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Abstract
There are two standard approaches to the problem of wideband signal channelization, namely those based upon the use of a 
digital down conversion (DDC) unit and those based upon the use of a polyphase discrete Fourier transform (DFT) or PDFT. 
There are clear advantages and disadvantages with both approaches, however, in that: a) with the DDC approach, optimal 
performance and flexibility is obtained but at the expense of a heavy computational load; whereas b) with the PDFT approach, 
a sub optimal and less flexible performance is obtained but at a greatly reduced computational cost through the exploitation 
of a suitably defined fast Fourier transform (FFT). An intelligent channelizer is described herein which possesses a flexible 
design able to exploit the merits of both approaches for the case where the input data comprises real-valued samples. The two 
key design features are: a) optimal setting of the PDFT parameters to ensure that for every signal of interest there is at least
one channel completely containing it; and b) simultaneous computation of two real-data FFTs: the first as required by the 
PDFT and the second, a high-resolution FFT with high update rate, able to accurately direct the application of the low-rate 
DDC units to the relevant PDFT channel outputs. 
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1. Introduction

The traditional approach to wideband signal channelization has
been to use a bank of digital down conversion (DDC) units, with
each channel being produced individually via a DDC unit which
digitally down-converts the signal to base-band, constrains the
bandwidth with a digital filter, and then reduces the sampling rate
by an amount commensurate with the reduction in bandwidth
[1]. This approach is costly, however, in that multiple channels
are produced via replication of the DDC unit, so that there is
no commonality of processing and therefore no possibility of
computational savings being made. This is particularly relevant
when the number of channels is large, as each DDC unit typically
requires one/two finite impulse response (FIR) low pass filters
for real-valued/complex-valued data and one stored period of a

complex sinusoid sampled at the input sampling frequency [2,3]. 

With such a situation a polyphase decomposition may be 
beneficially used to enable the bank of DDC units, as illustrated in 
Fig. 1a for the case of a single channel, to be simply transformed 
into an alternative filter bank structure, namely the polyphase 
discrete Fourier transform (DFT) or PDFT of Fig. 1b, whereby 
large numbers of channels may be simultaneously produced at 
computationally acceptable levels. The major disadvantage of 
the approach is that the spacing between the fixed-bandwidth 
channels is uniform so that even relatively narrow bandwidth 
signals may potentially be spread across more than one channel. 
This makes the subsequent tasks of signal extraction and 
demodulation extremely difficult to achieve [1,4,5]. 



Int Volume 1 | Issue 1 |61  J Media Net, 2023 

Filter 

input 
data 

cos  
“I‟ channel output Filter 

“Q‟ channel output 

z-1 

H0(z) ↓ N 

z-1 

H1 (z) ↓ N 

z-1 

HN−1(z) ↓ N 

N
–P

oi
nt

 D
is

cr
et

e 
Fo

ur
ie

r T
ra

ns
fo

rm
 

sin 

a) DDC-based channelization scheme for single channel
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b) PDFT-based channelization scheme for multiple channels

Figure 1: conventional solutions to channelization problem

Thus, there are clear advantages and disadvantages with 
both approaches in that: a) with the DDC approach, optimal 
performance and flexibility is obtained but at the expense of a 
heavy computational load that increases linearly with the number 
of signals of interest; whereas b) with the PDFT approach, a 
sub-optimal and less flexible performance is obtained but at 
a greatly reduced computational cost through the exploitation 
of a suitably defined fast Fourier transform (FFT) module. A 
solution that could exploit the merits of both approaches would 
therefore be very attractive, offering the promise of a hardware 

implementation with a low size, weight and power (SWAP) 
requirement. 

 
The research presented in this paper looks at how to address 
this problem, with Section 2 outlining how the two approaches 
might be suitably combined and Section 3 discussing how to 
incorporate into the design a high-resolution FFT with ×4 
update rate which might be subsequently used for directing 
the application of the low-rate DDC units to the relevant 
PDFT channel outputs. Section 4 discusses how pipelining of 
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the various interconnecting components of the channelization 
scheme might be achieved, in a synchronised fashion, with the 
associated complexity requirements being addressed in Section 
5 and a summary and conclusions in Section 6. An Appendix is 
also provided which discusses, in some depth, how a long FFT 
– for the provision of high-resolution FFT outputs – might be
constructed from the piecing together of shorter FFTs.

2.Optimal Combination of Standard Channelization Techniques
To see how the two standard approaches to wideband signal
channelization might be optimally combined a modular design
is considered which comprises, essentially, four distinct sub- 
systems: a) a PDFT module; b) a high-resolution FFT module
yielding ×4 update rate; c) a DDC module comprising a bank
of DDC units; and d) a signal parameter estimation (SPE)
module which identifies those PDFT channels that contain the
signals of interest, in their entirety, together with estimates of the
relevant signal parameters – namely, the centre frequencies and
bandwidths. Thus, the bank of DDC units, when provided with
suitable guidance by the SPE module, operates directly upon the
outputs of the PDFT module.

Suppose firstly that the maximum signal bandwidth of interest is 
denoted by ‘WS’ and that for the operation of the PDFT module 
the channel bandwidth, ‘WC’, is set to twice this value, so that 

 
   WC = 2×WS,  (1) 

with the channel spacing, ‘WD’, being set to 

WD = WS (2) 

and the channel over sampling factor, ‘OSF’, to 

OSF = 2    (3) 

so that the channel sampling frequency, ‘FS’, is given by 

FS = 2×OSF×WS = 4×WS,  (4) 

and for every signal of interest there will be at least one channel 
within which the signal is completely contained. This is clearly 
evident from examination of Fig. 2a, since as soon as the signal 
spectrum is shifted past the boundary of one channel, so it 
moves completely into its overlapping neighbour – the prototype 
channel filtering requirement is as defined in Fig. 2b. 
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Figure 2: description of channel bandwidth, spacing and filtering requirements
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Thus, if some means is available for determining the frequency 
locations of those channels that completely contain the signals 
of interest, then a DDC unit – and possibly a sampling rate 
converter (SRC) – could be assigned to each such channel 
to enable the signal to be optimally extracted once the centre 
frequency and bandwidth of the signal have been estimated via 
some suitable means. This ability to capture entire signals via 
individual channels through the appropriate setting of the PDFT 
parameters is a key feature of the proposed design as it facilitates 
the intelligent use of the DDC module. 

Note that this idea may be extended so that if, for example, 
there were two distinct signal bandwidths of interest, where one 
bandwidth is considerably smaller than the other, then the two 
bandwidths could be catered for by the cascading together of two 
PDFT systems. With the first system, the defining parameters 
could be chosen to ensure that each wide bandwidth signal is 
completely contained by at least one of the resulting wide PDFT 
channels. With the second system – which operates upon the 
channelized outputs of the first system – the defining parameters 
could be similarly chosen to ensure that each narrow bandwidth 
signal is completely contained by at least one of the resulting 
narrow PDFT channels. 

Another key feature of the proposed design, as described in Fig. 
3, is that if a complex-data FFT module is used for the processing 
of the polyphase filtered data, then it may also be used for the 
processing of the windowed input data – given that both types 
of data are assumed to be real-valued – which may subsequently 
be used by the SPE module. The two data sets may be processed 
simultaneously through the suitable packing/unpacking of the 
FFT input/output complex-valued data array, with the PDFT 
path being referred to in Fig. 3 as ‘Path A’ and the windowed 
FFT path as ‘Path B’. The ‘Path B’ data, after unpacking, is thus 
fed to the SPE module which typically carries out averaging, 
thresholding and interpolation of the squared amplitudes of 
the spectrum to determine the addresses of those channels that 
contain the signals of interest [6]. For those particular channels, 
the unpacked ‘Path A’ data is then passed to the SPE module 
and a parameter estimation routine executed which involves the 
channelized data being spectrum analysed to yield estimates of 
the centre frequency and bandwidth of those signals residing 
within the channels. This enables the DDC units to be used for 
optimally extracting the signals of interest from the targeted 
channels and SRC units to be used, if required, to adjust the 
output sampling rate from the DDC units to satisfy any future 
processing requirements. 
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Figure 3: hybrid channelization scheme exploiting low-resolution FFT module 
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Note that when the oversampling is achieved via overlapping of 
the input data segments , as is proposed, the application of the 
×4 oversampling factor requires that the input data segments be 
overlapped by a factor of 75% so that, from Fig. 3, only N/4 new 
samples are to be input to the PDFT input buffer between each 
update of the N branch polyphase filter. The undesirable phase 
effects produced by the oversampling – at least when achieved 
by this particular means – is straightforwardly accounted for by 
the data reordering stage that immediately follows the polyphase 
filtering [1]. 

3. Guidance of DDC Units via High-Resolution FFT
An alternative approach to the channelization scheme of Fig. 3
involves using the low-resolution windowed FFTs, as produced
for use by the SPE module, to instead construct a high-resolution
FFT, where the length of the longer FFT is taken to be a multiple
of the length of the shorter FFT such that the multiplying factor
and the length of the shorter FFT are relatively prime – this type
of factorization is referred to in the technical literature as the
Prime Factor Algorithm and its derivation discussed in some
detail in the Appendix [7]. The length of the FFT is chosen to
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facilitate the resolution of those signals possessing the minimum 
signal bandwidth of interest (and thus of all signals of interest). 
Referring to the scheme displayed in Fig. 4, the FFT processing 
may be partitioned into two distinct stages: a row-DFT stage, 

“ Row-DFT Stage” 
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which comprises ‘M’ FFTs each of length ‘N’; and a column- 
DFT stage, which comprises ‘N’ FFTs each of length ‘M’. The 
lengths ‘M’ and ‘N’ are assumed, for our purposes, to be such 
that 

“Column-DFT Stage” 

K input 
samples 

K output 
samples 

M 

Transform length: K = M × N where (M,N) = 1 

Figure 4: composite length FFT with relatively prime length factors 

N >> M,   (5) 

so that the M-point FFTs may be referred to as the ‘short’ FFTs 
and the N-point FFTs as the ‘long’ FFTs. The parameter ‘M’ 
is thus responsible for determining the increased resolving 
capability when compared to the original N-point low-resolution 
FFT scheme. 

The resulting channelization scheme is as shown in Fig. 5, 
whereby two real-valued FFT data sets are still processed 
simultaneously in the same way as before, but with segments 

of data now being fed into a suitably sized buffer until there are 
sufficient samples available for windowing and feeding to the 
complex-data FFT routine. Once the row-DFT output data sets 
have been produced by the FFT, they may be fed as input to 
the column-DFT stage which produces the high-resolution FFT 
outputs from which, after averaging and thresholding of the 
squared amplitudes, the signal centre frequency and bandwidth 
estimates may then be directly obtained. Interpolation could also 
be again used to enhance the accuracy of the centre frequency 
estimate yielded by the high resolution FFT. 
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Figure 5: hybrid channelization scheme exploiting high-resolution FFT module 

The short M-point FFTs required for the construction of the 
high-resolution FFT may be carried out in optimal fashion via 
one of Winograd’s short-DFT algorithms (which are, in turn, 
based upon the use of optimal fast circular convolution 
algorithms), with additional savings being potentially obtained 
by computing only those outputs that correspond to the non-
negative frequency components of the required composite 
length transform [8]. The structure of the optimal short-DFT 
algorithms – which may each be expressed in the form of a set 
of pre-weave additions, followed by a set of nested point-wise 
multiplications, followed by a set of post-weave additions – 
lends itself naturally to a pipelined implementation. 

Thus, the computational complexity of either version of the 
channelization scheme is kept to a minimum by using the PDFT 
module to produce a set of relatively wide overlapping channels 
that cover the entire frequency spectrum. The DDC module, 
comprising the bank of DDC units, is then applied to the outputs 
of a subset of the overlapping channels – namely those channels 
containing the signals of interest – so that the DDC units are 
applied only at the channel sampling frequency rather than the 
system sampling frequency. 

The high-resolution FFT technique described above – namely, 
the Prime Factor Algorithm – requires the lengths of the two 
FFT factors, ‘M’ and ‘N’, to be relatively prime. This simplifies 
the processing requirements in that the outputs from the row- 
DFT stage may be fed directly into the column-DFT stage 
without further modification. An alternative approach may be 

adopted, however, whereby there is no restriction on the relative 
lengths of the two FFT factors. The attraction of this approach – 
referred to as the Common Factor Algorithm (CFA) and whose 
derivation, like that of the PFA, is discussed in some detail in 
the Appendix – is that the length of the small M point FFTs may 
be arbitrarily chosen [9]. The drawback is that if the lengths of 
the two factors are not relatively prime, then the outputs from 
the row-DFT stage must first be modified via the application 
of appropriate pre-computed twiddle factors (accessed from a 
suitably defined look-up table (LUT)) before being fed to the 
column DFT stage [2,3]. 

4. Pipelined Operation of Hybrid Channelization Scheme
To facilitate the channelization for potentially large numbers
of channels, it is assumed that the proposed scheme is to be
implemented in a highly-parallel fashion that makes efficient use
of pipelining and single-instruction multiple-data (SIMD) multi
processing techniques [10]. The target hardware is assumed, for
purposes of illustration, to be a field programmable gate array
(FPGA) device such that each input sample may be read into its
buffer at the rate of one sample per clock cycle [11]. Then every
N/4 clock cycles – referred to hereafter as the update time – the
input data buffer to the PDFT module is updated with N/4 new
samples and the operation of the polyphase filtering – and all
subsequent processing – repeated.

 
Thus, this results in a timing constraint being imposed upon the 
operation of the proposed channelization scheme in that the time 
complexity of each sub-system must be such that the outputs can 
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be updated within just N/4 (or some multiple of for the case of 
the high resolution FFT) clock cycles. This means that each of 
the sub-systems must be broken down into components which, 
when suitably pipelined and synchronised, enable this to be 
achieved. 

4.1 Double Buffers and Processing Elements 
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The technique of double buffering will need to be utilized 
in several places to ensure that pipelined operation of the 
channelization scheme is achieved. The basic idea is that whilst 

one buffer is being updated with new data, the data from the 
other is being processed by the appropriate processing elements 
(PEs). When the buffer is completely refreshed each time with 
new data this is quite a straightforward task. When overlapping 
of the data is involved, however, a more complex scheme is 
required. To achieve this, new data and data from the buffer 
being processed are fed simultaneously into the buffer being 
updated and the operation of the two buffers alternated with the 
availability of each new set of data – see Fig. 6 for the case of 
the complex-data FFT. 
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Figure 6: operation of data buffers for input to complex-data FFT 

For such operation to be achieved, however, each buffer must be 
partitioned into the form of a memory bank – there will have to 
be at least four memories per bank for consistency with the 75% 
overlapping requirement – with each memory being typically 
made up from fast, dual-port random access memory (RAM) 
[11]. In this way, multiple samples may be read/written from/to 
the memory bank every clock cycle, with one read/write pair or 
two reads/writes from/to each memory, so that the data may be 
fed into the appropriate PEs at the required rate for processing 
to be maintained. 

A description of how the pipelining might be achieved is given 
in Figs. 7 and 8, with two levels of granularity being described 
for the PEs via the introduction of both course-grain processing 
elements (CPEs), as shown in Fig. 7, and fine-grain processing 
elements (FPEs), as shown in Fig. 8. An adequate timing margin 
will be sought, in each case, to allow for potential delays arising 
from the pipelined operation of the various interconnecting 
components. 

n+2 n+1 n+3 n 



Int Volume 1 | Issue 1 |67 

Filterbank 

 J Media Net, 2023 

CPE2 CPE1 

CPE4 

FFT DDCs 

CPE3 

CPE5 

FPE2 FPE1 FPE3 

FPE2 FPE1 FPE3 

FPE2 FPE1 FPE3 

FPE3 

FPE3 

FPE3 FPE2 FPE1 

FPE2 FPE1 

FPE2 FPE1 

memory  FFT-HR SPE 

Figure 7: coarse-grain pipelining of proposed channelization scheme 

CPE1 

Filtering Additions Additions 

CPE4 

Pre-Weave 
Additions 

 

Nested 
Multiplies 

Stage 1 

 

Stage 2 

 

Stage 3 

 

CPE2 

Stage 4 Stage 5 

Post-Weave 
Additions 

Butterflies Butterflies Butterflies Butterflies Butterflies 

Down 
Conversion Filtering 

CPE3 

Additions 

memory 

Figure 8: fine-grain pipelining of coarse-grain PEs required by channelization schemeA 

FPE1 

FPE1 FPE2 FPE3 FPE5 FPE4 

FPE2 FPE3 FPE5 FPE4 

FPES 

FPE 

FPES 



Int Volume 1 | Issue 1 |68 

4.2 Operation of Polyphase Filter bank 
The components catered for by CPE1, as illustrated in Fig. 8, 
make up the polyphase filter bank, which may be implemented 
in the fashion of Jones [12] but with eight (rather than two) 
short, highly-parallel branch filters – each typically requiring 
just four to six fast multipliers and executing within a single 
clock cycle – running in parallel where each is operating upon an 
appropriately defined subset of the input data stream that is 
contained within its own memory [11]. This enables a new set of 
polyphase filtering outputs to be produced every 

 TPFIRs = N / 8 + log2L (6) 
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clock cycles, where ‘L’ is the number of filter taps per branch, 
which is well within the allotted update time. A few stages of 
additions are required at the output of the short branch filters 
in order to complete the production of the filtered outputs. A 
double buffering scheme may be devised for the branch filters 
which would ensure that whilst one buffer is being updated with 
new data, the data from the other is being fed into and processed 
by the branch filters. The operation of the two buffers, each 
comprising a bank of eight memories – one memory for each 
branch filter – would need to alternate every N/4 clock cycles. 

4.3 Operation of Complex-Data FFT 
The components catered for by CPE2, as illustrated in Fig. 8, 
make up the complex-data FFT, which may be implemented as a 
computational pipeline where each stage of the pipeline, for the 
case of a radix-4 FFT, carries out the execution of N/4 butterflies 
[2,3]. The availability of two highly-parallel radix-4 butterfly 
processors running in parallel – each typically requiring 16 fast 
multipliers and executing within a single clock cycle – for each 
of the log4N stages of the FFT will thus enable a new output set 
to be produced every 

 TFFT = N / 8 (7) 

clock cycles, again well within the allotted update time. 
The complex-data FFT is illustrated in Fig. 8 by means of a 
1024-point radix-4 algorithm, so that five stages of butterflies 
are required for its pipelined computation. Double-buffered 
memory is placed between successive stages, with each buffer 
comprising a bank of eight memories to ensure that the butterfly 
processors can operate at the required speed. 

It should be noted that the overlapping of the input data segments 
to the polyphase filters results in an additional timing constraint 
in that for synchronisation of the two FFTs being simultaneously 
performed via the complex-data FFT – namely, that required 
by the PDFT module and that required by the row-DFT stage 
of the high-resolution FFT module – it is necessary that M×N 
windowed samples are made available to the FFT every M×N/4 
clock cycles. Given that it takes M×N clock cycles to move this 
amount of data into the buffer, it is necessary that the data stored 
by the two buffers (as required for double buffering) should also 
be 75% overlapped. 

This may be achieved with each buffer being partitioned into 
a bank of four memories, as already seen in Fig. 6, with the 
operation of the two buffers alternating every M×N/4 clock 
cycles. The entire set of M×N input samples must be available 
in the required buffer before the processing can begin, however, 
as each set of ‘N’ samples for input to a given large N-point FFT 
will come – according to the index mapping – from different 
parts of the data buffer. As a result of the overlapping of the 
input data, the high resolution FFT spectra are produced at four 
times that obtained with contiguous data sets, so that delays in 
detecting changes to the signal environment may be kept to a 
minimum. 

4.4 Operation of DDC Units 
The components catered for by CPE3, as illustrated in Fig. 8, 
make up the DDC module, where each unit is carried out in three 
(or more) stages with the first stage performing the frequency 
shifting of the signals of interest, the second stage the application 
of the filtering coefficients and the remaining stage(s) the 
summing of the results. Given that the channelization process 
reduces the sampling frequency out of the PDFT module by a 
factor of N/4, when compared to the initial system sampling 
frequency, the computational demands placed upon each DDC 
unit will not be great. In fact, for each N/4 new samples input to 
the PDFT module, there will be just one sample being input to 
each DDC unit that has been assigned to a PDFT channel. 

The situation is further simplified by noting that the sampling 
frequency is consistent with the maximum signal bandwidth 
of interest, so that for the case where the signal bandwidth is 
significantly less than the channel bandwidth, a further reduction 
in the sampling frequency out of the DDC unit may be obtained. 

4.5 Operation of Column-DFT Stage of High-Resolution 
FFT
The components catered for by CPE4, as illustrated in Fig. 8, 
make up the column-DFT stage of the high-resolution FFT, 
which involves the computation of ‘N’ short M-point FFTs. 
The entire set of M×N input samples must be available in the 
required buffer – containing the appropriate unpacked outputs 
from the complex-data FFT – before the processing can begin, 
however, as each set of ‘M’ samples for input to a given small 
M-point FFT will come – according to the index mapping – from
different parts of the data buffer.

The short M-point FFTs may be straightforwardly pipelined, 
however, with a small number of pre-weave addition stages 
being followed by a single nested point-wise multiplication 
stage which is in turn followed by a small number of post-weave 
addition stages. A single, maximally parallel implementation of 
the M-point FFT, able to produce all ‘M’ outputs within a single 
clock cycle, would enable a new set of column-DFT outputs to 
be produced every 

TFFT-HR = N + ‘pipeline length’ (8) 

clock cycles, which for M > 4 and N >> M, is within the allotted 
update time (for the high-resolution FFT) of M×N/4 clock 
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cycles. Double buffering is again used to enable one completed 
data set to be processed whilst the other is being updated with 
each buffer being partitioned into a bank of ‘M’ memories. 

4.6 Remaining Components 
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The remaining components, namely those of CPE5, carry out 
the additional tasks required by the SPE module concerning 
the centre frequency and bandwidth estimation of each signal 
of interest followed by the selection of the channels of interest 
– namely, those PDFT channels that contain in their entirety
the signals of interest. The algorithms required for carrying out
these functions, however, will not possess the regularity of those
based upon the FFT and the FIR filter, although one would not
expect the computational demands, in view of the comparatively
low channel sampling frequency, to be prohibitive.

5. Complexity Considerations
To assess the space complexity of the proposed channelization
scheme it is necessary to consider both the arithmetic requirement
and the memory requirement. This is now carried out, but only
for the main system components, as the additional complexity
associated with the low-rate SPE and DDC modules will be very
much dependent upon the algorithms used, the rate at which
the SPE information is to be updated and the number of signals
needing to be processed (and signal bandwidths catered for) by
the DDC module.

5.1 Arithmetic Requirement 
The arithmetic requirement is first assessed, at least in terms of 
fast multipliers, for the main system components. In order to 
meet the timing constraints discussed in the previous section, the 
polyphase filtering carried out by the PDFT module needs 

APDFT = 8×L (9) 

fast multipliers – note that a branch filter of length L = 4 has 
proved to be adequate for achieving good channel filtering 
performance, at least for the case of a 1024-branch PDFT, 
with respect to both the pass-band and stop-band regions. The 
complex-data FFT needs 

AFFT = 2×log4N×16 (10)

fast multipliers, whilst the column-DFT stage of the high- 
resolution FFT module, when implemented as a single short 
computational pipeline, needs 

AFFT-HR = AFFTM (11) 

fast multipliers, where ‘AFFTM’ is the number of fast multipliers 
required for the maximally parallel implementation of the short 
M point FFT. For the case where ‘M’ has a value of seven, for 
example, the corresponding 7- point complex-data FFT may 
be carried out at the cost of just 16 real multiplications so that 
‘AFFT-HR’ would also equate to 16 fast multipliers. 

The total arithmetic complexity, at least for the components 

described, may therefore be expressed as 

ATOT ≈ 32×log4N+AFFTM+8×L (12)

fast multipliers. 

5.2 Memory Requirement 
The memory requirement for the proposed channelization 
scheme, including that for the storage of pre-computed filter 
coefficients, twiddle factors and index mappings in suitably 
defined LUTs, may be broken down into three components: 

a) the pre-FFT processing will require a minimum storage, in
words, of:

– 2×N/4 for double buffering of new PDFT input data,
– N×L for internal PDFT data storage,
– 2×M×N for double buffering of high-resolution FFT

input data, 
– N×L for polyphase filter coefficients
– M×N for high-resolution FFT window coefficients;

b) the complex-data FFT processing, assuming for the purposes
of illustration a radix-4 algorithm, will require a minimum
storage, in words, of:

– 2×2×N for double buffering of low-resolution FFT
input data, 

– log4N×2×2×N words for internal multi-stage FFT
data storage, 

– 0.25×N for low-resolution FFT twiddle factors
– 2 × 2 × N for double buffering of low-resolution FFT

output data; 

c) the post-FFT processing will require a minimum storage, in
words, of:

– 2×2×M×N for double buffering of high-resolution
FFT input data, 

– M×N for high-resolution FFT input mapping,
– M×N for high-resolution FFT output mapping
– 2×M×N for double buffering of high-resolution FFT

output data. 

Thus, the total memory requirement, at least for the main 
components considered, may be expressed as 

 MTOT ≈ N×(2×L+11×M+9+ 4×log4N) (13)

words, this figure taking account of the double buffering 
requirements of the various interconnecting components needed 
for meeting the timing constraints discussed in the previous 
section. Note, however, that the two index mappings required 
for the high-resolution FFT module could also be generated ‘on- 
the-fly’ – rather than accessed via a LUT – as is usually done 
with the conventional digit-reversal indexing techniques used by 
the more familiar fixed-radix FFT algorithms [2,3]. 

 
5.3 Sizing for Large Hypothetical System 
Thus, for the case of a large channelization problem involving 
the generation of 512 wide bandwidth PDFT channels (i.e. for 
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N = 1024) and the construction of a 7K-point high-resolution 
FFT (i.e. for M = 7) for the guidance of the subsequent DDC 
units, the space complexity – apart from that required by the 
SPE and DDC modules – assuming a value for ‘L’ of 4, may be 
approximated by 

ATOT ≈ 208 (14) 

fast multipliers, for the arithmetic requirement, and 

MTOT ≈ 114 (15) 
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Kwords, for the memory requirement. With large systems such 
as this, the relatively low channel sampling frequency (which is 
just a small fraction of the initial system sampling frequency) 
suggests that a small amount of computing hardware could be 
shared over many channels – that is, shared by many DDC units 
– so as to minimize the requirement for additional resources by
the SPE and DDC modules.

6. Summary and Conclusions
There are two standard approaches to the problem of wideband
signal channelization, namely those based upon the use of a DDC
unit and those based upon the use of a PDFT. There are clear
advantages and disadvantages with both approaches, however,
in that: a) with the DDC approach, optimal performance and
flexibility is obtained but at the expense of a heavy computational
load; whereas b) with the PDFT approach, a sub-optimal and
less flexible performance is obtained but at a greatly reduced
computational cost through the exploitation of a suitably defined
FFT routine.

The research described in this paper has therefore sought to 
produce an intelligent channelizer which possesses a flexible 
design able to exploit the merits of both approaches for the case 
where the input data comprises real-valued samples. The two 
key design features have involved: a) the optimal setting of the 
PDFT parameters to ensure that for every signal of interest there 
is at least one channel within which the signal is completely 
contained; and b) the simultaneous computation of two real-data 
FFTs: the first as required by the PDFT and the second, a high- 
resolution FFT with ×4 update rate, that is able to accurately 
direct the application of the low-rate DDC units via the SPE 
module to the relevant PDFT channel outputs. 

The result is a hybrid system that is able to produce channelized 
signals to the same quality as would be obtained with a purely 
DDC-based system, but at a computational cost on a par with
a purely PDFT-based system. The reduced complexity offers
the promise, when implemented in hardware, of an attractive
resource-efficient solution with a low SWAP requirement.
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2 N -1 mod N1 

1N -1 mod N2 

Appendix
2-D Formulations of DFT
The mapping of one-dimensional (1-D) arrays into multi- 
dimensional (m-D) arrays provides the basis for most of the
existing FFT algorithms. These mappings need to be both

N2 t 2 ≡ 
& 

N1 t1 ≡ 

1 mod N1 

    (A11) 
1 mod N2. 

unique and cyclic in every dimension [13] to ensure that: 1) the
original DFT can be recovered in its correct form; and 2) the
correct periodicities are obtained for each of the small DFTs that
constitute the m-D form. Mappings will now be briefly described
for the conversion of a 1-D DFT to a separable 2-D DFT, as this
is the formulation of interest in this paper.

Consider firstly the index transformations given by the linear 
forms: 

This is a 2-D version of the Chinese Remainder Theorem (CRT) 
[14,15] and the mappings are therefore referred to hereafter as 
the CRT mappings. 

For case b), where N1 and N2 have common factors, the most 
basic forms which are periodic in both directions of the resulting 
2-D array are given by:

L1 = L4 = 1, L2 = N1 & L3 = N2      (A12) 

n ≡ [L1n1 +L2 n 2 ] mod N          (A1) 

k ≡ [L3 k1 +L4 k 2 ] mod N  (A2) 

n ≡ 
which results in 

[n1 + N1n 2 ] mod N  (A13) 

where “n” is the input index, “k” the output index, and the 
length of the data to be re-indexed is given by N = N1 × N2.To 

k ≡ [N2 k1 +k 2 ] mod N  (A14)

investigate the conditions on L1, L2, L3 and L4 for uniqueness to 
be satisfied, two particular cases must be considered. Namely, 
when: 

a) (N1,N2) = 1,       (A3) 

 & 

b) (N1,N2) ≠ 1,       (A4) 

where (N1,N2) represents the greatest common divisor [14,15] 

the decimation-in-time (DIT) version of the lexicographical 
(LEX) mappings; and by 

L1 = N2, L2 = L3 = 1 & L4 = N1 
 (A15) 

which results in 

n ≡ [N2 n1 +n 2 ] mod N  (A16) 

k ≡ [k1 + N1k 2 ] mod N  (A17) 

of N1 and N2. 

For case a), where N1 and N2 are relatively prime [14,15], the 
most basic form that is periodic in both directions of the resulting 
2-D array is given by:

 L1 = L3 = N2 & L2 = L4 = N1  (A5) 

which results in 

n ≡ [N2 n1 + N1n 2 ] mod N  (A6) 

k ≡ [N2 k1 + N1k 2 ] mod N       (A7) 

referred to hereafter as the relatively prime modulo (RPM) 
mappings. 

Another commonly used form is given by: 

the decimation-in-frequency (DIF) version of the LEX mappings. 

Applying the 2-D RPM and CRT mappings to the direct 
computation of the DFT, it is now seen how a 1-D DFT of 
composite length may be expressed in 2-D form, and vice versa, 
so that the computation of the respective 1-D and 2-D DFTs are 
essentially equivalent, one being simply derivable from the other. 
Application of the LEX mappings, as used by Cooley and Tukey 
[9], to the 1-D DFT is also considered, whereby a 2-D form is 
again achieved, although in this instance it does not correspond 
to a true separable 2-D DFT because of the resulting 
twiddle factor requirement. Factors N1 and N2 have common 
factors, the decomposition corresponds to the CFA, whilst 
when they are relatively prime, it corresponds to the PFA. 

Suppose the length N of a 1-D DFT can be written as: L1 = L3 ≡ 
&                 (A8) 
  L2 = L4 ≡ 

 

which results in 

N = N1 × N2  (A18) 

where N1 and N2 are arbitrary factors, with or without common 
factors. Then a sufficient pair of mappings, for the 1-D to 2-D 

n ≡ 
       & 

  k ≡ 

[N2 t 2 n1 + N1t1n 2 ] mod N    (A9) 

[N2 t 2 k1 + N1t1k 2 ] mod N    (A10) 

where 
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Then by applying the RPM mapping of Eqtn. A6 and the CRT 
mapping of Eqtn. A10 to the input and output data sequences, 
respectively, the DFT can be written as:  
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where k1 = 0,1,…,N1-1 and k2 = 0,1,…,N2-1, with WN, WN
1
 and 

WN
2
 the primitive Nth, N1th and N2th complex roots of unity, 

    (A20)

respectively. 

The expression of Eqtn. A19 reduces the N-point DFT, for the 
two- factor case of interest, to an essentially three-stage 
process: a partial-DFT, followed by a point-wise matrix 
multiplication to account for the twiddle factors, followed by a 
second partial DFT. The only difference, therefore, between 
this formulation and that of a true separable 2-D DFT, is the 
presence of the twiddle factors, and it is now seen how, by 
appropriate choice of N and its factors, the twiddle factors can 
be eliminated. 

Suppose that the factors N1 and N2 of Eqtn. A18 are relatively 
prime. 

a true separable 2-D DFT, without twiddle factors, consisting of 
just the two partial-DFT processes. The intermediate data simply 
requires straightforward re-ordering, via the LEX mapping, 
prior to being input to the second partial-DFT stage. It should 
be noted, from this two-factor formulation, that only one of the 
two index mappings – and it can be for either input or output – 
actually needs to satisfy the CRT in order that a true 2-D DFT be 
obtained, although a true 2-D DFT is also obtained if both index 
mappings satisfy the CRT. 
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transformation, may be given by the DIF version of the LEX 
mappings (as described by Eqtns. A16 and A17), enabling the 
DFT to be written as: 




