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Abstract
In this paper, an oil-heating tank is presented, developing its respective modeling through the application of the laws 
of conservation of mass and energy. Then a set of nonlinear differential equations are obtained representative of the 
process. Subsequently, this system is linearized obtaining its linearized model. With this linear model, the design of two 
control systems is presented, based on a PI feedback output compensator and based on a linear-quadratic regulator, 
where the control objectives are the storage temperature and the fuel oil level. Finally, the process is simulated, verifying 
the feasibility of the operation with the designed control system. 
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1.  Introduction 
In most of the industries that handle fuel oil, it is required to 
store this product in tanks for later use. Precisely the storage 
condition, can generate that the physical properties of the fuel 
oil can change undesirably, as its viscosity, for example, due 
to the temperature gradients that could be affected. Therefore, 
a temperature regulation system is required and necessary to 
maintain its properties undisturbed. 

An oil-heating tank is the simple and safe solution for maintaining 
the temperature and thus preserving the viscosity of the fuel oil. 
Therefore, in addition to having the necessary tank for storage, 
it is also required to have a thermal system to supply energy to 
the fuel oil. It is therefore required to have a temperature control 
system. In addition, as the tank has overflow safety levels, a 
level control is also a must. 

It is interesting to note that there are not many works that address 
these two control goals, in fact, in most of them, they cover the 
temperature control as the main one, leaving in second place, the 
level of the tank, assuming steady state conditions regarding the 
level [1-5]. 

In this paper, an oil-heating tank is presented, developing 
its respective modeling through the application of the laws 
of conservation of mass and energy. Then a set of nonlinear 
differential equations are obtained representative of the process. 
Subsequently, this model is linearized obtaining its linearized 
model. With this linear model, the design of two control systems 
is presented, based on a PI feedback output compensator and 
based on a linear-quadratic regulator, where the control targets 
are the storage temperature and the fuel oil level. Finally, the 

process is simulated, verifying the feasibility of the operation 
with the designed control system. 

2.  Process Description 
The process and instrumentation diagram of the proposed oil-
heating tank is presented in Fig. 1. From Fig. 1 it can be seen 
that the system is configured with a tank named TK-100 which 
is working as a heat exchanger. It has three inlet pipes and one 
outlet pipe. The first inlet is the volumetric flow of the oil to 
be processed, which flows from an external process unit. This 
inlet is associated with the following dynamic variables f1, T1, 
and P1, which are the flow, the temperature, and the pressure, 
respectively. In addition, the piping of this inlet is connected 
to the tank at a height of Hd measured form the ground. The 
second inlet is the saturated steam flow, supplied by a generator 
unit external to this process, which allows to supply heat to the 
oil, through its flow, by a heating coil located inside the tank. 
The heating coil is built by a metal tube of thickness 20 BWG. 
The dynamic variables of the steam are the mass flow ws, the 
temperature Ts, and its saturation pressure PS. The third input 
is the constant volumetric flow of inert gas fN which allows 
maintaining a constant pressure (P2) inside the tank above the oil 
level, due to the presence of a blanket of this inert gas. Finally, the 
output of the TK-100 is the oil already processed and reaching 
the reference temperature (T*

3). The dynamic variables of the 
outlet are the flow f3, its temperature T3, and its pressure P3. 

The process assumptions are that the TK-100 is well insulated, 
the physical properties of the oil are not relatively strong 
temperature-dependent functions the liquid (oil) inside the tank 
is well mixed, the liquid level completely covers the heating coil, 
constant and uniform densities, specific heats, and steam latent 
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heat [6,7]. Moreover, the metal of the tank and heating coil is at 
the same temperature as the condensing steam, negligible heat 
losses and transportation lags, and finally, constant pressure drop 
across the steam valve. Condensation from the heating coil is 
trapped by a vapor trap (trap) and conducted to another process 
unit, also external. 

From the above assumptions, it can be concluded that the 
temperature of the oil inside the tank is the same as that of the 
outlet, i.e. T3. The height of the level related to the liquid inside 
the TK-100 is labeled as h. 

The volumetric flows, mass flow, temperatures, height, and 
pressures are measured in m3/s, kg/s, °C, m, and kPa respectively. 

From Fig. 1 it can be inferred that the control philosophy 
corresponds to controlling T3 and h, which are the controlled 
variables of the system, through the manipulation of valves TV-
101 and LV-102 respectively. The temperature T3 and the height 
h are measured through the transmitters TT-101 and LT-102 
respectively. Finally, the controllers associated respectively. On 
the other hand, there are two uncontrolled valves whose position 
is fixed. These valves are HV-104 and HV-103 and throttle the 
flows fN and f3 respectively. 

 
Fig. 1.  Oil-heating tank process. 

 

HV-103 and throttle the flows fN and f3 respectively. 

III. PROCESS MODELING 
The mass and energy balances [6]–[8] developed for the 

process shown in Fig. 1 are presented below. From the 
synthesis of these balances, the nonlinear model of the system 
is obtained and shown. 

A. Mass and Energy Balance 
Through the use of the law of conservation of mass, the 

differential equation that relates the height h is obtained and 
presented in (1). 
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where ATK-100 is the cross-sectional areas of the TK-100 in 
m2. This area is uniform throughout. 

On the other hand, the energy balances around the TK-
100, which is related to T3 and the heating coil, which is also 
related to Ts are presented in (2) and (3) respectively. It 
should be noted that for deriving the energy balance related 
to the TK-100, it is assumed that the volume of the liquid in 
the tank is fairly constant, for a given operating height, i.e., 
the level control LIC-102 operates properly. From here , cv, 
and cp are the density and heat capacities at constant volume 
and pressure of the oil, measured in kg/m3 and in kJ/kg-°C 
respectively. In addition, U, VTK-100, Ah, CM, and s are the 
total heat transfer coefficient, the effective volume (= ATK-
100h) of the tank, the cross section and heat capacity of the 
heating coil, and the latent heat of condensation respectively. 
Each of these process constants are measured in W/m2-°C, in 
m3, in m2, in kJ/°C, and in kJ/kg respectively. 

From Fig. 1 and according to [1] the expressions of the 
flows ws, f1, and f3 are a function of the pressure drops, 
through the valves TV-101, LV-102, and HV-103 
respectively and are presented in equations (4)‒(6) (it is not 
necessary to consider the dynamics of the flow fN, since this 
flow does not play a role in the balances in (1)(3). From 
(2)(6) g and Gf are the gravitational acceleration and specific 
density of the oil measured in m/s2 and dimensionless, 
respectively. Moreover, cTV-101, cLV-102, and cHV-103 are the 
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valve coefficients of the TV-101, LV-102, and HV-103, 
respectively. 

Replacing (4)(6) in (1)(3) the non-linear model of the 
oil-heating tank is obtained and presented in (7). From (7) it 
should be noted that CM = mLmcpm where m, Lm, and cpm 
are the mass, linear length, and heat transfer coefficient of the 
metal tube of the heating coil [6]. The units of these constants 
are kg/m, m, and kJ/kg-°C respectively. 

In the following section the linear model of the system 
will be obtained and presented. 

B. State-Space Model of the Process 
In order to design a linear controller, such as a 

proportional-integral (PI) compensator or a linear-quadratic 
regulator (LQR) [9]–[11], it is required to linearize the model 
of (7), thus obtaining the state-space model. The linearization 
obtained is based on the steady-state operating points [12], 
[13] that are the outcome of developing the system of 
equations shown in (8) and that is achieved by forcing the 
derivatives to zero, i.e., dh/dt = dT3/dt = dTs/dt = 0. Then, 
replacing the time variables by their steady-state variables. 
Note that the steady-state variables are presented by capital 
letters and a superscript ss. 

The unknowns of the system of equations in (8) are the 

Figure 1: Oil-heating tank process.

3. Process Modeling 
The mass and energy balances developed for the process shown 
in Fig. 1 are presented below [6-8]. From the synthesis of these 
balances, the nonlinear model of the system is obtained and 
shown. 

3.1 Mass and Energy Balance 
Through the use of the law of conservation of mass, the 
differential equation that relates the height h is obtained and 
presented in (1). 
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where ATK-100 is the cross-sectional areas of the TK-100 in
m2. This area is uniform throughout.

On the other hand, the energy balances around the TK- 100, 
which is related to T3 and the heating coil, which is also related 
to Ts are presented in (2) and (3) respectively. It should be noted 
that for deriving the energy balance related to the TK-100, it 
is assumed that the volume of the liquid in the tank is fairly 
constant, for a given operating height, i.e., the level control LIC-
102 operates properly. From here ρ, cv, and cp are the density 
and heat capacities at constant volume and pressure of the oil, 
measured in kg/m3 and in kJ/kg-°C respectively. In addition, 
U, VTK-100, Ah, CM, and λs are the total heat transfer coefficient, 
the effective volume (= ATK-100.h) of the tank, the cross section 
and heat capacity of the heating coil, and the latent heat of 

condensation respectively. Each of these process constants 
are measured in W/m2-°C, in m3, in m2, in kJ/°C, and in kJ/kg 
respectively.

From Fig. 1 and according to the expressions of the flows ws, f1, 
and f3 are a function of the pressure drops, through the valves 
TV-101, LV-102, and HV-103 respectively and are presented in 
equations (4)‒(6) (it is not necessary to consider the dynamics 
of the flow fN, since this flow does not play a role in the balances 
in (1)-(3) [1]. From (2)-(6)g and Gf are the gravitational 
acceleration and specific density of the oil measured in m/s2 and 
dimensionless, respectively. Moreover, cTV-101, cLV-102, and 
cHV-103 are the  valve coefficients of the TV-101, LV-102, and 
HV-103, respectively. 
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heating tank is obtained and presented in (7). From (7) it should 
be noted that CM = ρm.Lm.cpm where ρm, Lm, and cpm are the mass, 
linear length, and heat transfer coefficient of the metal tube of 
the heating coil [6]. The units of these constants are kg/m, m, 
and kJ/kg-°C respectively.

In the following section the linear model of the system will be 
obtained and presented. 

3.2 State-Space Model of the Process 
In order to design a linear controller, such as a proportional-
integral (PI) compensator or a linear-quadratic regulator (LQR) it 
is required to linearize the model of (7), thus obtaining the state-
space model [9-11]. The linearization obtained is based on the 
steady-state operating points that are the outcome of developing 
the system of equations shown in (8) and that is achieved by 
forcing the derivatives to zero, i.e., dh/dt = dT3/dt = dTs/dt = 0 
[12,13]. Then, replacing the time variables by their steady-state 
variables. Note that the steady-state variables are presented by 
capital letters and a superscript ss. 

The unknowns of the system of equations in (8) are the 
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positions of the valves LV-102 and TV-101, i.e., VPss
LV-102 

and VPss
TV-101 respectively, and the saturated steam 

temperature, i.e., Tss
s. The other variables are all known and 

given. Table I lists all the constants and steady state variables 
of the process. The solution of (8) are presented in equations 
(9)(11). 

Having the steady state operating points it is possible to 
linearize the model in (7) [12]. Applying the Taylor series 
expansion to (7) around the operating points in (9)(11), the 
linear model, as a function of deviation variables, of the 
process is obtained and shown in (12). In this case, where all 
auxiliary constants present in (12) are defined in (13)(15). 

The deviation variables are ℎ� = ℎ − 𝐻𝐻��, 𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇���, 
𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇��� , 𝑣𝑣𝑣𝑣������� = 𝑣𝑣𝑣𝑣������ − 𝑉𝑉𝑉𝑉������ , 𝑃𝑃�� =
𝑃𝑃� − 𝑃𝑃��� , 𝑃𝑃�� = 𝑃𝑃��� , 𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇��� , 𝑣𝑣𝑣𝑣������� = 𝑣𝑣𝑣𝑣������ −
𝑉𝑉𝑉𝑉�������� . Finally, from the linear model of the process 
described in (12), the state-space model is obtained and 
described in (16). 

The vectors and matrices are defined in (17) and (18) 
respectively [12]–[14]. Here {𝐱𝐱�, 𝐲𝐲�}  {ℝ3} and 𝐮𝐮�  {ℝ5}, 
{Am, Cm}  ℳ3x3 {ℝ}, and {Bm, Dm}  ℳ3x5 {ℝ}. 

IV. CONTROL SYSTEM DESIGN 
The following section presents the designs of two linear 

controllers, which are applied to the oil- heating tank. The 
first controller is based on a PI compensator and the second 
one is based on an LQR. 

The data of the transmitter are the gains and time 
constants of each transmitter, i.e., KTT-101, KLT-102, TT-101, and 
LT-102 respectively are listed in Table II. In addition, the 
dynamics of the transmitters are modeled as first order 
responses [1]. Although the TT-101 does not perform any 
conversion in the measurement, i.e., it reads degrees °C, the 
LT-102 converts the measurement from m to %, since, in 
normal, tank capacities are measured as a percentage of their 
maximum height, i.e., hmax. The scale of TT-101 and LT-102 
are [0, 3.048] m and [0, 149] °C respectively. 

A. PI-Compensator Design 
By applying the Laplace transform to the linear model 

(12), considering zero initial conditions, the open-loop model 
of the oil-heating tank is shown in (19). In addition, the block 
diagram of the linearized process is depicted in Fig. 2. 

From (19), s is the Laplace operator. From Fig. 2 it is 
possible to identify the two transfer functions related to the 
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positions of the valves LV-102 and TV-101, i.e., VPss
LV-102 

and VPss
TV-101 respectively, and the saturated steam 

temperature, i.e., Tss
s. The other variables are all known and 

given. Table I lists all the constants and steady state variables 
of the process. The solution of (8) are presented in equations 
(9)(11). 

Having the steady state operating points it is possible to 
linearize the model in (7) [12]. Applying the Taylor series 
expansion to (7) around the operating points in (9)(11), the 
linear model, as a function of deviation variables, of the 
process is obtained and shown in (12). In this case, where all 
auxiliary constants present in (12) are defined in (13)(15). 

The deviation variables are ℎ� = ℎ − 𝐻𝐻��, 𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇���, 
𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇��� , 𝑣𝑣𝑣𝑣������� = 𝑣𝑣𝑣𝑣������ − 𝑉𝑉𝑉𝑉������ , 𝑃𝑃�� =
𝑃𝑃� − 𝑃𝑃��� , 𝑃𝑃�� = 𝑃𝑃��� , 𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇��� , 𝑣𝑣𝑣𝑣������� = 𝑣𝑣𝑣𝑣������ −
𝑉𝑉𝑉𝑉�������� . Finally, from the linear model of the process 
described in (12), the state-space model is obtained and 
described in (16). 

The vectors and matrices are defined in (17) and (18) 
respectively [12]–[14]. Here {𝐱𝐱�, 𝐲𝐲�}  {ℝ3} and 𝐮𝐮�  {ℝ5}, 
{Am, Cm}  ℳ3x3 {ℝ}, and {Bm, Dm}  ℳ3x5 {ℝ}. 

IV. CONTROL SYSTEM DESIGN 
The following section presents the designs of two linear 

controllers, which are applied to the oil- heating tank. The 
first controller is based on a PI compensator and the second 
one is based on an LQR. 

The data of the transmitter are the gains and time 
constants of each transmitter, i.e., KTT-101, KLT-102, TT-101, and 
LT-102 respectively are listed in Table II. In addition, the 
dynamics of the transmitters are modeled as first order 
responses [1]. Although the TT-101 does not perform any 
conversion in the measurement, i.e., it reads degrees °C, the 
LT-102 converts the measurement from m to %, since, in 
normal, tank capacities are measured as a percentage of their 
maximum height, i.e., hmax. The scale of TT-101 and LT-102 
are [0, 3.048] m and [0, 149] °C respectively. 

A. PI-Compensator Design 
By applying the Laplace transform to the linear model 

(12), considering zero initial conditions, the open-loop model 
of the oil-heating tank is shown in (19). In addition, the block 
diagram of the linearized process is depicted in Fig. 2. 

From (19), s is the Laplace operator. From Fig. 2 it is 
possible to identify the two transfer functions related to the 

positions of the valves LV-102 and TV-101, i.e., VPss
LV-102 and 

VPss
TV-101 respectively, and the saturated steam temperature, i.e., 

Tss
s. The other variables are all known and given. Table I lists 

all the constants and steady state variables of the process. The 
solution of (8) are presented in equations (9)-(11). 

Having the steady state operating points it is possible to linearize 
the model in (7) [12]. Applying the Taylor series expansion to 
(7) around the operating points in (9)-(11), the linear model, as 
a function of deviation variables, of the process is obtained and 
shown in (12). In this case, where all auxiliary constants present 
in (12) are defined in (13)-(15). 

4.  Control System Design 
The following section presents the designs of two linear 
controllers, which are applied to the oil- heating tank. The first 
controller is based on a PI compensator and the second one is 
based on an LQR. 

The data of the transmitter are the gains and time constants 
of each transmitter, i.e., KTT-101, KLT-102, τTT-101, and τLT-102 
respectively are listed in Table II. In addition, the dynamics 
of the transmitters are modeled as first order responses [1]. 
Although the TT-101 does not perform any conversion in the 
measurement, i.e., it reads degrees °C, the LT-102 converts the 
measurement from m to %, since, in normal, tank capacities are 
measured as a percentage of their maximum height, i.e., hmax. 
The scale of TT-101 and LT-102 are [0, 3.048] m and [0, 149] 
°C respectively. 

4.1 PI-Compensator Design 
By applying the Laplace transform to the linear model (12), 
considering zero initial conditions, the open-loop model of the 
oil-heating tank is shown in (19). In addition, the block diagram 
of the linearized process is depicted in Fig. 2. 
From (19), s is the Laplace operator. From Fig. 2 it is possible to 
identify the two transfer functions related to the 
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positions of the valves LV-102 and TV-101, i.e., VPss
LV-102 

and VPss
TV-101 respectively, and the saturated steam 

temperature, i.e., Tss
s. The other variables are all known and 

given. Table I lists all the constants and steady state variables 
of the process. The solution of (8) are presented in equations 
(9)(11). 

Having the steady state operating points it is possible to 
linearize the model in (7) [12]. Applying the Taylor series 
expansion to (7) around the operating points in (9)(11), the 
linear model, as a function of deviation variables, of the 
process is obtained and shown in (12). In this case, where all 
auxiliary constants present in (12) are defined in (13)(15). 

The deviation variables are ℎ� = ℎ − 𝐻𝐻��, 𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇���, 
𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇��� , 𝑣𝑣𝑣𝑣������� = 𝑣𝑣𝑣𝑣������ − 𝑉𝑉𝑉𝑉������ , 𝑃𝑃�� =
𝑃𝑃� − 𝑃𝑃��� , 𝑃𝑃�� = 𝑃𝑃��� , 𝑇𝑇�� = 𝑇𝑇� − 𝑇𝑇��� , 𝑣𝑣𝑣𝑣������� = 𝑣𝑣𝑣𝑣������ −
𝑉𝑉𝑉𝑉�������� . Finally, from the linear model of the process 
described in (12), the state-space model is obtained and 
described in (16). 

The vectors and matrices are defined in (17) and (18) 
respectively [12]–[14]. Here {𝐱𝐱�, 𝐲𝐲�}  {ℝ3} and 𝐮𝐮�  {ℝ5}, 
{Am, Cm}  ℳ3x3 {ℝ}, and {Bm, Dm}  ℳ3x5 {ℝ}. 

IV. CONTROL SYSTEM DESIGN 
The following section presents the designs of two linear 

controllers, which are applied to the oil- heating tank. The 
first controller is based on a PI compensator and the second 
one is based on an LQR. 

The data of the transmitter are the gains and time 
constants of each transmitter, i.e., KTT-101, KLT-102, TT-101, and 
LT-102 respectively are listed in Table II. In addition, the 
dynamics of the transmitters are modeled as first order 
responses [1]. Although the TT-101 does not perform any 
conversion in the measurement, i.e., it reads degrees °C, the 
LT-102 converts the measurement from m to %, since, in 
normal, tank capacities are measured as a percentage of their 
maximum height, i.e., hmax. The scale of TT-101 and LT-102 
are [0, 3.048] m and [0, 149] °C respectively. 

A. PI-Compensator Design 
By applying the Laplace transform to the linear model 

(12), considering zero initial conditions, the open-loop model 
of the oil-heating tank is shown in (19). In addition, the block 
diagram of the linearized process is depicted in Fig. 2. 

From (19), s is the Laplace operator. From Fig. 2 it is 
possible to identify the two transfer functions related to the 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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(�����)∙(�����)

  (21) 
In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 

𝐺𝐺�(𝑠𝑠) = ��∙
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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Lm 296.875 m 
m 0.265 kg/m3 
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D (tank diameter) 3 m 
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height) 2.5 m 

VTK-100 7.0686 m3 
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control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 
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Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating                                                  is presented 

in (20). Related to LIC-102 the transfer function relating            
                            is shown in (21).
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3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 

𝐺𝐺�(𝑠𝑠) = ��∙
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 

𝐺𝐺�(𝑠𝑠) = ��∙
���

��
��

�

�   (22) 
The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 

In order to design the PI compensators for TIC-101 and LIC 102, 
the transient analysis (step response) and root locus diagrams of 
(20) and (21) are obtained and shown in Fig. 3(a) and (b), and 
Fig. 4(a) and (b) respectively. From Fig. 3(a) and 4(a) it can be 
seen that both     and     reach a steady state value, where the 
slowest dynamics is that corresponding to        . On the other hand, 
and according to Fig. 3(b) and Fig. 4(b) it can be concluded that 
the transfer functions shown in (20) and (21) are stable, since all 

the poles are located on the left side of the s-plane.

Using this information provided by Fig. 3 and 4 and with the aid 
of MATLAB-Simulink (with the SISOTOOL command), the PI 
compensators related to the TIC-101 and LIC-102 control loops 
are designed. It should be noted that SISOTOOL is based on the 
root locus analysis method [12]–[14].
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 

𝐺𝐺�(𝑠𝑠) = ��∙
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 

TABLE II: PARAMETERS OF TRANSMITTERS TT-101 AND LT-102

TABLE III: TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S).

Fig. 5 shows the block diagram of the closed-loop process, 
including the PI compensators and the TT-101 and LT-102 
transmitters (red-dash lines). Fig. 5 shows the saturators 
connected to the output of the PI compensators, in order to prevent 

the control valves, i.e., TV-101 and LV-102, to receive non-
binary signals. Finally, the transfer function of the compensators 
is shown in (22). Here kp and ki are the proportional and integral 
gains of the Gc respectively.

The design of the PI compensators related to the LIC-102 
and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a step 
change associated with the TIC101 and LIC-102 controllers, 
respectively, which are described by the red dash lines in Fig. 
5. From Fig. 6, it can be observed that both measured variables, 
i.e.,       and     reach a steady state value, showing that the 
dynamics of LIC-102 and TIC-101 are stable. 

4.2 LQR Design 
Regarding the design of the LQR, which is based on optimal 
control techniques [9], [10], the state equation of (16) is 
considered, i.e.,                                            On the other hand, the 
optimal control law                       is defined in order to minimize 
the cost function shown in (23). 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
Pss

s 792.897 kPa 
Pss

1 31.026 kPa 
Pss

2 276 kPa 
Pss

3 103.421 kPa 
VPss

LV-102 0.31 per unit 
VPss

TV-101 0.041 per unit 
cLV-102 8.5710-3 
cHV-103 810-5 
cTV-101 1.174 

control loops TIC-101 and LIC-102. Regarding TIC-101 the 
transfer function relating 𝑇𝑇��(𝑠𝑠)  and 𝑉𝑉𝑉𝑉�������(𝑠𝑠)  is 
presented in (20). Related to LIC-102 the transfer function 
relating 𝐻𝐻�(𝑠𝑠) and 𝑉𝑉𝑉𝑉�������(𝑠𝑠) is shown in (21). 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
diagrams of (20) and (21) are obtained and shown in Fig. 3(a) 
and (b), and Fig. 4(a) and (b) respectively. From Fig. 3(a) and 
4(a) it can be seen that both ℎ�  and 𝑇𝑇��  reach a steady state 
value, where the slowest dynamics is that corresponding to 
𝑇𝑇��. On the other hand, and according to Fig. 3(b) and Fig. 4(b) 
it can be concluded that the transfer functions shown in (20) 
and (21) are stable, since all the poles are located on the left 
side of the s-plane. 

Using this information provided by Fig. 3 and 4 and with 
the aid of MATLAB-Simulink (with the SISOTOOL 
command), the PI compensators related to the TIC-101 and 
LIC-102 control loops are designed. It should be noted that 
SISOTOOL is based on the root locus analysis method [12]–
[14]. 

TABLE II. PARAMETERS OF TRANSMITTERS TT-101 AND LT-102 

Parameters Values 
KTT-101 1 TO%/°C 
KLT-102 109.769 TO%/m 
TT-101 0.05 s 
LT-102 0.01 s 

TABLE III. TUNING PARAMETERS OF COMPENSATOR GC1(S) AND GC2(S). 

Tuning parameters Values 
kpc1 0.006 
kic1 9.15210-5 
kpc2 0.096 
kic2 3.9610-4 

Fig. 5 shows the block diagram of the closed-loop 
process, including the PI compensators and the TT-101 and 
LT-102 transmitters (red-dash lines). Fig. 5 shows the 
saturators connected to the output of the PI compensators, in 
order to prevent the control valves, i.e., TV-101 and LV-102, 
to receive non-binary signals. Finally, the transfer function of 
the compensators is shown in (22). Here kp and ki are the 
proportional and integral gains of the Gc respectively. 
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The design of the PI compensators related to the LIC-102 

and TIC-101 controllers, i.e., Gc1(s) and Gc2(s) respectively, 
provides the tuning parameters of each of the compensators 
listed in Table III. Fig. 6(a) and (b) show the responses to a 
step change associated with the TIC101 and LIC-102 
controllers, respectively, which are described by the red dash 
lines in Fig. 5. From Fig. 6, it can be observed that both 
measured variables, i.e., 𝑇𝑇�� and ℎ�  reach a steady state value, 
showing that the dynamics of LIC-102 and TIC-101 are 
stable. 

B. LQR Design 
Regarding the design of the LQR, which is based on 

optimal control techniques [9], [10], the state equation of (16) 
is considered, i.e., 𝐱𝐱�̇ = 𝐀𝐀𝐦𝐦 ∙ 𝐱𝐱� + 𝐁𝐁𝐦𝐦 ∙ 𝐮𝐮�. On the other hand, 
the optimal control law 𝐮𝐮� = −𝐊𝐊 ∙ 𝐱𝐱�  is defined in order to 
minimize the cost function shown in (23). 

𝐽𝐽 = ∫ �𝐱𝐱�� ∙ 𝐐𝐐 ∙ 𝐱𝐱� + 𝐮𝐮�� ∙ 𝐑𝐑 ∙ 𝐮𝐮���
� ∙ d𝑡𝑡. (23) 

Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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TABLE I. CONSTANTS AND STEADY STATE VARIABLES OF THE PROCESS 

Variables Values 
 848.979 kg/m3 
cp 1.8841 kJ/kg-°C 
cv 1.8841 kJ/kg-°C 
Gf /1000  0.8490 
g 9.81 m/s2 
Ah 11.845 m2 
Lm 296.875 m 
m 0.265 kg/m3 
cpm 0.502 kJ/kg-°C 
U 771 W/m2-°C 

CM 39.4933 kJ/°C 
s 2,030.6 kJ/kg 

D (tank diameter) 3 m 
ATK-100 0.25D2  7.0686 m2 

hmax (Maximum tank 
height) 2.5 m 

VTK-100 7.0686 m3 
Hd 1.5 m 
Hss 0.5hmax  1.25 m 
Fss

1 10 m3/s 
Tss

1 21.11 °C 
Tss

3 93.33 °C 
Tss

s 175 °C 
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In order to design the PI compensators for TIC-101 and 

LIC 102, the transient analysis (step response) and root locus 
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The design of the PI compensators related to the LIC-102 
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Here, Q and R are positive definite Hermitian matrices [9], 
[10]. Matrix K is a matrix with optimal values that is 
determined from the solution of the Riccati equation [9], [10], 
[12] and matrices Q and R are defined in (24). 

As the LQR algorithm is conceptualized as a regulator 
and thus operates with zero references [9], [10]. it is 
necessary to customize the algorithm to apply it to the oil-
heating tank, since, in this case, there are references different 
from zero, obviously. First, the steady-state vector is defined, 
which operates as a vector that takes into account the 
reference values, i.e. Xss = [Hss, T3

ss, Ts
ss]T, Xss  {ℝ3}. A 
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(a) (b) 

Fig. 3.  Transient analysis and root locus diagram regarding (20). (a) Step response. (b) Root-locus diagram.. 

 

  
(a) (b) 

Fig. 4.  Transient analysis and root locus diagram regarding (21). (a) Step response. (b) Root locus diagram. 
 

 
Fig. 5.  Closed-loop block diagram of the oil-heating tank model, including PI compensators and measurement transmitters. 

 

  
(a) (b) 

Fig. 6.  Step response of closed-loop transfer functions LIC-102 and TIC-101. (a) TIC-101. (b) LIC-102. 
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Fig. 7.  Block diagram of LQR configured with non-zero references. 
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vector is also defined based on the steady state inputs, i.e. Uss 
= [VPLV-102

ss, VPTV-101
ss, P1

ss, P3
ss, T1

ss]T, Uss  {ℝ5}. Then, 
redefining the dynamic equation in (16) and the control law, 
in terms of the absolute and steady state variables (see 
subsection 3), the optimized model involving the vectors Xss 
and Uss is obtained and shown in (25). In this case x = [h, T3, 
Ts]T, x  {ℝ3}, u = [vpLV-102, vpTV-101, P1, P3, Ts]T, u  {ℝ5}. 

By using the MATLAB command lqr, the optimal matrix 
K is obtained and shown in equation (26). The eigenvalues of 
the optimized model (25) are presented in vector E (26), 
which correspond to negative values, indicating that (25) is 
stable [9], [10]. Fig. 7 shows the LQR diagram incorporated 
in model (25). 
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V. CONTROL SYSTEM DESIGN 
Simulations of the lossless linear model represented by 

(16) were carried out in MATLAB-Simulink. The process 
parameters and variables are listed in Table I. 

It is assumed that the oil-heating tank is operating at 
steady state conditions with a level of Hss = 50 % with an oil 
temperature inside the TK-100, Tss

3 = 93.33 °C, a saturated 
steam temperature, Tss

s = 175 °C and a pressure Pss
1 = 31.026 

kPa. Then at 800 s there is a step change in h* reaching a new 
steady state value of 30 %. Then at 1,000 s, P1 under- goes a 

perturbation decreasing the inlet oil pressure to 26.3721 kPa, 
and finally at 1,200 s a step change in T3 is generated reaching 
a new steady state value of 70 °C. 

Fig. 8 shows the dynamics of the variables h, T3, vpTV-101, 
vpLV-102, and P1, when the controller corresponds to a PI 
compensator and a LQR. Fig. 8(a) shows a comparison of the 
dynamics of h, when the controller is an LQR (the blue one) 
and when it is a PI compensator (the cyan one), in addition 
the dynamics of h before being measured by the LT-102 
transmitter is displayed (the green one). The red one is the 
reference value. Fig. 8(b) shows the comparison of the 
dynamics of T3 in the same format as Fig. 8(a). Fig. 8(c) 
shows the comparison of P1 dynamics and finally Fig. 8(d) 
and (e) are the comparisons of the dynamics of vpLV-102 and 
vpTV-101 valve positions respectively. It can be seen from Fig. 
8(a) and (b) that the shortest settling times are presented by 
the dynamics h and T3 when the controller is an LQR instead 
of a PI compensator. In addition, from these same figures it 
is clear to see the effect that the time constants of the 
transmitters have on the display of the dynamics. The green 
dynamics shows the initial state of the level Hss (50 %) and 
temperature T3

ss (93.33 °C), instead of the cyan figure, which 
is the dynamics of the level and temperature, coming from the 
transmitter LT-102 and TT-101 respectively, which, due to 
the effect of the time constants, the initial state of h and T3 are 
shown as 0 %. 

On the other hand, from Fig. 8(a) and (b) it can be seen 
that when TIC-101 and LIC-102 controllers are PI 
compensators the step change in h* and T3

* generates 
disturbances in less magnitude than when the controllers are 
combined in an LQR in the variables T3 and h respectively. 
However, as mentioned above, the settling time is much 
longer when PI compensators are involved. Moreover, Fig. 
8(c) also shows that the temperature dynamics Ts, which is 
measured at the heating-coil output (see Fig. 1), has more 
stable dynamics when an LQR is applied instead of PI 
compensators. This feature is of key importance, since it is 
essential in this type of process to keep the temperature of the 
saturated steam as stable as possible in order to reduce the 
cost of saturated steam production. It is well known that the 
generation of saturated steam is one of the main expenses in 
thermal or petro-chemical plants, where there are a large 
number of oil-heating tanks. It is interesting to note that, 
when an external disturbance occurs in P1 (see Fig. 8(d)), 
none of the variables presented in Fig. 8 is affected, showing 
then that the process with both types of controllers (PI and 
LQR) presents an important robustness. Finally, from Fig. 
8(e) and (f) it can be seen that the behaviors of the valve 
positions vpTV-101 and vpLV-102 present a smoother modulation 
when the controllers are PI than when it is a LQR, However, 
when the controller is an LQR, vpTV-101 and vpLV-102 are more 
stable but involve some peaks, resulting in openings and 
closings at 100 % and 0 % respectively in a very short time, 
which could be harmful to the mechanical elements of these 
valves. 

VI. CONCLUSION 
The study of an oil-heating tank incorporating 

mathematical modeling and the de-sign of two linear 
controllers has been presented in this work. Based on the law 
of conservation of mass and energy applied to this process, 
the nonlinear dynamic equations that model the oil-heating 
tank are obtained. Then, the operating points of the steady-
state process are calculated to finally linearize the system 
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= [VPLV-102

ss, VPTV-101
ss, P1

ss, P3
ss, T1

ss]T, Uss  {ℝ5}. Then, 
redefining the dynamic equation in (16) and the control law, 
in terms of the absolute and steady state variables (see 
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Fig. 7 shows the LQR diagram incorporated in model (25). 

5.  Simulation Results 
Simulations of the lossless linear model represented by (16) were 
carried out in MATLAB-Simulink. The process parameters and 
variables are listed in Table I. 

It is assumed that the oil-heating tank is operating at steady state 
conditions with a level of Hss = 50 % with an oil temperature 
inside the TK-100, Tss

3 = 93.33 °C, a saturated steam temperature, 
Tss

s = 175 °C and a pressure Pss
1 = 31.026 kPa. Then at 800 s there 

is a step change in h* reaching a new steady state value of 30 %. 
Then at 1,000 s, P1 under- goes a perturbation decreasing the inlet 
oil pressure to 26.3721 kPa, and finally at 1,200 s a step change in 
T3 is generated reaching a new steady state value of 70 °C. 

Fig. 8 shows the dynamics of the variables h, T3, vpTV-101, vpLV-
102, and P1, when the controller corresponds to a PI compensator 
and a LQR. Fig. 8(a) shows a comparison of the dynamics of h, 
when the controller is an LQR (the blue one) and when it is a 
PI compensator (the cyan one), in addition the dynamics of h 
before being measured by the LT-102 transmitter is displayed 
(the green one). The red one is the reference value. Fig. 8(b) 
shows the comparison of the dynamics of T3 in the same format 
as Fig. 8(a). Fig. 8(c) shows the comparison of P1 dynamics and 
finally Fig. 8(d) and (e) are the comparisons of the dynamics 
of vpLV-102 and vpTV-101 valve positions respectively. It can 
be seen from Fig. 8(a) and (b) that the shortest settling times 
are presented by the dynamics h and T3 when the controller is 
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an LQR instead of a PI compensator. In addition, from these 
same figures it is clear to see the effect that the time constants 
of the transmitters have on the display of the dynamics. The 
green dynamics shows the initial state of the level Hss (50 %) 
and temperature T3

ss (93.33 °C), instead of the cyan figure, which 
is the dynamics of the level and temperature, coming from the 
transmitter LT-102 and TT-101 respectively, which, due to the 
effect of the time constants, the initial state of h and T3 are shown 
as 0 %. 

On the other hand, from Fig. 8(a) and (b) it can be seen that 
when TIC-101 and LIC-102 controllers are PI compensators 
the step change in h* and T3* generates disturbances in less 
magnitude than when the controllers are combined in an LQR 
in the variables T3 and h respectively. However, as mentioned 
above, the settling time is much longer when PI compensators 
are involved. Moreover, Fig. 8(c) also shows that the temperature 
dynamics Ts, which is measured at the heating-coil output (see 
Fig. 1), has more stable dynamics when an LQR is applied 
instead of PI compensators. This feature is of key importance, 
since it is essential in this type of process to keep the temperature 
of the saturated steam as stable as possible in order to reduce 
the cost of saturated steam production. It is well known that 
the generation of saturated steam is one of the main expenses 
in thermal or petro-chemical plants, where there are a large 
number of oil-heating tanks. It is interesting to note that, when 
an external disturbance occurs in P1 (see Fig. 8(d)), none of the 

variables presented in Fig. 8 is affected, showing then that the 
process with both types of controllers (PI and LQR) presents 
an important robustness. Finally, from Fig. 8(e) and (f) it can 
be seen that the behaviors of the valve positions vpTV-101 and 
vpLV-102 present a smoother modulation when the controllers 
are PI than when it is a LQR, However, when the controller is 
an LQR, vpTV-101 and vpLV-102 are more stable but involve 
some peaks, resulting in openings and closings at 100 % and 0 
% respectively in a very short time, which could be harmful to 
the mechanical elements of these valves. 

6.  Conclusion 
The study of an oil-heating tank incorporating mathematical 
modeling and the de-sign of two linear controllers has been 
presented in this work. Based on the law of conservation of 
mass and energy applied to this process, the nonlinear dynamic 
equations that model the oil-heating tank are obtained. Then, 
the operating points of the steadystate process are calculated to 
finally linearize the system using the Taylor expansion around 
the calculated operating points. As a result of the linearization, 
a state-space model of the oil-heating tank is obtained. Using 
the state-space model, two proportional-integral compensators 
are designed; one to control the level of the oilheating tank h 
and the other to regulate the outlet temperature of the processed 
oil T3. On the other hand, to regulate these same variables, a 
linear quadratic regulator is designed and the results of these 
controllers are compared. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(d) 

 

(e) 

 

Fig. 8.  Simulation results under transient operation. Reference level h* = 50 %, temperature T*
3 = 93.33 C, and steady-state value of P1 = 

31.026 kPa. A step change in h* at 800 s, a step-change in T*
3 at 1,200 s, and a step-change in P1 at 1,000 s. (a) Level dynamics h. (b) 

Temperature dynamics T3. (c) Temperature dynamics Ts. (d) Pressure dynamics P1. (e) Valve position dynamics vpLV-102. (f) Valve position 
dynamics vpTV-101. All dynamics are overlapped and match when the controller is a LQR and when it is a PI compensator. 

 

using the Taylor expansion around the calculated operating 
points. As a result of the linearization, a state-space model of 
the oil-heating tank is obtained. 

Using the state-space model, two proportional-integral 
compensators are designed; one to control the level of the oil-
heating tank h and the other to regulate the outlet temperature 
of the processed oil T3. On the other hand, to regulate these 
same variables, a linear quadratic regulator is designed and 
the results of these controllers are compared. 

In overall, and according to Fig. 8, it can be seen that the 
process with both types of linear controllers, i.e., the 
proportional-integral compensators and the linear quadratic 
regulator works properly, but in particular it can be concluded 
that the dynamics of the controlled variables, i.e., h and T3 
when the process operates with two proportion-al-integral 
compensators working as controllers, present a longer 
settling time compared to the case when the process operates 
with a linear quadratic regulator. In addition, the dynamics of 

h and T3 show a better smoothness against produced 
disturbances. 

On the other hand, when the process operates with a linear 
quadratic controller, the dynamics of Ts is much smoother 
than when operating with proportional-integral 
compensators, being a key factor the stability of this 
temperature, since the cost of the production of saturated 
steam has as a function, precisely the stability of its 
temperature. 

Finally, it can be concluded that when the process is 
controlled with the proportion-al-integral compensators, the 
dynamics presented by the valve positions vpTV-101 and vpLV-

102 present a smoother modulation although more variable 
than those shown when the controller is a linear quadratic 
regulator, However, when the process is controlled by the 
latter, the valve positions show certain peaks of 100% 
opening and absolute closures in very short periods of time, 
which can cause important damages to the mechanical 
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3 = 93.33 C, and steady-state value of P1 = 
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3 at 1,200 s, and a step-change in P1 at 1,000 s. (a) Level dynamics h. (b) 

Temperature dynamics T3. (c) Temperature dynamics Ts. (d) Pressure dynamics P1. (e) Valve position dynamics vpLV-102. (f) Valve position 
dynamics vpTV-101. All dynamics are overlapped and match when the controller is a LQR and when it is a PI compensator. 

 

using the Taylor expansion around the calculated operating 
points. As a result of the linearization, a state-space model of 
the oil-heating tank is obtained. 

Using the state-space model, two proportional-integral 
compensators are designed; one to control the level of the oil-
heating tank h and the other to regulate the outlet temperature 
of the processed oil T3. On the other hand, to regulate these 
same variables, a linear quadratic regulator is designed and 
the results of these controllers are compared. 

In overall, and according to Fig. 8, it can be seen that the 
process with both types of linear controllers, i.e., the 
proportional-integral compensators and the linear quadratic 
regulator works properly, but in particular it can be concluded 
that the dynamics of the controlled variables, i.e., h and T3 
when the process operates with two proportion-al-integral 
compensators working as controllers, present a longer 
settling time compared to the case when the process operates 
with a linear quadratic regulator. In addition, the dynamics of 

h and T3 show a better smoothness against produced 
disturbances. 

On the other hand, when the process operates with a linear 
quadratic controller, the dynamics of Ts is much smoother 
than when operating with proportional-integral 
compensators, being a key factor the stability of this 
temperature, since the cost of the production of saturated 
steam has as a function, precisely the stability of its 
temperature. 

Finally, it can be concluded that when the process is 
controlled with the proportion-al-integral compensators, the 
dynamics presented by the valve positions vpTV-101 and vpLV-

102 present a smoother modulation although more variable 
than those shown when the controller is a linear quadratic 
regulator, However, when the process is controlled by the 
latter, the valve positions show certain peaks of 100% 
opening and absolute closures in very short periods of time, 
which can cause important damages to the mechanical 

In overall, and according to Fig. 8, it can be seen that the process 
with both types of linear controllers, i.e., the proportional-
integral compensators and the linear quadratic regulator works 
properly, but in particular it can be concluded that the dynamics 
of the controlled variables, i.e., h and T3 when the process 
operates with two proportion-al-integral compensators working 
as controllers, present a longer settling time compared to the 
case when the process operates with a linear quadratic regulator. 
In addition, the dynamics of h and T3 show a better smoothness 
against produced disturbances. 

On the other hand, when the process operates with a linear 
quadratic controller, the dynamics of Ts is much smoother than 
when operating with proportional-integral compensators, being 
a key factor the stability of this temperature, since the cost of the 
production of saturated steam has as a function, precisely the 
stability of its temperature. 

Finally, it can be concluded that when the process is controlled 
with the proportion-al-integral compensators, the dynamics 
presented by the valve positions vpTV-101 and vpLV-102 present 
a smoother modulation although more variable than those shown 
when the controller is a linear quadratic regulator, However, 
when the process is controlled by the latter, the valve positions 
show certain peaks of 100% opening and absolute closures in 
very short periods of time, which can cause important damages 
to the mechanical elements of the valves. 
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