Design and Implementation of an Automatic Power Supply from Four Different Source Using Microcontroller Amanyire rona¹, kaumba muteba², Abdurrahman Shuaibu Hassan³ and Adabara i⁴ ¹²³⁴ School of engineering and applied sciences, Department of electrical, computer and telecommunication engineering, Kampala international university, Uganda ### *Corresponding author Abdurrahman Shuaibu Hassan, School of engineering and applied sciences, Department of electrical, computer and telecommunication engineering, Kampala international university, Uganda, E-mail: hassan.shvaobu@kiu.ac.ug Submitted: 23 Oct 2017; Accepted: 02 Nov 2017; Published: 20 Feb 2018 #### **Abstract** This project is designed to automatically supply continuous power to a load through one of the four sources of supply that are: solar, mains, thermal, and wind when any one of them is unavailable. The four switches represent the four causes. The switches are connected to an 8051 microcontroller of which they provide input signals. Whenever a switch is pressed, it shows the absence of that particular reference. A relay driver is used that receives microcontroller generated output and switches that specific relay to provide continuous power supply. A lamp or bulbis used as a load for demonstration purpose which draws power from main. When the primary fails to supply power, automatically next available source is used like thermal. If thermal fails then the next one is used and so on. An LCD is used to show which power supply is on. **Keywords:** 8051 Microcontroller, Relay driver, LCD, Thermal, Wind, and Solar #### Introduction For a very long time, power outages, power interrupts and also unexpected routine power line maintenance is one of the major problems faced in industries, hospitals, offices, and homes whole over the world. For that case, this project provides an automatic operation of electrical power distribution systems; the rapid and reliable transfer of the system from one power source to another duringspecific events such as power outages, power interrupts, routine power line maintenance, to achieve the reliability of such systems [1-2]. Electrical power supply is one of the primaryessential needs of human life today, that is to say, without electrical power supply, most human works become stand still, postponed and even cancelled since most human actions are dependent on theelectrical power supply. Furthermore, the need for power supply through access to electricity by the masses of thepopulation of any country, both developed and developing countries is very important to the development of the economy of that particular country. In other words, the power sector plays an essential role in the socio-economic development of any country [3]. Therefore, this project provides a practical solution to provide an alternative power supply or uninterrupted power supply in automated mode to the load during frequent power cuts or in cases where power cuts or power outages cannot be avoided. # Materials and Methods Block Diagram of the System Figure 1.0: shows block diagram of the system # **Components Description** The design and implementation of each of the fundamental circuit units and how the program was implemented to, control the plan and perform the required functionality. The steps involved in designing this project involves: - 1. Transformer - 2. Bridge Rectifier - 3. Filter capacitor - 4. Voltage Regulator LM7805A - Resistor - 6. Relay Driver - 7. LCD - 8. 8051 Microcontroller #### **Transformer** This system uses a step down transformer which converts 230V AC to 12V AC with less power loss depending on the *truns* ratio. The input ac varies in the event of input ac at 230V AC section varies from 160V to 270V in the ratio of the transformer primary voltage Vp to Secondary Voltage, Vs governed by formula; $$(Vp/Vs) = (Np/Ns)$$ Thus, if the transformer delivers 12V at 220V input, it will give; At $$160V$$; $(160 / Vs) = (220 / 12)$ $$V_{\rm S} = (160 \text{ x } 12) / 220 = 8.72 V$$ A 270V; $$Vs = (270 \text{ X } 12) / 220 = 14.72V$$ Therefore, a step down between 8V to 15V was sufficient since current limitation was handled by the regulator. #### **Bridge Rectifier** Next stage was the AC/DC conversion process that involved inverting the negative cycles of the AC input. The process required the use of a full wave rectifier diode bridge and requiredspecific bridge rectifier that would be able to handle a peak voltage of 20V and 2A. The 2W04G rectifier was used for simulation process. At 220V; input voltage $$Vs = 12V$$ Output dc voltage = $$0.9Vs = 0.9 \times 12 = 10.8V$$ The bridge rectifier delivers pulsating DC Ripple factor = $$\sqrt{\{(Vrms/Vdc)^2 - 1\}} = \sqrt{\{(12/10.8)^2 - 1\}^0.5} = 0.66$$ $$Efficiency = Pdc/Prms \times 100\% = (10.8/12) \times 100\% = 90\%$$ # Filter Capacitor The capacitance value was needed to minimize the voltage ripple. The output of the transformer was 12V AC at 50Hz. The required minimum capacitor value can be calculated from the formula; $$C = Iout/(2 \times f \times RF \times Vin)$$ Iout = Imax = 1A, since it is the maximum output current of the LM7805 regulator $C = I/(2 \times 50 \times 0.66 \times 12) \cong 1000 \mu F$ Therefore, an electrolytic capacitor of about 470 to filter the output DC from the bridge rectifier. ### **Voltage Regulator LM7805** Since the filtered DC being unregulated, IC LM7805 was used in simulation process to get 5V DC at its pin number 3 irrespective of input DC varying for 8V to 15V, and the regulated output from the LM7805 remains at a5V constant. The regulated 5V DC is further filtered by a small electrolytic capacitor of $10\mu F$ for any noise generated by the circuit. # Standard Connections to the AT89S51 # **Working Principle** This project uses an arrangement where fourdifferent sources of supply are channelized to a load to have an uninterrupted operation of the load. As it is not practicable to get four sources of supply such as mains supply, wind supply, thermal supply and solar supply, we use relays only. The project has taken one source of 230v mains supply and assumed as if being fed from 4 different sources by connecting all the four incoming sources in parallel as seen in the schematic circuit diagram. The ac source to the lamp is connected to relay 1 to relay 2 to relay 3 and relay four by making the entire 'NO' (normally open) contacts parallel and all the common contacts in parallel. Four push button switches representing afailure of corresponding supply such as mains, wind,thermal, solar are respectively connected to port 3.4, 3.5, 3.6 and 3.7. #### **Logic Design** The project basically supplies continuous power to a load in automated modethrough one of the four sources of supply that are: solar, mains, thermal, and windwhen any one of them is unavailable. Four switches are used for four respective sources. These are connected to a microcontroller of 8051 families that provides input signals to it. Whenever a switch is pressed, it shows the absence of that particular source. A relay driverreceives microcontroller generated anoutput signal and switches that particular relay to provide continuous power supply. A lamp was used as a load for demonstration purpose which draws power from main. When mains fails to supply power, automatically next available source is used say thermal. If thermal fails then the next one is used and so on. An LCD is also used to display which source is being currently used for power supply. #### **Schematic Circuit Diagram** # Flow Chart of the system # **Results and Discussion Construction** The construction of the project is done based on the components layout, components assembly on Vero board and soldering process followed on making up the circuit to make sure that all components are permantely mounted #### **Testing** Continuity test was carried out to check if there was current flow in the project circuitry and was aimed at finding electrical open paths in the circuitry after completing soldering and configuration. A multimeter was used to perform acontinuity test on the electric circuit by measuring electric current flow [4,5]. #### **Procedures** - a. A multimeter is kept in buzzer mode. - b. Then it is connected to the ground terminal of the multimeter then to the ground - c. Finally, both terminals are connected to the path that needs to be checked, and there is continuity in the way, the multimeter would produce a beep sound. # **Results and Discussion** | Output of the bridge rectifier | Input into the voltage regulator | Output of voltage regulator | Input into the microcontroller (Vcc) | |--------------------------------|----------------------------------|-----------------------------|--------------------------------------| | 11.9VDC | 10.4VDC | 5.0VDC | 5.0VDC | Table 2.0: showing results of power supply circuit of the microcontroller | Power source | Input of the power source (VAC) | Switch status | LCD
Display | Load status | |--------------|---------------------------------|---------------|----------------|-------------| | Solar | 230V | ON | SOLAR | Bulb lights | | Solar | 230V | OFF | NO
POWER | No light | | Mains | 230V | ON | MAINS | Bulb lights | | Mains | 230V | OFF | NO
POWER | No light | | Wind | 230V | ON | WIND | Bulb lights | | Wind | 230V | OFF | NO POWER | No light | | thermal | 230V | ON | THERMAL | Bulb lights | | thermal | 230V | OFF | NO POWER | No lights | #### Result This project prototype was implemented, tested and integrated before testing the entire system. The input from the four sources is given to the microcontroller. Figure 27 showing snapshot of the project system Then the output of the microcontroller is given to the relay which maintains continuous power supply to the load. Finally, the current status of the available source is displayed on the LCD #### **Conclusion** This project of AUTOMATIC POWER SUPPLY FROM FOUR DIFFERENTSOURCES (Solar, Mains, Wind, and Thermal) USING A MICROCONTROLLER is used to handle power supply from mains, solar, wind and thermal most effectively. The outline of the project is the selection of supply from mains, solar, wind and thermal automatically using microcontroller concept [6-8]. The significance of this project lies in the various and wide places of applications such as; schools, hospitals, and most especially manufacturing industries and mining industries where acontinuous supply of power is vital. ### References - 1. Robert Dowuona-Owoo (2008) "Design and construction of three phase automatic transfer switch." A thesis presented at regent university college of science and technology Ghana 100-120 - Ezema LS, Peter BU, Haris OO (2003) "DESIGN OF AUTOMATIC CHANGE OVER SWITCH WITH GENERATOR CONTROL MECHANISM" 3: 230-287. - Jonathan (2007), "Manually Controlled Changeover System." 152-180. - 4. Mbaocha C (2012) "Smart Phase Changeover Switch using AT89C52 Microcontroller." Journal of Electrical and Electronics Engineering 1: 31-44. - 5. Katz R, Boriella G (2005) "Contemporary Logic Design. 2nd edition." Prentice Hall, Italy 445-589. - 6. ShanmukhaNagaraj, Ramesh S (2013) "Programmable Logic Controlled Circuits." International Journal of Research in Engineering and Technology 1: 111-116. - 7. Ezema LS, Peter BU, Harris OO (2012) "Design of Automatic - Change over Switch with Generator Control Mechanism." Electrical Power and Electronic Development Department, Projects Development Institute (PRODA), Enugu: Natural and Applied Science 3: 125-130. - 8. Charlie Hume (2015) "Transfer switch 101: an introductory guide to picking the right transfer switch for your environment, White paper WP140001EN." **Copyright:** ©2018 Abdurrahman Shuaibu Hassan, et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.