly chosen to implement 
the FDIA:
• For each attack, a random selection of target state variables to 
compromise is made. Target state variables in the 118-bus power 
system have a discrete uniform (2, 10) distribution, in the power 
system.
• The transmission line impedance is set following and the in-
jected data's L2-norm (the anticipated value of the attack vec-
tor's Euclidean norm) ranges from 1 to 5. Both compromised and 
uncompromised data were added with a noise standard deviation 
of 0.2 [35].
• The min-cut algorithm in is used to construct a stealthy FDIA 
for each collection of loads and their unique target state vari-
ables.
• Finally, to take into consideration the noise in measurement, 
a random Gaussian noise with a standard deviation of 0.2 was 
added in both compromised and uncompromised data.
• Following the creation of the training data, the aforementioned 
procedure is carried out again ten times to produce ten separate 
sets of testing data, which naturally introduces differences in 
validation.

Training and Testing Datasets
Under each level of attack, the dataset is prepared as follows 
[32]

• For training, input measurements and training labels are gen-
erated with a dimension of 110,000 x B. The training data are 
composed of 100, 000 samples with no attack vector and 10,000 
instances under attack.
• For testing, a testing set is generated with a dimension of 10,000 
x B for measurements and labels. Input measurements are com-
posed of 5000 uncompromised samples and 5000 compromised 
samples [33]. Here, B represents the number of meter measure-
ments of the IEEE test case, i.e., 180 for the IEEE 118-bus Sys-
tem. Over all of the test datasets, the results of all trials have been 
averaged.

Implementation Details
The Proposed Approach LSTM is trained using the Keras pack-
age with Tensorflow as the backend[37] using two filters, each 
with a kernel size of 5 x 1 and 3 x 1, causal padding, and a RELU 
activation function, then it is classified using multiple labels us-
ing a layer that is added after the multi-label classification layer 
[36]. Additionally, with a 100-step period, validation happens ev-
ery 100 steps. There will be 100 batches in total. With an initial 
learning rate of 0.001 and patience of 5, the Adam optimizer is 
used to fit the data. The loss function for prediction is the cus-
tom cross-entropy. We contrast the suggested method with cut-
ting-edge techniques, such as support vector machines (SVM), 
light gradient boosting machines (LightGBM), and identification 
methods based on deep learning-based identification (DLBI) [19]. 
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employed to build a classification model to identify secure data and attacked data. 
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• DLBI: To extract high-dimensional temporal information, He 
et al.[19] presented a conditional deep belief network (CDBN) 
architecture. By examining the temporal attack patterns exhib-
ited by the real-time measurement data from the geographically 
dispersed meters, the CDBN can identify the FDIA.
• SVM: The maximum margin classifier SVM creates one or 
more hyperplanes in a high-dimensional space. Since achieving 
top performance in various categorization issues (such as text 
spam and photos) in the 1990s, it has found widespread use.
• Microsoft has made available LightGBM a gradient-boost-
ing framework that employs methods of tree-based learning. 
Many of the top machine learning competition solutions used 
LightGBM [39].
• To fine-tune the hyperparameters, we select the model that pro-
vides the greatest F1-Score to the validation data (such as the 
number of convolutional layers and filters).

Locational Detection Performance
Performance Evaluation Metrics
For the accuracy and recall of the projected outcomes in our 
simulation, we use labels and the F1-score as performance mea-
sures. The following is a description of the precision and recall:

where TP, FP, and FN are, respectively, the likelihood that the 
detector will classify a site with compromised meters as com-
promised, a location with uncompromised meters as compro-
mised, and a location with uncompromised meters as uncom-
promised [32].

We first assess the proposed technique with the injection data l2  
norm at 2 and the measurement noise's standard deviation at 0.2. 
We contrast the suggested mechanism not just with cutting-edge 
approaches like SVM and LightGBM, but also with a variant 
in which multi-labels (multilayer perceptron-MLPs) are used in 
place of CNNs in our location and detection process. This leads 
to the names DLLD and MLP-DLLD for the suggested method 
and MLP alternative, respectively. In particular, the MLP's hid-
den layer count ranges from 2 to 6, and the number of units is 
chosen using the F1-Score with the highest value. We employ 
identical data sets for the training and testing phases of all four 
algorithms to ensure a fair comparison.

IEEE 118 – Bus System
This section depicts the performance metrics defined above. 

Figure 4: ROC Curve For The Proposed Mechanism

The outputs of the CNN are continuous between [0,1] and are 
quantized to 0 or 1 by a discriminating threshold. We set the 
discrimination threshold in figure 4 above at 0.4. The tradeoff 
between TPR and FPR is often determined by the value of the 
threshold. A lower threshold specifically causes a greater TPR 
and a lower FPR. In Fig. 4, where the FPR against TPR is plotted 
when the threshold ranges from 0 to 1, we examine the tradeoff. 
The area under the ROC (AUC) is frequently used as a perfor-
mance assessment of the discriminatory capability to show rel-
ative tradeoffs between TPR and FPR [38]. The area between 
the FPR, TPR, x-axis, and y-axis is what is meant by AUC in 
this context. AUC close to 1 indicates a good model, which has 
a high level of separability. The model assumes that a 1 is a 1 
and a 0 is a 0. A model predicates 0s as 1s and 1s as 0s when its 
AUC is close to 0. The proposed mechanism's AUC is close to 
1, which illustrates its outstanding discriminatory capacity, as 
seen in the figure.

Robustness
In Fig. 5, we assess the suggested mechanism's resistance to the 
attacker's aggression and the noise present in the data-collecting 
environment. We specifically assess the suggested mechanism in 
the manner described below.

•	 Aggression: We altered the injection's L2 norm from 1 to 5, 
while fixing the standard deviation to be 0.2.

•	 Noise: The injection's L2 norm is fixed at 2, and the stan-
dard deviation ranges from 0.1 to 0.5.

Presence-Detection Performance
We take a step back and look into how effective the suggested 
approach is at spotting the presence of attacks. Specifically, if 
ωi

t = 0, for all i = 1,..., n, we consider the power system to be 
secure or that no attacks have occurred. Otherwise, it is assumed 
that the power system has been infiltrated or that there are ongo-
ing attacks. We examine the suggested mechanism's FDIA pres-
ence-detection performance in Fig. 6. We compare the detection

represents the number of meter measurements of the IEEE test case, i.e., 180 for the IEEE 118-bus System. Over 

all of the test datasets, the results of all trials have been averaged. 
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accuracy in particular to the following two benchmarks:
1.	 SVM and 
2.	 DLBI. We only plot the accuracy in the IEEE 118-bus sys-

tem for simplicity.

Figure 5: Accuracy versus standard deviation of noise

Figure 6: Accuracy versus l2-norm injection data

We compare the detection accuracy attained by DLBI, SVM, 
MLP-DLLD, and DLLD in Fig. 5 and Fig.6. Overall, the sug-
gested detection approach obtains the maximum detection accu-
racy when compared to DLBI and SVM algorithms. Additional-
ly, we can see that the detection accuracy of the DLBI and SVM 
approaches declines as the noise level rises, which is consistent 
with the finding in Fig. 6.

The suggested approach accomplishes the best detection accura-
cy, as expected. The accuracy of detection for all four approach-
es rises as the noise standard deviation does. Before we conclude 
this section, we want to underline that the suggested multilabel 
classification method increases the accuracy of presence de-
tection even if it is intended to find FDIA locations. This is so 
that multilabel classification can account for the meter measure-
ments' co-occurrence dependency and inconsistency.

Conclusion 
In this article, we have developed a BDD-CNN architecture as a 
multilabel classifier and structured the locational detection prob-
lem of FDIA as a multilabel classification problem. Real-time 
measurement data quality is estimated using the standard BDD 
detector, which is also used to filter out low-quality data. The 
CNN will record the co-occurrence dependency and incon-
sistent behavior that FDIA has established. The mechanism is 
cost-friendly in that it is built on the existing BDD, requires no 
modification of the current BDD system, and is model-free in 
that the architecture is independent of any assumed attack mod-
el. Additionally, the detection process runs in just a few hundred 
microseconds on a standard home computer. To show the via-
bility, we have also conducted in-depth simulations in the IEEE 
118-bus power systems.

In particular, we have demonstrated that, in a variety of noise and 
attack settings, DLLD can carry out locational detection for the 
entire bus system. We have also shown that the presence-detec-
tion accuracy may be further enhanced using multilabel classifi-
cation formulation, and as a result, the resulting presence-detec-
tion accuracy is superior to that of the leading-edge benchmarks.
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