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Abstract
For almost a century since its first measurement by Hubble in 1929 the value of the Hubble constant, H, has been the subject of 
intense debate. In the last few years a new dimension has been added to this debate because there appears to be a significant 
discrepancy between the values of H derived from present-day universe (cepheids, supernova, lensed quasars, tip of the red giant 
branch), which are minimally dependent on cosmological theory and those derived from early universe observations (cosmic mi- 
crowave background and baryon acoustic oscillations), which are based on the standard cosmological theory, ΛCDM , whereby 
ΛCDM in turn is based on the assumption that the universe is expanding. This discrepancy is known as Hubble tension. We resolve 
the Hubble tension by introducing a universe which is governed by the Taub-NUT solution to the field equations of general relativity. 
The Taub-NUT universe is not expanding. In this universe the observed cosmological redshift is due to the gravitational redshift 
associated with the Taub-Nut solution, which we refer to as cosmological gravitational redshift. Time dilation in this stationary 
universe has the same dependency on redshift, that generally has been seen as proof that space is expanding.
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1. Introduction
There appears to be a significant discrepancy, ≥ 5σ between the value of the Hubble constant as determined by early universe 
measurements and late universe measurements [1-20]. For a non-technical comprehensive review [21,22]. There has been many 
attempts to explain this discrepancy by modifying ΛCDM such as just to mention a few [23-31]. There is no consensus on how to 
modify ΛCDM.

We suggest that the solution to the Hubble tension lies completely outside ΛCDM. It has long been believed that the gravitational 
redshift can not explain the observed cosmological redshift. The purpose of this work is to show that this assertion is not correct. In 
the following we develop a theory of cosmology based on the cosmological gravitational redshift.

In 1922 the concept of expansion of space was first introduced by Friedmann [32]. Independently in 1927 Lemaitre discovered 
the same concept, but he also went on to derive Hubble’s law, a value for Hubble’s constant, and to introduce the concept of a 
“primordial atom”, which today we call the Big Bang. Big Bang cosmology rests on the assumption that cosmological redshifts are 
caused by the expansion of space [33].

The most fundamental observational relationship in cosmology is the redshift-distance relationship, which Hubble is often given 
credit, although historically inaccurate [34-37]. At the end of his publication Hubble specifically mentioned that the observed 
redshifts of extragalactic nebula could be caused by gravitational redshift, which following DeSitter he called “an apparent slowing 
down of atomic vibrations“ [38,39]. De Sitter’s work differs from our results because he did not employ the metrics below, which 
had not yet been discovered.

Hubble also mentioned that they could be caused by scattering on intervening material particles. In his publication Hubble however 
did not investigate these later possibilities instead he simply assumed that cosmological redshifts are Doppler shifts caused by radial 
velocity. Before Hubble this assumption was also made by Wirtz [40].

Humason, who worked with Hubble, made it clear that it was in no way certain that cosmological redshifts correspond to velocities 
[41]. Consequently, he referred to them as “apparent velocities”. Later Hubble and Tolman explicitly stated that the cosmological 
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redshift-recessional velocity relationship is an “assumption“ [42]. Hubble eventually turned away from the expanding universe 
interpretation and embraced the infinite static universe [43]. Critical discussions of this assumption can be found in [44-46]. We 
suggest that the most fundamental question of cosmology is: Are the observed cosmological redshifts due to the expansion of space?

The Big Bang theory, which following Lemaitre assumes that the observed cosmological redshifts are due to the expansion of space, 
has been extremely successful. It predicts the redshift-distance relationship, the existence of the Cosmic Microwave Background 
(CMB) and its properties, primordial nucleosynthesis, and supports observational evidence that the universe is evolving.

The Big Bang theory, however, still possesses fundamental problems. There are the horizon, magnetic monopole and flatness 
problems. Some scientists feel the theory of inflation resolves these issues, but others are of a different opinion, while still others 
suggest that a varying speed of light (VSL) is a viable alternative to cosmic inflation [47-57]. The theory also predicts that the 
universe should contain equal amounts of matter and anti-matter, which we do not observe. There is also the lithium problem 
whereby 3 times as much lithium is produced during Big Bang nucleosynthesis as is observed [58].

Assuming that the cosmological redshifts are due to the expansion of space, then the observed redshift-distance relation for Type Ia 
Supernova leads to the conclusion that the expansion rate of the universe is increasing rather than decreasing as attractive gravity 
demands [59,60]. This means there must be something else in the universe (an unknown form of energy), which is overwhelming 
attractive gravity. We call this unknown energy dark energy, which corresponds in Big Bang cosmology to negative pressure. Dark 
energy can be explained by a non-zero cosmological constant. The cosmological constant, however, corresponds to the energy of the 
vacuum. But, theoretical calculations of the vacuum energy density according to quantum field theory differ from the astronomically 
measured value by up to about 123 orders of magnitude [61]. To say the least this vacuum catastrophe is an incredibly embarrassing 
circumstance.

Despite these fundamental difficulties the achievements of the Big Bang theory are so impressive that the overwhelming majority of 
theoretical work in cosmology today involves just extensions and refinements of this theory. In contrast we develop below a theory 
of cosmology, which is not based on the assumption that cosmological redshifts are due to the expansion of space instead our theory 
maintains they are caused by the cosmological gravitational redshift.

2. The Gravitational Field Equations
After Einstein developed a framework for the theory of general relativity, Einstein sought field equations, which would correspond 
to the field version of Newton’s universal law of gravitation [62]. Einstein and independently Hilbert achieved this in November 
1915 [63-65]. However, when Einstein tried to apply his theory of gravitation to the universe as a whole (cosmology), he found that 
his equations from 1915 appeared to be incompatible with a static mass distribution of constant density [66-68]. He discovered that a 
consistent model of the universe could be developed, if he added an additional term to his field equations that contained a constant, λ.
Einstein’s and Hilbert’s field equations from 1915 are:
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But, theoretical calculations of the vacuum energy density according to quantum field theory differ
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Despite these fundamental difficulties the achievements of the Big Bang theory are so impressive
that the overwhelming majority of theoretical work in cosmology today involves just extensions and
refinements of this theory. In contrast we develop below a theory of cosmology, which is not based
on the assumption that cosmological redshifts are due to the expansion of space instead our theory
maintains they are caused by the cosmological gravitational redshift.

2. THE GRAVITATIONAL FIELD EQUATIONS

After Einstein (Einstein & Grossman 1913) developed a framework for the theory of general relativ-
ity, Einstein sought field equations, which would correspond to the field version of Newton’s universal
law of gravitation. Einstein (Einstein & Grossman 1915) and independently Hilbert (Hilbert 1915)
achieved this in November 1915 (Janssen & Renn 2015). However, when Einstein (Einstein 1917)
tried to apply his theory of gravitation to the universe as a whole (cosmology), he found that his
equations from 1915 appeared to be incompatible with a static mass distribution of constant density.
He discovered that a consistent model of the universe could be developed, if he added an additional
term to his field equations that contained a constant, λ.

Einstein’s and Hilbert’s field equations from 1915 are:

Rµν −
1

2
gµνR = −8πGTµν (1)

and Einstein’s field equations from 1917 are:

Rµν −
1

2
gµνR + λgµν = −8πGTµν (2)

Rµν is the Ricci tensor, gµν the fundamental tensor, R the curvature scalar, Tµν the energy-momentum
tensor, G the gravitational constant, the speed of light is 1 and λ is a number, which is called the
cosmological constant1. In order to differentiate between the two sets of equations we call equation
1 the Einstein-Hilbert field equations and equation 2 the Einstein field equations. The spherically
symmetric solution of the Einstein-Hilbert field equations for the empty space surrounding a non-
rotating point mass is called the Schwarzschild solution(Schwarzschild 1916). The corresponding
solution of Einstein’s field equations is called the Kottler solution (Kottler 1918). If λ > 0, the

1 We do not employ the usual symbol, Λ, for the cosmological constant. Instead we use (Einstein 1917) Einstein’s
original symbol, λ. Our theory differs from ΛCDM . Consequently, there is no reason to assume that λ = Λ.
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3. Theory
The solutions to the field equations are expressed in terms of the equation:
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Kottler metric is also known as the Schwarzschild-de Sitter metric and if λ < 0, as the Schwarzschild-
anti-de Sitter metric.

3. THEORY

The solutions to the field equations are expressed in terms of the equation:

ds2 = gµνdx
µdxν (3)

ds is the line element, gµν is the metric tensor or fundamental tensor and both dxµ and dxν are
coordinates. The metric tensor contains constants, whose values are obtained from observations. In
the specific case of cosmology the basic observational relationships are the redshift-distance diagram
and time dilation, which we will employ to derive the constants contained in the metric tensor.

A valid cosmological metric tensor must satisfy three conditions. It must be a solution to the field
equations of general relativity, it must lead to the observed redshift-distance relationship and to the
observed time dilation. Below we show that among the well known solutions to the field equations of
general relativity there is at least five, which lead to the observed redshift distance relationship and
to the observed time dilation.

3.1. Cosmological Gravitational Redshift

In standard relativistic cosmology there are three distinct possible causes of redshift: Doppler, grav-
itational and cosmological (Fliessbach 2006). We will show that the observed cosmological redshift,
z, is due to the cosmological gravitational redshift. Consequently, we will conclude there are only
two causes of redshift in relativistic cosmology: Doppler and gravitational.

In general the gravitational spectral shift between any two points A and B in space is given by
(Fliessbach 2006):

z =

√
g00(rB)

g00(rA)
− 1 (4)

We assume that rA in the above equation is a constant meaning that we can let γ = goo(rA).
Consequently, we can drop the subscripts to obtain:

(z + 1)2 =
g00(r )

γ
(5)

_

3.2. Time Dilation

Time dilation in relativity is defined via the proper time, dτ =
√
ds2. In our cosmological theory

the proper time is:
dτ =

√
g00dt (6)

We employ equation 5 to obtain the relationship between time dilation and redshift in our theory of
cosmology. We find:

dτ =
√
γ(z + 1)dt (7)
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We employ equation 5 to obtain the relationship between time dilation and redshift in our theory of cosmology. We find:

Suggestions by Wilson and Rust that light curve broadening should occur in Type Ia Supernova, if the universe is actually expanding, 
have been observationally confirmed by [69-73]. These authors found a time dilation or slowing down of the supernova by the factor 
of (z+1). They interpreted this result as evidence that cosmological redshifts are caused by an expanding universe.

The above equation for time dilation in the stationary universe has the same (z+1) dependency, but it is not associated with cosmic 
expansion rather it is due to the cosmological gravitational redshift. We conclude: the observed light curve broadening can not be 
used to prove that the universe is expanding. Segal, Andrews and Holushko came to the same conclusion although their theoretical 
standpoints are completely different than ours [74]

Comparing the above equation with observations of time dilation we conclude: γ = 1 and equation 5 reduces to:
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Suggestions by Wilson (Wilson 1939) and Rust (Rust 1974) that light curve broadening should occur
in Type Ia Supernova, if the universe is actually expanding, have been observationally confirmed by
(Leibundgut et al. 1996; Goldhaber et al. 2001; Block 2012; Foley et al. 2005). These authors found
a time dilation or slowing down of the supernova by the factor of (z+1). They interpreted this result
as evidence that cosmological redshifts are caused by an expanding universe.

The above equation for time dilation in the stationary universe has the same (z+1) dependency, but
it is not associated with cosmic expansion rather it is due to the cosmological gravitational redshift.
We conclude: the observed light curve broadening can not be used to prove that the universe is
expanding. Segal, Andrews and Holushko (Segal 1997; And 2006; Holushko 2012) came to the same
conclusion although their theoretical standpoints are completely different than ours.

Comparing the above equation with observations of time dilation we conclude: γ = 1 and equation
5 reduces to:

(z + 1)2 = g00(r) (8)

3.3. Cosmological Solutions to the Field Equations

In our work cosmological solutions to the field equations of general relativity refers to those that
lead to the observed redshift-distance relationship and to the observed time dilation. We call the
gravitational redshifts associated with these solutions cosmological gravitational redshifts.

The solutions to the field equations contain constants. Our objective in this work is to demonstrate
that the cosmological gravitational redshift explains the observed redshift-distance relationship and
the observed time dilation. So we are not concerned with the physical meaning of the constants.
Rather we merely ask: What numerical values must the constants assume so that they lead to the
observed redshift-distance relationship and to the observed time dilation? Consequently, this initial
formulation of our theory is purely parametric.

To obtain the numerical values of the constants in g00(r) we will employ equation 8. The left side
of this equation is known from observations, whereas the right side is theoretical and comes from the
solutions to the field equations of general relativity. The numerical values of the constants in g00(r)
are obtained by curve fitting the g00(r) to the observations.

The first two solutions of the field equations that we consider are the most well known and also the
simplest, the Schwarzshild and Kottler metrics. For the Kottler metric we have:

g00 = 1− α

r
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The above equation is valid for the Schwarzschild metric too if we let λ = 0.
The zero point of the redshift-distance relationship is: z = 0 at r = 0, whereby equation 8 becomes:

g00(0) = 1. But, this point does not exist according equation 10 because α
r
→ ∞, as r → 0. Thus,

neither the Kottler nor the Schwarzschild metric lead to the observed redshift-distance relationship
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the observed redshift-distance relationship and to the observed time dilation? Consequently, this initial formulation of our theory is 
purely parametric.
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We conclude: the observed light curve broadening can not be used to prove that the universe is
expanding. Segal, Andrews and Holushko (Segal 1997; And 2006; Holushko 2012) came to the same
conclusion although their theoretical standpoints are completely different than ours.
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We investigated 17 solutions to the field equations to see, if they are cosmological solutions. Two of the solutions that are not 
cosmological are the Kerr solution, which corresponds to a rotating massive body and the Kerr solution with the cosmological 
constant.

We found five solutions that are cosmological. All five solutions are members of the Taub-NUT family of solutions. The Taub-
NUT solution to the vacuum field equations is considered a generalization of the Schwarzschild solution [75]. Taub discovered 
the solution [76]. Newman extented its static region. Misner stated “Taub-NUT space as a counterexample to almost anything” in 
gravity. Below we give the g00(r) components of the fundamental tensor for each of the five solutions and derive the numerical 
values of the constants they contain [77]. 

3.4 Comparison of Theory with Observations of Type Ia Supernova
In this section we compare the theoretical cosmological gravitational redshift on the right side of Equation 8, with the observed 
redshift-distance diagram from (Brout et al. 2022), which consists of 1699 Type Ia supernova. The data contains the observed 
relationship between spectral shift, z, and distance modulus, µ. We employ:
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consists of 1699 Type Ia supernova. The data contains the observed relationship between spectral
shift, z, and distance modulus, µ. We employ:

r = 10(
µ
5
+1)−9 (11)

to convert µ to r, the distance of a supernova in Gpc.
The Brout et al. data (Brout et al. 2022) contains the errors in the redshift, z, but in our analysis

we employ (z + 1)2, so we need to compute the error in this quantity. Expansion of (z + 1)2 is:

(z + 1)2 = z2 + 2z + 1 (12)

If the uncertainity in z is δz, then the uncertainity in z2 is
√
2δz and the uncertainity in 2z is also√

2δz (Taylor 1997). Thus the uncertainity in (z+1)2 is 2
√
2δz, which is significantly larger than δz.

3.4.1. Taub-NUT

The part of the Taub-NUT solution that interests us is Bardoux et al. (Bardoux et al. 2014)

g00(r) = −(
r2 − 2αr − n2

r2 + n2
) (13)

n is called the NUT parameter. As mentioned above we do not attempt to give α and n in our
cosmological theory a physical meaning. In this work we are concerned only with their numerical
values. Assuming the validity of the Big Bang theory Taub 1951 applied his metric to cosmology. In
contrast we employ this metric to compute the cosmological gravitational redshift and show that it
leads to the observed redshift-distance relationship.

Curve fitting the above equation to the left side of equation 8 leads to numerical values of the
constants: α = 17318. 7 21 and n = 269 .27087. Figure 1 shows that equation 8 along with the above
equation lead to the observed redshift-distance relationship.

We found that another set of numbers leads to agreement between theory, the right side of equation
8 and observation, the left side of equation 8. They are α = 6. 86977×1012 and n =5.36492×106.
Presumably the numbers given below for the other solutions are also not unique. This circumstance
may make it difficult to find physical interpretations of the constants employed in the g00(r).
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If the uncertainity in z is δz, then the uncertainity in z2 is
√
2δz and the uncertainity in 2z is also√

2δz (Taylor 1997). Thus the uncertainity in (z+1)2 is 2
√
2δz, which is significantly larger than δz.

3.4.1. Taub-NUT

The part of the Taub-NUT solution that interests us is Bardoux et al. (Bardoux et al. 2014)

g00(r) = −(
r2 − 2αr − n2

r2 + n2
) (13)

n is called the NUT parameter. As mentioned above we do not attempt to give α and n in our
cosmological theory a physical meaning. In this work we are concerned only with their numerical
values. Assuming the validity of the Big Bang theory Taub 1951 applied his metric to cosmology. In
contrast we employ this metric to compute the cosmological gravitational redshift and show that it
leads to the observed redshift-distance relationship.

Curve fitting the above equation to the left side of equation 8 leads to numerical values of the
constants: α = 17318. 7 21 and n = 269 .27087. Figure 1 shows that equation 8 along with the above
equation lead to the observed redshift-distance relationship.

We found that another set of numbers leads to agreement between theory, the right side of equation
8 and observation, the left side of equation 8. They are α = 6. 86977×1012 and n =5.36492×106.
Presumably the numbers given below for the other solutions are also not unique. This circumstance
may make it difficult to find physical interpretations of the constants employed in the g00(r).
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3.4.2. Charged Lorentzian Taub-NUT

Following Abbasvandi (Abbasvandi et al. 2021):

g00(r) = −(
r2 − 2αr − n2 + 4n2g2 + e2

r2 + n2
− 3n4 − 6n2r2 − r4

l2(r2 + n2)
) (14)

Curve fitting the above equation with equation 8 leads to agreement between theory and observation
except for a small constant difference at r < 0.9 Gpc. However, if we demand g00(0) = 1 as mentioned
above, we obtain the constraint:

e =

√
3n4 − 4n2g2l2

l
(15)
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3.4.3 Taub-Nut AdS
Following Mann [80].
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we were able to obtain a fit with the constants: α = 4.3767 × 1012, s = 4.28218 × 106 and l =
1.88052× 109. The values of l and s lead to: λ =-8.48327×10−19. Figure 3 depicts this fit.

Figure 3.

3.4.4. Kerr-Taub-NUT

Cosmological redshift 9

s is the NUT charge and the cosmological constant is: λ = − 3
l2

. We were not able to curve fit this
equation due to lack of convergence. However, when we added the condition: g00(0) = 1, which lead
to the equation:

κ =
l2 − 3s2

l2
(17)

we were able to obtain a fit with the constants: α = 4.3767 × 1012, s = 4.28218 × 106 and l =
1.88052× 109. The values of l and s lead to: λ =-8.48327×10−19. Figure 3 depicts this fit.

Figure 3.

3.4.4. Kerr-Taub-NUT

we were able to obtain a fit with the constants: α = 4.3767 × 1012, s = 4.28218 × 106 and l = 1.88052 × 109. The values of l and s lead 
to: λ =-8.48327×10−19. Figure 3 depicts this fit.
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3.4.4 Kerr-Taub-NUT
The Kerr-Taub-NUT metric is a solution to the vacuum Einstein-Maxwell equations, which is locally analytic. We obtain the g00 
from Miller [81]. 
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The Kerr-Taub-NUT metric is a solution to the vacuum Einstein-Maxwell equations, which is
locally analytic. We obtain the g00 from Miller (Miller 1973)

g00(r) = a2
sin(θ)2

Σ(r)
− ∆(r)

Σ(r)
(18)

with:
Σ(r) = r2 + (l + a cos(θ))2 (19)

and
∆(r) = r2 − 2αr − l2 + a2 + e2 (20)

Curve fitting leads to an agreement between theory and observation for r > 0.9 Gpc. At radial
distances less than this value a small constant deviation occurs. So we demand that the condition
g00(0) = 1 be fulfilled. This leads to the equation:

l =
(−a2 − e2 − a2 cos(2θ)) sec(θ)

2a
(21)

Curve fitting now leads to complete agreement between theory and observation over the entire range
of the observational data with the constants: a = −94.5928, θ = 246.622, α = 7.59802 × 107 and
e = −156.663. Figure 4 shows this agreement.

3.4.5. Kerr-Taub-NUT AdS

We obtain the required g00(r) from Rodriguez (Rodríguez & Rodriguez 2022):

g00(r) =
a2∆θ

Σ(r)
− ∆(r)

Σ(r)
(22)

whereby
Σ(r) = r2 + (n+ a cos(θ))2 (23)

∆θ = (1− 4an cos(θ)

l2
− a2 cos(θ)2

l2
) sin(θ)2 (24)

∆(r) = r2 + a2 − 2αr − n2 +
3(a2 − n2)n2 + (a2 + 6n2)r2 + r4

l2
(25)

As above the cosmological constant is: λ = − 3
l2

. The curve fitting procedure did not lead to
convergence. Consequently, we introduced the constaint: g00(0) = 1, which leads to:

l =

√
−3a2n2 + 3n4 − 4a3n cos(θ) sin(θ)2 − a4 cos(θ)2 sin(θ)2√

a2 + 2an cos(θ) + a2 cos(θ)2 − a2 sin(θ)2
(26)

These equations lead to convergence with: α = 21.2367, a = 9.11243, θ = 0.585696, and n = 2.1556.
These values inserted into the above equation lead to: λ = 0. 10533. Figure 5 shows the theoretical
curve in red along with the Type Ia Supernova data. It depicts an excellent agreement between
theory and observation.

Note how for r > 10 Gpc the red theoretical curve turns upward, unlike the other four solutions.
A large number of highly accurate Type Ia Supernova observations at r > 10 Gpc may confirm this
upward bending. If that is the case, then this solution may be the one unique solution, which fits
the data. This would mean that λ ̸= 0 and the Einstein field equations (equation 2) are the correct
equations for cosmology.
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Curve fitting now leads to complete agreement between theory and observation over the entire range of the observational data with 
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3.4.5 Kerr-Taub-NUT AdS
We obtain the required g00(r) from Rodriguez [82]:
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Note how for r > 10 Gpc the red theoretical curve turns upward, unlike the other four solutions. A large number of highly accurate 
Type Ia Supernova observations at r > 10 Gpc may confirm this upward bending. If that is the case, then this solution may be the 
one unique solution, which fits the data. This would mean that λ ≠ 0 and the Einstein field equations (equation 2) are the correct
equations for cosmology.
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4. COMPARISON WITH OTHER COSMOLOGICAL THEORIES

4.1. Big Bang Theory

Physical theories are based on assumptions. Different theories are based on different assump-
tions. Big Bang Theory is based on the Cosmological Principle, that is on the assumptions of
homogeneity and isotropy. They lead to the Friedman-Lemaitre-Robertson-Walker (FLRW) metric.
Instead our theory is based on the Taub-Nut solutions to the field equations of general relativity.
They are spatially homogeneous. The fundamental tensors employed in our cosmological theory are
not the metric of our entire universe for all spacetime, in the sense that the FLRW metric claims to
be, rather they are the metrics associated with the celestial sources from which we obtain the ob-
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4. Comparison With Other Cosmological Theories
4.1 Big Bang Theory
Physical theories are based on assumptions. Different theories are based on different assumptions. Big Bang Theory is based on the 
Cosmological Principle, that is on the assumptions of homogeneity and isotropy. They lead to the Friedman-Lemaitre-Robertson-
Walker (FLRW) metric. Instead our theory is based on the Taub-Nut solutions to the field equations of general relativity. They are 
spatially homogeneous. The fundamental tensors employed in our cosmological theory are not the metric of our entire universe for 
all spacetime, in the sense that the FLRW metric claims to be, rather they are the metrics associated with the celestial sources from 
which we obtain the observed redshift-distance relationship. These metrics are a generalization of the Schwarzchild metric.
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served redshift-distance relationship. These metrics are a generalization of the Schwarzchild metric
Newman et al. (1963).

In our theory non-relativistic matter and the CMB are not included (more on this circumstance
below). This differs from Big Bang cosmology, where the deceleration parameter and consequently the
redshift-distance relationship which depends upon it, is determined by the average density of matter
and energy in the universe. In our cosmology to the contrary the redshift-distance relationship is
determined by well known solutions to the field equations of general relativity, whereby the average
density of matter and energy in our universe play absolutely no role.

In Big Bang cosmology dark energy is an unknown form of energy required to explain the accel-
eration of the expansion of space. In our theory of cosmology there is no expansion and therefore
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In our theory non-relativistic matter and the CMB are not included (more on this circumstance below). This differs from Big 
Bang cosmology, where the deceleration parameter and consequently the redshift-distance relationship which depends upon it, 
is determined by the average density of matter and energy in the universe. In our cosmology to the contrary the redshift-distance 
relationship is determined by well-known solutions to the field equations of general relativity, whereby the average density of matter 
and energy in our universe play absolutely no role.

In Big Bang cosmology dark energy is an unknown form of energy required to explain the acceleration of the expansion of space. In 
our theory of cosmology there is no expansion and therefore no accelerated expansion and therefore no need to introduce the concept 
of dark energy as it is understood in ΛCDM cosmology. Consequently, the vacuum catastrophe mentioned in the introduction does 
not exist in our theory. In addition the other fundamental problems of the Big Bang theory: horizon, magnetic monopole, flatness and 
the prediction that the universe should contain equal amounts of matter and anti-matter also do not exist in our theory.

In the Big Bang theory to a good approximation the redshift is:
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The values obtained by curve fitting this equation with equation 8 do not lead to agreement between
observation and theory. We conclude: the Big Bang theory and our theory are incompatible with
each other.

We believe this conclusion is important and we strengthen it with the following: Using the Taub-
NUT solution specifically equations 8 and equation 13 along with the above equation we are lead to
the equation:
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But the Taub-NUT solution tells us that α is a constant and is not a function of r. Again we
conclude: the Big Bang theory and our theory are incompatible with each other. We suspect this
incompatibility means that both theories can not be correct, that is at least one of the two theories
is false. Finally, we note if we assume q0 = 0 in the above equations, we obtain the same results and
come to the same conclusions.

4.2. Cosmic Microwave Background

In the theory of the expanding universe, the CMB is the radiation left over from the Big Bang.
Clearly, our theory of cosmology demands that the CMB must have a different origin. This task
however has already been accomplished by the many scientists, who have discussed its origin without
Big Bang cosmology. First Guillaume (Guillaume 1896; Assis & Neves 2020) calculated that the
temperature of interstellar space from the presence of starlight to be 5.6oK and Eddington (Eddington
1988) 3.1oK while Regener (Regener 1933) using the energy density of cosmic rays found it to be:
2.8oK, which is very close to the measured value of: 2.72548oK (Fixsen 2009). Nernst (Nernst
1938) calculated the temperature of intergalactic space to be: 0.75oK and Finlay-Freundlich Finlay-
Freundlich (1954, 1953) calculated 1.90K ≤ T ≤ 6.00K for its temperature.

All of the above calculations were made without employing the notion of a Big Bang. Born (Born
1954) was the first to realize that these temperatures mean that the electromagnetic waves emitted
would fall in the radio region. No one looked for these electromagnetic waves and they (the CMB) was
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But the Taub-NUT solution tells us that α is a constant and is not a function of r. Again we conclude: the Big Bang theory and our 
theory are incompatible with each other. We suspect this incompatibility means that both theories cannot be correct, that is at least one 
of the two theories is false. Finally, we note if we assume q0 = 0 in the above equations, we obtain the same results and come to the 
same conclusions.

4.2 Cosmic Microwave Background
In the theory of the expanding universe, the CMB is the radiation left over from the Big Bang. Clearly, our theory of cosmology 
demands that the CMB must have a different origin. This task however has already been accomplished by the many scientists, who have 
discussed its origin without Big Bang cosmology. First Guillaume calculated that the temperature of interstellar space from the presence 
of starlight to be 5.6oK and Eddington 3.1oK while Regener using the energy density of cosmic rays found it to be: 2.8oK, which is very 
close to the measured value of: 2.72548oK. Nernst calculated the temperature of intergalactic space to be: 0.75oK and Finlay-Freundlich 
calculated 1.90K ≤ T ≤ 6.00K for its temperature [82-86].

All of the above calculations were made without employing the notion of a Big Bang. Born was the first to realize that these temperatures 
mean that the electromagnetic waves emitted would fall in the radio region [87,88]. No one looked for these electromagnetic waves and 
they (the CMB) was serendipitously discovered by Penzias and Wilson. Following Kellermann’s suggestion one can spreculate how 
the history of cosmology might have been very different, if radio astronomers had looked for and found the CMB based on the above 
calculations and Born’s insight. In fact, because these values were more accurate than those initially predicted by proponents of the 
Big Bang (Alpher, Herman and Gamow (Alpher & Herman 1948; Alpher et al. 1948; Gamow 1953, 1961)), Assis and Neves (Assis & 
Neves 1995) concluded that the CMB provides evidence for a nonexpanding universe rather than for an expanding one [89-99]. Other 
non-Big Bang explanations for the origin of the CMB are(Layzer & Hively 1973; Rees 1978; Carr 1981; Wright 1982; Assis 1993; 
Assis et al. 2009; Fahr & Zönnchen 2009) [94-99].

4.3 Stationary Universes
The concept of a non-expanding universe is not at all new. In fact, historically, it was the first theory of physical cosmology. Starting 
with Olbers and continuing with Einstein, DeSitter, Lense, Lanczos and Nernst it dominated up until the 1920’s. The discovery of 
cosmological redshifts by Slipher 1915 eventually caused a change of thought.

The cosmological redshift-recessional velocity relationship being an assumption has opened the door to a variety of possible explanations 
for the origin of cosmological redshifts (see Kragh for a review). One of these explanations was that the observed cosmological redshift 
is due to the gravitational redshift Kaiser [100].

Many of these explanations come under the broad term tired-light hypothesis. Starting with Zwicky and continuing with Hubble and 
Tolman. A non-expanding universe explanation for the cosmological redshift is also found in many other publications [101-111].

Our approach is not related to any of these other explanations. It differs from them in that in our theory of cosmology the origin of 
the observed cosmological redshift is the cosmological gravitational redshift. This interpretation of redshift agrees with the work of 
(Ostermann 2002, 2003).

5. Conclusion
The goodness of the fit in figures 1-5 makes clear that a stationary (non-expanding) universe based on the cosmological gravitational 
redshift explains the observed redshift-distance relationship. It also explains the observed time dilation, which has generally been seen 
as proof that space is expanding. Thus, the concept of the expansion of space is not needed to explain these fundamental observational 
relationships in cosmology.
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In our theory of cosmology there is no Big Bang and therefore no early universe as it is understood in ΛCDM cosmology. Consequently, 
there is no Hubble tension in our theory of cosmology.
Both ΛCDM and our cosmology are based on the field equations of general relativity. However, Big Bang cosmology assumes 
that cosmological redshifts are caused by the expansion of space, whereas our theory suggests that they are a manifestation of the 
cosmological gravitational redshift. From the standpoint of our cosmology the concepts of Big Bang cosmology are superfluous [112-
127].
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