
J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 1

Creating a GUI-Based Train Ticket Booking System in Python using MySQL
Research Article

Jishnu Teja Dandamudi*

*Corresponding Author
Jishnu Teja Dandamudi, Amrita School of Artificial Intelligence, Coimbatore,
Amrita Vishwa Vidyapeetham, India.

Submitted: 2025, May 12; Accepted: 2025, Jun 02; Published: 2025, Jun 11

Citation: Dandamudi, J. T. (2025). Creating a GUI-Based Train Ticket Booking System in Python using MySQL. J Electrical
Electron Eng, 4(3), 01-10.

Amrita School of Artificial Intelligence, Coimbatore, Amrita
Vishwa Vidyapeetham, India

 Abstract
In today’s digital era, students often resort to replicating pre-existing projects, limiting opportunities for innovation
and genuine learning. This project aims to design and develop a novel Train Ticket Booking System using Python’s
Tkinter for the front-end and MySQL for the back-end. The system is a self-driven initiative, created without referencing
any prior implementations, with the objective of learning new skills and addressing real-world challenges in railway
reservation systems. The project seeks to digitize and streamline the processes involved in railway inquiry and ticket
reservation. In Admin Mode, the system enables functionalities such as adding trains, assigning seats, defining train
routes, generating reservation charts, and deleting trains. In User Mode, it allows ticket booking, PNR inquiry, and
viewing booking history. The software supports storing and managing multiple train records while offering intuitive
options for modifications. Key features include detailed train information, such as travel duration, arrival and departure
timings, and historical ticket bookings. By leveraging a structured database, the system enhances data integrity and
retrieval efficiency, offering a comprehensive solution for railway management. This project not only demonstrates
practical application development but also emphasizes learning through creation, contributing to the broader goal of
fostering innovation in student-led initiatives.

Journal of Electrical Electronics Engineering
ISSN: 2834-4928

Keywords: Python, Python Tkinter GUI, MySQL, Text Files, File Handling, DDL, DML

1. Introduction
• Interest
The interest that made me do this paper is to create an app like
structure cum interface for train ticket booking using pure Python.
• Python
Python is a high-level, interpreted programming language known
for its simplicity and readability. It was created by
Guido van Rossum and first released in 1991. Python is widely
used for web development, data analysis, scientific computing,
artificial intelligence, machine learning, automation, and more.

• Key Features of Python
Easy to Learn and Use: Python has a simple syntax similar to
English, making it accessible for beginners.
Interpreted Language: Python executes code line by line, which
makes debugging easier.
High-Level Language: Python abstracts complex details of

the computer’s operations, allowing developers to focus on
programming logic.
Dynamic Typing: Variable types are determined at runtime,
eliminating the need for explicit declarations.
Extensive Libraries: Python has a rich set of libraries and
frameworks, such as NumPy, Pandas, TensorFlow, Django, and
Flask.
Cross-Platform: Python runs on various platforms (Windows,
macOS, Linux)
Community Support: Python has a large, active community,
ensuring plenty of resources, documentation, and support.

• Common Uses of Python
Web Development: Using frameworks like Django and Flask.
Data Science and Machine Learning: With libraries like NumPy,
Pandas, Scikit-learn, and TensorFlow.
Automation/Scripting: Writing scripts to automate repetitive tasks.

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 2

Game Development: Using libraries like Pygame.
Scientific and Numeric Computing: With tools like SciPy and
Matplotlib.
Software Development: For building desktop and mobile
applications.
Internet of Things (IoT): Using Raspberry Pi and other
microcontrollers.

• MySQL
MySQL is a popular open-source relational database management
system (RDBMS) that uses Structured Query Language (SQL) to
manage and interact with databases. It was originally developed
by MySQL AB in 1995 and later acquired by Oracle Corporation
in 2010.

• Key Features of MySQL
Relational Database: MySQL organizes data into tables consisting
of rows and columns, making it easy to relate and query data.
SQL Support: It uses SQL as the standard language for querying
and managing data.
Open Source: MySQL is freely available under the GNU General
Public License (GPL), with additional commercial versions offered
by Oracle.
Cross-Platform: Runs on various operating systems, including
Windows, macOS, Linux, and Unix.
Scalability: Suitable for small-scale applications and large-scale
systems with high-volume data.
Security: Features like user authentication, data encryption, and
access control ensure robust security.
High Performance: Optimized for speed and efficiency in data
transactions and complex queries.
Replication: Supports database replication for backup, high
availability, and load balancing.

• Common Uses of MySQL
Web Applications: Powers databases for websites and applications
like WordPress, Facebook, and Twitter.
E-Commerce: Supports online stores by managing product
catalogs, user information, and transactions.
Data Warehousing: Used to analyze large datasets.
Content Management Systems (CMS): Integrates with CMS
platforms like Drupal, Joomla, and Magento.
Enterprise Applications: Manages data for internal systems like
CRM or ERP tools.

• How MySQL Works
Server-Client Model: MySQL operates as a server and listens to
requests from client applications.
Storage Engine Architecture: Supports multiple storage engines,
like InnoDB (for transactions and data integrity) and MyISAM
(optimized for speed).
SQL Queries: Allows users to create, read, update, and delete data
using SQL commands.

• Why Use MySQL
It is fast, reliable, and easy to use.
Integrates seamlessly with programming languages like PHP,
Python, and Java.
Provides excellent community support and documentation.

Refer to Figure 1.

2. Working Methodology
A. Backend - MySQL
• Create a database with name rrs
• Create Table 1 with the following data storage attributes as shown
in Figure 2
• Create Table 2 with the following data storage attributes as shown
in Figure 3

 Create a database with name rrs

 Create Table 1 with the following data storage attributes as shown in Figure 2

 Create Table 2 with the following data storage attributes as shown in Figure 3

Figure 1: MySQL with Python

B. Admin Mode

 Add a Train

The Python code implements a GUI-based train management system using Tkinter and a MySQL database,

allowing admins to add new train details interactively. Admins can input the train number, name, and

running days through a user-friendly interface with labeled entry fields. The program checks if the train

number already exists in the database to prevent duplicates; if it doesn’t, it dynamically creates a unique

table for the train to store station details such as arrival and departure times. The train details, including its

number, name, and running days, are then stored in a main trains table. The GUI provides feedback through

success or error messages, ensuring smooth user interaction. The design features a consistent aesthetic with

a defined color scheme and font style, and the system supports scalability by dynamically handling new

train additions without predefining their structure.

 Assign Seats

The program provides a graphical user interface (GUI) using tkinter for assigning seat allocations to a

specific train number in a railway database. Admins input the train number and specify the number of

coaches for Sleeper (SL), Second AC (2A), and Third AC (3A). The inputs are validated to ensure they are

numeric and non-negative. Upon submission, the program updates the database with the entered values.

Feedback is displayed to inform the user of successful updates or any errors encountered during the

operation. The GUI employs labels, entry fields, and buttons for interaction, with clear error messages and

success notifications using messagebox.

 Add Train Route

Figure 1: MySQL with Python

B. Admin Mode
• Add a Train
The Python code implements a GUI-based train management
system using Tkinter and a MySQL database, allowing admins
to add new train details interactively. Admins can input the train
number, name, and running days through a user-friendly interface

with labeled entry fields. The program checks if the train number
already exists in the database to prevent duplicates; if it doesn’t,
it dynamically creates a unique table for the train to store station
details such as arrival and departure times. The train details,
including its number, name, and running days, are then stored in
a main trains table. The GUI provides feedback through success

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 3

or error messages, ensuring smooth user interaction. The design
features a consistent aesthetic with a defined color scheme and font
style, and the system supports scalability by dynamically handling
new train additions without predefining their structure.

• Assign Seats
The program provides a graphical user interface (GUI) using
tkinter for assigning seat allocations to a specific train number in
a railway database. Admins input the train number and specify the
number of coaches for Sleeper (SL), Second AC (2A), and Third
AC (3A). The inputs are validated to ensure they are numeric and
non-negative. Upon submission, the program updates the database
with the entered values. Feedback is displayed to inform the

user of successful updates or any errors encountered during the
operation. The GUI employs labels, entry fields, and buttons for
interaction, with clear error messages and success notifications
using messagebox.

• Add Train Route
The code implements a Tkinter-based GUI application for
managing train route details, allowing admins to input and store
information such as station codes, station names, arrival times, and
departure times into a MySQL database. The interface includes
input fields for train number and other route details, validating
train numbers against existing database tables. It employs dynamic
SQL

The code implements a Tkinter-based GUI application for managing train route details, allowing admins to

input and store information such as station codes, station names, arrival times, and departure times into a

MySQL database. The interface includes input fields for train number and other route details, validating

train numbers against existing database tables. It employs dynamic SQL

Figure 2: Trains Table Structure in MySQL

Figure 3: User Bookings Table Structure in MySQL

The code implements a Tkinter-based GUI application for managing train route details, allowing admins to

input and store information such as station codes, station names, arrival times, and departure times into a

MySQL database. The interface includes input fields for train number and other route details, validating

train numbers against existing database tables. It employs dynamic SQL

Figure 2: Trains Table Structure in MySQL

Figure 3: User Bookings Table Structure in MySQL

Figure 2: Trains Table Structure in MySQL

Figure 3: User Bookings Table Structure in MySQL

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 4

queries to insert data into the respective train’s route table while
providing user feedback on successful operations. Enhancements
such as input validation, error handling for database interactions,
and better UI layout are used to improve robustness, user
experience, and security.

• Reservation Chart
The code defines a Tkinter-based GUI application for displaying
a train reservation chart. The reservationChart() function creates a
new window where admins can input a train number and submit
it to fetch reservation details. Upon submission, the reservation_
details() function queries a database (user_bookings) to retrieve
and display passenger information, including name, gender,
age, PNR, berth, boarding, and destination details, formatted in
a readable layout. Error handling is included to manage invalid
inputs or database issues, and the UI dynamically updates for new
inputs. An “Exit” button allows users to close the reservation chart
window.

• Delete a Train
The deleteTrain function provides a graphical interface for
deleting train records from a database. Admins input the train
number, which is validated to ensure it is numeric and corresponds
to an existing record. The system confirms the deletion action
before proceeding. The deleting_train function performs two key
operations: removing the train’s associated table and deleting its
entry from the main trains table. Input validation, error handling,
and user feedback are implemented to enhance security and
usability. If errors occur, appropriate messages are displayed. The
design includes a success message upon completion and an exit
button to close the window.

C. User Mode
• Book a Ticket
The provided code defines a Tkinter-based GUI application for
booking train tickets in a railway reservation system. It allows
users to find trains between a boarding and destination station for
a specified date, check train availability based on running days,
and book tickets. The system dynamically queries a MySQL
database to retrieve train schedules, routes, and seat availability.
After booking, it generates a PNR and assigns a booking status,
confirming the reservation. The ticket details, including journey
information, passenger details, and booking status, are saved to a
text file and displayed to the user. The program also ensures basic
validations such as date and route consistency while incorporating
dynamic SQL queries for flexibility.

• PNR Enquiry
The program is a GUI-based PNR Checker implemented using
tkinter. It allows users to input a PNR number and retrieve booking
details from a database. Upon entering a PNR, the application
queries the database to fetch associated details. If the PNR is

marked as ”cancelled,” a cancellation message is displayed.
Otherwise, it shows train details, passenger information, booking
status, and current status in the interface. The interface includes
labels for displaying messages and a button to close the window.
Enhancements include error handling for invalid inputs and
database exceptions, organized UI with responsive labels, and
secure parameterized queries to prevent SQL injection.

• Cancel Ticket
The program is a tkinter-based GUI application for canceling train
tickets. It provides a window where users can enter a PNR to cancel
a ticket. On submitting the PNR, it updates the database to mark the
ticket’s status and current status as “Cancelled” using SQL queries.
The interface confirms successful cancellation through a message
and offers an “Exit” button to close the cancellation window. The
application uses parameterized SQL queries to ensure security and
a responsive design for ease of use.

• Booking History
The program is a tkinter-based GUI application to display the
booking history of users. It queries the database to retrieve all
records from the user_bookings table and formats the information
into a readable structure. Each booking’s details, including
username, train information, journey dates, PNR, passenger details,
and ticket status, are written to a text file named booking history.
txt. Once the data is saved, the text file is automatically opened
using the default system application. A confirmation message is
displayed in the GUI, and an “Exit” button allows users to close
the window. The program could benefit from input validation,
better error handling, and pagination for large datasets.

3. Result
A. Main Interface:
Refer to Figure 4

B. Admin Interface:
Refer to Figure 5

C. Admin Entering Details before User booking a ticket:
1) Add a Train:
Refer to Figure 6
2) Assign Seats:
Refer to Figure 7
3) Add Train Route:
Refer to Figure 8

D. User Interface
Refer to Figure 9

Book a Ticket:
Refer to Figure 10
Refer to Figure 11

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 5

D. User Interface

Refer to Figure 9

Book a Ticket:

Refer to Figure 10

Refer to Figure 11

Figure 4: Main Interface

Figure 4: Main Interface

Figure 5: Admin Mode Figure 6: Add a Train

Refer to Figure 12

 PNR Enquiry

Refer to Figure 13

 Booking History

Refer to Figure 14

 Cancel Ticket

Refer to Figure 15

Figure 6: Add a Train

E. Admin Finding Details after User booking a ticket

 Reservation Chart

Refer to Figure 16

 Figure 5: Admin Mode Figure 6: Add a Train
Refer to Figure 12
• PNR Enquiry
Refer to Figure 13
• Booking History
Refer to Figure 14
• Cancel Ticket
Refer to Figure 15

Figure 6: Add a Train

E. Admin Finding Details after User booking a ticket
• Reservation Chart
Refer to Figure 16

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 6

 Figure 8: Add Train Route

Figure 7: Assigning Seats

Figure 9: User Mode

Delete a Train

Refer to Figure 17

 Figure 8: Add Train Route

Figure 7: Assigning Seats

Figure 9: User Mode

Delete a Train

Refer to Figure 17

Figure 7: Assigning Seats

Figure 9: User Mode

Figure 8: Add Train Route

Delete a Train
Refer to Figure 17

F. MySQL updation
• Database after train creation by admin
Refer to Figure 18
• Description of the new train created in database
Refer to Figure 19

• User Bookings after booking ticket from user mode in Figure 9.
User Mode database
Refer to Figure 20
• User Bookings after cancelling the booked ticket from user mode
in database
Refer to Figure 21
• Database after admin deleting the train
 Refer to Figure 22

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 7

F. MySQL updation

 Database after train creation by admin

Refer to Figure 18

 Description of the new train created in database

Refer to Figure 19

 User Bookings after booking ticket from user mode in Figure 9. User Mode database

Refer to Figure 20

 User Bookings after cancelling the booked ticket from user mode in database

Refer to Figure 21

 Database after admin deleting the train

 Refer to Figure 22

Figure 10: Trains Enquiry

Figure 10: Trains Enquiry

 Figure 13: PNR

Figure 12: Confirmed Ticket in Text Format

Figure 11: User Booking Ticket

Figure 13: PNR

 Figure 13: PNR

Figure 12: Confirmed Ticket in Text Format

Figure 12: Confirmed Ticket in Text Format

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 8

Figure 14: Booking History

Figure 14: Booking History

Figure 15: Cancel Ticket Figure 17: Delete a Train

Figure 18: Database After Train Creation by Admin

 Figure 16: Reservation Chart

Figure 17: Delete a Train

Figure 15: Cancel Ticket

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 9

Figure 15: Cancel Ticket Figure 17: Delete a Train

Figure 18: Database After Train Creation by Admin

Figure 18: Database After Train Creation by Admin

Figure 19: Description of the New Train Created in Database

Figure 20: User Bookings After Booking Ticket from User Mode in Database

Figure 21: User Bookings After Cancelling the Booked Ticket from User Mode in Database

Figure 19: Description of the New Train Created in Database

Figure 20: User Bookings After Booking Ticket from User Mode in Database

Figure 21: User Bookings After Cancelling the Booked Ticket from User Mode in Database

Figure 19: Description of the New Train Created in Database

Figure 20: User Bookings After Booking Ticket from User Mode in Database

J Electrical Electron Eng, 2025 Volume 4 | Issue 3 | 10

Copyright: ©2025 Jishnu Teja Dandamudi. This is an open-
access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the
original author and source are credited.

https://opastpublishers.com/

Figure 19: Description of the New Train Created in Database

Figure 20: User Bookings After Booking Ticket from User Mode in Database

Figure 21: User Bookings After Cancelling the Booked Ticket from User Mode in Database

Figure 21: User Bookings After Cancelling the Booked Ticket from User Mode in Database

Figure 22: Database After Admin Deleting the Train

4. Conclusion

Enquiry cum Reservation System can be used by railway institutions to maintain their record of train easily.

Achievinthis objective is difficult using the manual system as the information is scattered, can be redundant, and

collecting relevant information may be very time consuming [1-4]. All these problems are solved by this project.

This system helps in maintaining the information of trains of the organization. It can be easily accessed by any

higher authority who has been given access by the admin and kept safe for a longer period of time without any

change from the user.

Author Contribution

The authors has created a extensive database and GUI for stroing the train informations, ticket booking, etc and had

shown how the ticket booking is working in the backend for the users.

References

1. Christudas, B., & Christudas, B. (2019). MySQL. Practical Microservices Architectural Patterns: Event-

Based Java Microservices with Spring Boot and Spring Cloud, 877-884.

2. Van Rossum, G., & Drake, F. L. (2003). An introduction to Python (p. 115). Bristol: Network Theory Ltd.

3. Triani, R. A., & Schouten, F. S. (2023). Analysis of The Application of Online Ticket Booking Application

Access By KAI. Journal of Business Studies and Management Review, 7(1), 132-138.

4. Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial (Vol. 620). Amsterdam, The Netherlands:

Centrum voor Wiskunde en Informatica.

Figure 22: Database After Admin Deleting the Train

4. Conclusion
Enquiry cum Reservation System can be used by railway
institutions to maintain their record of train easily. Achievinthis
objective is difficult using the manual system as the information
is scattered, can be redundant, and collecting relevant information
may be very time consuming [1-4]. All these problems are solved
by this project. This system helps in maintaining the information
of trains of the organization. It can be easily accessed by any
higher authority who has been given access by the admin and kept
safe for a longer period of time without any change from the user.

Author Contribution
The authors has created a extensive database and GUI for stroing
the train informations, ticket booking, etc and had
shown how the ticket booking is working in the backend for the
users.

References
1. Christudas, B., & Christudas, B. (2019). MySQL. Practical

Microservices Architectural Patterns: Event-Based Java
Microservices with Spring Boot and Spring Cloud, 877-884.

2. Van Rossum, G., & Drake, F. L. (2003). An introduction to
Python (p. 115). Bristol: Network Theory Ltd.

3. Triani, R. A., & Schouten, F. S. (2023). Analysis of The
Application of Online Ticket Booking Application Access By
KAI. Journal of Business Studies and Management Review,
7(1), 132-138.

4. Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial
(Vol. 620). Amsterdam, The Netherlands: Centrum voor
Wiskunde en Informatica.

https://www.oreilly.com/library/view/practical-microservices-architectural/9781484245019/
https://www.oreilly.com/library/view/practical-microservices-architectural/9781484245019/
https://www.oreilly.com/library/view/practical-microservices-architectural/9781484245019/
http://atk.fam.free.fr/fichiers/stage/Python/JF/site/pytut.pdf
http://atk.fam.free.fr/fichiers/stage/Python/JF/site/pytut.pdf
https://online-journal.unja.ac.id/jbsmr/article/view/29178
https://online-journal.unja.ac.id/jbsmr/article/view/29178
https://online-journal.unja.ac.id/jbsmr/article/view/29178
https://online-journal.unja.ac.id/jbsmr/article/view/29178
https://zcmsdemo3.desss-portfolio.com/assets/images/zcms/pdf/testpdf1.pdf
https://zcmsdemo3.desss-portfolio.com/assets/images/zcms/pdf/testpdf1.pdf
https://zcmsdemo3.desss-portfolio.com/assets/images/zcms/pdf/testpdf1.pdf

