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Abstract
One of the most pervasive types of structural problems in aircraft industries is fatigue cracking that can potentially occur 
without anticipation with catastrophic failures and unexpected downtime. Acoustic emission (AE) is a passive structural health 
monitoring (SHM) technique, since it offers real time damage detection based on stress waves generated by cracking in the 
structure. Machine learning techniques have presented great success over the past few years with a large number of applications. 
This study assesses the progression of damage occurring on glass fiber reinforced polyester composite specimens using two 
approaches of machine learning, namely, Supervised and Unsupervised learning. A methodology for damage detection and 
characterization of composite is presented. The result shows that machine learning can predict damages in composite materials. 
All predictive models and their performance as well as AE parameters had a direct relationship with the applied stress values, 
suggesting that these correlations are reliable means of predicting fatigue life in a composite material.  
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Introduction
Over the last few decades the use of composite materials has been 
constantly diversified and composites have been playing crucial 
rules in different industries; from helicopters and aircrafts to au-
tomobile and military services. Material characterization is the 
critical aspect of the discovery process as well as material designs. 
Composite offers distinct features such as strength characteristics 
and stiffness, the absence of corrosion which leads to reduce the 
cost of the maintenance, low weight, simple design and lower en-
ergy consumption. These superior specific features make the com-
posite materials distinctive compared with metals [1]. 

Composite structures is made from two or more dissimilar materi-
als that are combined together in order to make a new set of char-
acteristics and properties that each component could achieve on 
their own. Machine learning (ML) is a part of artificial intelligence 
and subfield of computer science that its foundation is set of statis-
tical tools which focus on the development of models by learning 
and training data that can be used to predict new data in the future. 
Machine learning models have acquired lots of attention due to 
their ability to handle multiple variables through self-improvement 
without any explicit instructions [2-3]. 

Generally, Machine learning is a set of algorithms and respective 
process that create relationship between set of data. These algo-

rithms are broken into four broad categories: 1) Supervised learn-
ing, 2) Unsupervised learning, 3) Semi-supervised learning, and 4) 
Reinforcement learning [4-5]. Supervised learning algorithms are 
the most widely used algorithms for prediction, provide a learning 
scheme with “labeled data”, which are developed to classify new 
data set [6]. Unsupervised learning algorithms are most frequently 
used for anomaly detection and are related to the pattern detection 
within the data sets which consists of “unlabeled data”, i.e. data 
sets can be grouped together based on general rules, natural rela-
tionship or natural affinity for each other with unspecified outputs 
[6]. 

SHM techniques are usually divided into two groups; damage 
detection and characterization  and Impact detection and identi-
fication [7-8]. The goal of SHM system is to perform structural 
prognosis and diagnosis as well as provide required action for the 
maintenance engineers and the remaining useful life of the struc-
ture. AE can be defined as the energy emitted as a result of chang-
es in the microstructure of a material, which then generates stress 
waves with transient elasticity [9]. SHM systems are the constant 
monitoring of structural systems that according to their functional-
ity are categorized to different levels and tasks such as to localize, 
detect, and assess irregularities and defects. Figure 1 illustrates the 
level of the complexity of the structures compared with the differ-
ent types of intelligent level.
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From an SHM viewpoint, supervised learning where machines re-
ceive inputs and the expected outputs can be employed to detect 
the severity and types of damage and unsupervised learning where 
the machine is trained to find similarities in data and is used for 
detecting the existence of damage by way of clustering of structur-
al response data. The combination of two of the above mentioned 
schemes represent Semi-supervised learning. This technique typ-
ically aims at obtaining a classification of data using both labeled 
and unlabeled data [10-11]. Machine learning in SHM is using to 
aim to build models or representations for mapping input patterns 
in measured sensor data to output targets for damage assessment 
at different levels [12]. 

Figure 1: 6 Levels of SHM [13]

Machine learning algorithms and data-driven techniques have 
been used widely in cyber-physical systems such as SHM. Das et 
al investigated classification of the cracks in cementitious compo-
nents based on the AE signals. In this study RA values (Rise time 
to maximum amplitude) and Average frequency (AF) are clustered 
using density dictated unsupervised clustering algorithm and the 
prediction of the damage state in the structure was obtained. Ince 
et al reported the locating of the microcracks using multiple-sensor 
measurements of the acoustic emissions (AEs) by generated by 
crack inception and propagation and implementing Support Vector 
Machine (SVM) classifier for recognizing the P-wave arrivals in 
the presence of noise [14-15]. 

Supervised and Unsupervised learning has been widely used in 
different research problems. Vernon et al used multiple linear re-
gression for predicting the density and hardness of the red mud 
polymer composite. The effects of pH, composition and aggregate 
particle size of red mud was determined on the properties of re-
cycled polymer red mud composite. Used supervised and unsu-
pervised learning as methods to reduce the computational require-
ments of reliability analyses [16-17]. The unsupervised learning 
method, pattern recognition, Fuzzy C-Means clustering (FCM) 

and Gustafson-Kessel (GK) algorithms were used and tested for 
evaluation of UAV flight data performance through Receiver Op-
erating Characteristic (ROC) analysis by [18]. Implemented unsu-
pervised pattern recognition analyses (fuzzy C-means clustering) 
associated with a principal component analysis as tools for the 
classification of the acoustic emission data [19].

Other machine learning algorithms that have been deployed in 
different applications include; Artificial Neural Network (ANN), 
Convolutional Neural Network (CNN), Object recognition, speech 
recognition, Probabilistic neural network (PNN), Least square 
support vector machines (LSSVM) [20-24]. Have suggested and 
formulated seven axioms for SHM that stated the general aspects 
and principles that have merged in several decades of experience 
on SHM [25]. The following are particular parts of their states that 
relevant to this paper:

Axiom III: Identifying the existence and location of damage can 
be done in an unsupervised learning mode, but identifying the type 
of damage present and the damage severity can generally only be 
done in a supervised learning mode.

Axiom IVa: Sensors cannot measure damage. Feature extraction 
through signal processing and statistical classification is necessary 
to convert sensor data into damage information.

Axiom IVb: Without intelligent feature extraction, the more sensi-
tive a measurement is to damage, the more sensitive it is to chang-
ing operational and environmental conditions.

Axiom V: The length- and time-scales associated with damage ini-
tiation and evolutions dictate the required properties of the SHM 
sensing system. 

In this paper, AE basic parameters namely amplitude, energy, 
counts, duration, rise time as well as signal strength were used 
to develop linear regression as well as multiple linear regression 
model, and AE clustering using K-Means method to predict and 
asses the onset damage and damage propagation in glass fiber re-
inforced polyester composite material under cyclic fatigue test. 
The result shows that supervised and unsupervised learning can 
identify and predicts damages in composite materials. The clusters 
that were contributed through the AE data were taken from the 
cyclic fatigue tests. The predictive models and their performance 
as well as AE parameters had a direct relationship with the applied 
stress values, suggesting that these correlations are reliable means 
of predicting fatigue life in a composite material. The data that has 
been used were the same data that was used in previous published 
paper [26].

Experimental
Woven reinforced glass fibers were cut into 30×30 cm sizes to 
make glass fiber reinforced composites consisting of 40wt% (40 
percent by weight) glass fiber, 60wt% matrix (GP 268 BQT-W) 
and 2wt% hardener. A total of 19 specimens, each 5 mm thick, 
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250 mm length and 25 mm wide (Figure 2), were cut according to 
ASTM D3039. Three samples were subjected to a tensile test (see 
below) before carrying out the cyclic fatigue test, in accordance 
with ASTM D3479. 

Figure 2: Specimen Geometry

Tensile testing techniques
The goal of the prior tensile tests in this study was to determine the 
ultimate tensile strength (UTS) of the materials. The three speci-
mens were tested on a universal machine testing system type IN-
STRON 3382, with a 100 kN capacity. Average UTS of 135.5 MPa 
was obtained from the tensile test, and this UTS was used as the 
basis for subsequent experiments. 

Fatigue testing with acoustic emission sensor attachment
The specimens were installed into the test rig under a one-point 
test setup (AE sensor), as shown in Figure 3. They were loaded 
using a 100 kN hydraulic MTS test machine. The load was applied 
in a sinusoidal waveform. An AE sensor was attached on the center 
of the surface of each specimen, as the position shown in Figure 4. 

The MTS 647 Hydraulic Wedge Grip testing machine with a maxi-
mum load of 100 kN and maximum pressure of 21 MPa or 3000 psi 
were used to apply the load to the specimens until the specimens 
separated. A set of 16 specimens were loaded under tension-ten-
sion cyclic loading, at a frequency of 8 Hz with 45% to 60% of 
UTS, a maximum load of 10.07 kN and minimum load of 7.33 
kN, and at a stress ratio of R = 0.1 with 3.5 MPa of pressure. Load 
data from the testing machine was fed to the parametric channel 
of the AE data acquisition system. This load data was recorded 
simultaneously with the transient AE signals detected during the 
test. Both sets of data were then used to characterize the AE source 
mechanism by correlating the AE parameters with the load values. 

Couplant- 
silicon grease

Two-Channel AE

MTS machine

Specimen

AE sensor

Specimen

AE 
Piezoelectric 

sensor

Figure 3: MTS machine and AE equipment Figure 4: AE sensor position
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Acoustic Emission (AE)
A MISTRAS AE system from the Physical Acoustic Corpora-
tion Two-Channel was used to acquire the AE signals released by 
fatigue crack growth during the tests. One wideband (WSa) AE 
transducer with a frequency range of 100 to 1000 kHz was used to 
detect the AE signals from the fatigue test at the center of the spec-
imen. This sensor was attached to the specimens and connected to 
the AE data acquisition system through a coaxial cable. A 40dB 
threshold level for AE data acquisition was set to avoid interfer-
ence from any background environmental noise below this level. 

The detected events were amplified by a 26dB pre-amplifier and a 
40dB amplifier. All the recorded signals were stored on the com-
puter for further analysis. AE WinTM software for data acquisition 
and signal processing was used throughout this study to capture, 
replay and display stored AE data. To ensure proper AE moni-
toring, certain parameters of the data acquisition systems needed 
to be adjusted to the specific testing materials and existing noise 
levels: in particular, Peak Definition Time (PDT), Hit Definition 

Time (HDT) and Hit Lockout Time (HLT). The specific values 
used for these timing parameters of the signal acquisition process 
are shown in Table 1.

Table 1: AE control parameters
Parameters Set Value
Peak Definition time (PDT) 50 μs
Hit Definition time (HDT) 150 μs
Hit Lockout time (HLT) 300 μs
Sample rate 5 M sample/sec

Methodology and Analysis
Proposed Methodology
In order to analyze behavior of composite and damage mechanisms 
in targeted materials, machine learning techniques comprises three 
sequential techniques: (a) Data preparation, (b) Machine learning 
modeling, (c) Model evaluation, and each of these steps has their 
own stages. The schematic of these steps is shown in Figure 5. 

Figure 5: The schematic of machine learning methodology

Data Preparation
At this first step, all relevant data to the targeted damage mecha-
nisms and composite material’s behavior were collected at Uni-
versity Putra Malaysia (UPM) laboratory in order to gather a com-
prehensive database to construct the ML model. All values have 
been assessed to ensure data quality, the accuracy of the model, 
and verified that no erroneous value was included in the database 
mistakenly. Relevant materials and variables have been classified 

into different groups for learning algorithms. 

As mentioned in previous study [26] some AE parameters such 
as energy, amplitude and root mean square (RMS) increase along 
with the load increment, consequently crack propagation increased 
as the load was increased, therefore the AE signal patterns were 
recorded in the early stages of testing and as the fracture zone ap-
proached, at applied stress levels of 45%, 50%, 55%, and 60% of 
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UTS with a loading of 60.97 MPa, 67.75 MPa, 74.52 MPa, and 
81.30 MPa respectively (Table 2).  

Table 2: Loading and percentage of UTS
Percentage of UTS Applied load (MPa)

UTS = 135.5 MPa
45% 60.97
50% 67.75
55% 74.52
60% 81.30

ML Model Building 
Technique selection
There are many ML algorithms and techniques out there that have 
been developed for different types of learning purposes such as un-
supervised learning, supervised learning, and deep learning. In this 
research the following ML modes has been used in order to identi-
fy damage severity and types of damage based on AE parameters.

Supervised Learning
Supervised learning is the most simple and basic method that has 
been used widely in scientific and engineering fields [27-29]. A 
linear regression is the approximation of a linear model with high 
interpretability used to describe the relationship between two vari-
ables; input and output. Multiple-linear regression is the extension 
of the simple linear regression, there is more than one independent 
variable in the process. In this study four predictor variables have 
been used. 

Unsupervised Learning
Unsupervised learning is the algorithm in which the model works 
on its own to discover data. One of the popular partitioning meth-
ods that have been used vastly is K-means clustering. K-means has 
been implemented in many data science applications, especially 
when you need to quickly discover insights from unlabeled data. 
In this study to determine damage severity, K-means clustering 
was implemented to group and cluster signals. The numbers of 3 
clusters with random centroids were implemented in to the formu-
la in order to classify damages.
The objective functions for K-means are shown in the following 
formula:

J = ∑k
j=1∑

n
i=1||xi

(j) -μj ||

Where we are looping over all centroids.||xi
(j) -μj || is the Euclidian 

distance, which is the distance between xi
(j) data point belonging to 

cluster j and μj centroid. K is number of clusters and n is the num-

ber of data point. Clustering is a rich algorithmic framework and 
conceptual that remarkably is used as a general methodology for 
data analysis and interpretation [19-31]. Some real-world applica-
tions of K-means are customer segmentation, pattern recognition, 
data compression and etc.

Results and Discussion
Models Building and Evaluation
Based on previous paper [26] the range of 40 dB to 55 dB of ampli-
tude is associated to matrix cracking, 55 dB to 60 dB is AE indica-
tion of interface failure, 60 dB to 65 dB related to fiber debonding, 
65 dB to 85 dB is linked to fiber pull out and 85 dB to 100 dB is 
related to fiber fracture cracks. Figure 6 illustrates the scatter plot 
of the number of amplitude and strength of the signal in the early 
stage of testing and near fracture zone at different applied stress 
using multiple linear regressions. Before the main crack occurred, 
some micro-cracks appeared in the matrix resin and there were 
also signs of fiber debonding between 40 dB to 60 dB of ampli-
tude. The composite also showed increased delamination between 
50 to 70 dB. Some larger cracks appeared between 60 dB to 80 dB, 
due to fiber pull-out. Once the specimens started to divide into two 
main pieces, the strength of signal reached the peak level until the 
fiber broke since it relates to the vibration signal in a time series, 
which could be expected to increase sharply upon breakage. As the 
level of applied stress was increased, the fracture shows the high 
level of amplitude.

From Seaborn data visualization (Python data visualization li-
brary), the direct correlation between signal strength and ampli-
tude based on the amount of energy is apparent. As can be seen in 
Figure 6, the cracks were more scattered in the lower level of ap-
plied loads compared to the higher level at the early stage. As the 
loads were increasing, the amount of energy became more intense, 
and the signal strength was increased. At the end of the testing, 
the signal strength increment shows that specimen is close to rup-
ture while loading was increasing. However the amount of energy 
and signal strength was more scattered towards higher amplitude 
which indicates the fiber fracture. 

Considering above damage details regarding matrix cracking 
and fiber debonding and pull out in different range of Amplitude 
from 40 dB to 85dB, from Figure 6 the level of energy and single 
strength (pVs) can be a good indicator in order to predict and as-
sess damages in the specimens. As the signal strength varied be-
tween 20000 at the early stage of testing to 80000 near fracture 
zone and amount of energy became more intense. The different 
colours show different levels of energy. 
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45% of UTS

50% of UTS

55% of UTS

60% of UTS
Figure 6: Signal strength versus Amplitude at different applied stress level based on amount of energy a) Early stage of testing, b) Near 
fracture zone
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Creating Train and Test Dataset
An important step in testing the model is to split data into training 
and testing data. The dataset has been split into training and testing 
sets with 70% of the entire data for training and 30% for testing. 
This will provide a more accurate evaluation on out-of-sample ac-

curacy because the testing dataset is not part of the dataset that 
have been used to train the data. It is more realistic for real world 
problems. Figure 7 shows the regression plot of the training data 
and actual data near fracture zone. 

45% of UTS

50% of UTS

55% of UTS

60% of UTS(a) (b)
Figure 7: Signal strength vs Amplitude at different applied stress level near fracture zone (a) before training (actual data) (b) after train-
ing (70% of the entire data)
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Figure 8 shows the correlation between different AE parameters 
at the minimum and maximum applied load. As it can be seen, the 
least correlation is related to RMS to other parameters and energy 

and signal strength have the strong correlation with each other. 
There fore RMS didn’t count as the strong predictor parameter 
and was dropped as a predictor parameter in the following models.

(a) (b)

Figure 8: The correlation between AE parameters: (a) 45% of UTS (b) 60% of UTS

The sklearn package, one of the machine learning libraries, was 
used to analyze multi-linear regression and identify the damage 
severity as well as types of damage based on the amplitude. Figure 

9 shows the prediction and actual value of amplitude at different 
applied stress level with 30% of testing data near fracture zone.

Figure 9: Prediction and actual value of Amplitude at different applied stress near fracture zone
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The predictor variables that have been used to predict the damage 
type and severity based on the amplitude level were based on the 
AE basic parameters: rise time, count, energy, and duration. Based 
on the Figure 9, damages were classified based on amplitude level. 
The illustration shows the training and testing prediction of am-
plitude with comparison between actual and predicted values at 
different applied stress. 

The existence of the damage in the materials were detected 
through unsupervised learning where machine is trained and is 
used by way of clustering of structural response data. K-Means 
clustering has many parameters that can be used. For the modeling 
of this datasets, the number of 3 cluster indicating matrix cracks, 
fiber debonding, and fiber pull out to form the K-means algorithm 
has been run with random centroid seeds. Figure 10 depicts the 
K-means class of amplitude versus duration and energy which is 
contributed to damage of the composite and partitioned the signals 
into exclusive groups near fracture zone at different applied stress. 
The clustering shows the types of damages. 

Figure 10(a) shows the scatter plot of datasets based on amount of 

energy and count that is scattered based on amplitude. The scatter 
plot depicts the different level of amplitude near fracture zone un-
der minimum and maximum applied load. Figure 10(b) illustrates 
the K-means clustering prediction, the number of 3 clusters was 
applied with random centroids in order to predict the amplitude 
and classify severity of damages into 3 groups. It can be seen that 
the K-means clustering algorithm has produced 3 clusters fairly 
similar to plot (a). We can now make predictions based on these 
clusters and centroids. 
In 45% of UTS applied stress:

Cluster 0 is most likely refers to matrix cracking and interface fail-
ure.
Cluster 1 is most likely refers to fiber pull out. 
And Cluster 2 is most likely refers to fiber debonding.

In 60% of UTS applied stress:
Cluster 0 is most likely refers to fiber pull out.
Cluster 1 is most likely refers to matrix cracking and interface fail-
ure. 
And Cluster 2 is most likely refers to fiber debonding.

Figure 10: K-means clustering of AE strength of signal vs Amplitude vs Duration at different applied stress: (a) scatter plot (b) K-means 
clustering
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Conclusion
The present study looked at the capability of the AE technique 
and machine learning algorithms to assess and predict the onset of 
damage in glass fiber reinforced polyester composite material. AE 
basic parameters namely amplitude, energy, counts and duration 
were used to develop multiple linear regression model, as well as 
AE clustering using K-Means method to predict and asses the on-
set damage and damage propagation in glass fiber reinforced poly-
ester composite material under cyclic fatigue test. According to the 
results, most fiber breakage occurred at between 85 dB and 100 dB. 
Higher signal strength values were observed for both fiber break-
age and matrix cracks as the same result obtained before. There 
was a satisfactory level of agreement between the signal strength, 
amount of energy and amplitude suggests that these parameters are 
a reliable way of identifying different types of damage in compos-
ite materials. All predictive models and their performance as well 
as AE parameters had a direct relationship with the applied stress 
values, suggesting that these correlation coefficients are reliable 
means of predicting fatigue life in a composite material.

Data Availability Statement
The data that support the findings of this study were generated at 
UPM laboratory. The data that supporting this study is the same 
data that is available within the published author’s articles: DOI: 
10.1080/14484846.2016.1264284 , and ISBN: 978-93-85973-63-
5.
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