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Abstract
The interesting aspect that we are paying attention to in this article here is the variation of the kinetic distribution function 
of particles subject to the early Hubble expansion of the universe. Some generally made assumptions namely are not 
fulfilled here: Neither does their distribution function stay a Maxwellian as expected for the cosmic begin, nor does the 
density of these particles simply fall off as expected in a homogeneous universe with the cosmic scale R = R(t) like n(t) = n0 
(R0 /R)3. Instead we do show here, that it is quite complicated to understand, how cosmic gases like the first H-atoms, after 
recombination out of the plasma state of cosmic matter, do thermodynamically behave under the ongoing omni-directional 
Hubble-like expansion dynamics of the universe. This is because there is no trivial answer to the question, how cosmic 
gas atoms do in fact recognize the expansion of cosmic 3- space they are embedded in. Standard mainstream cosmology 
takes for granted that gas atoms do react polytropically or even adiabatically to cosmic volume changes, consequently 
assuming that they do get more and more tenuous and colder in accordance with gas- and thermo- dynamic expectations. 
However, one has to face the fact that cosmic gases at the recombination era are already nearly collisionless over scales of 
10 AU. How then do they recognize cosmic volume changes under such conditions and how do they react to it kinetically? 
We derive in this article a kinetic transport equation which describes the evolution of the gas distribution function f(t, v) 
in cosmic time t and velocity space of v. This resulting partial differential equation does not allow for a solution in form a 
separation of the two variables t and v, but instead one obtains that f(v, t) is non-Maxwellian with its two lowest moments, 
i.e density n(t) and the pressure P(t), as pure functions of cosmic time t. Then we show that using kappa-like distribution 
functions f(t, v) = f κ(t, v) for the cosmic gas we can derive such functions as function of their velocity moments, i.e. as pure 
functions of cosmic time. It means we understand the kinetic evolution of the cosmic gas by understanding the evolution 
in cosmic time of their moments nκ(t) and Pκ(t) with K = K(t).
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1. A Short Review On Cosmic Matter Recombination
It is generally assumed that before the phase of matter 
recombination cosmic matter and radiation were in perfect 
thermodynamic equilibrium, implying that protons and electrons 
in this evolutionary phase are described by Maxwell distributions 
f(v, t0) = Max(v, T0) and photons are distributed according to 
a Planckian black body spectrum for the common temperature 
T0 = T0(t0). A deeper look, however, into the kinetic theory of 
the physical processes close to and just after the recombination 
phase of electrons and protons, makes it evident that in a 
homologously expanding universe, like in a Friedman-Lemaître 
universe, the baryon distribution function can not be expected 
to maintain its Maxwellian shape, since its most relevant 
velocity moments, i.e. the density and the temperature, vary in 
an unexpected nonclassical, non-adiabatic and non-isentropic 
manner (see Fahr, 2021). As consequence of that the entropy 
of H-atoms decreases at this phase of the cosmic expansion, 
in fact it changes with cosmic time in contrast to the standard 

thermodynamical gas behaviour.

Let us pay a brief look on the phase of this early cosmic electron 
- proton recombinations, perhaps thought to have occured at 
about 400000 years after the so-called Big-Bang, when the 
temperatures T of the cosmic plasma dropped to below 4000K 
(see e.g. Partridge, 1965, or later Fahr and Loch, 1991, Fahr and 
Zoennchen, 2009). It is assumed that at this phase electrons and 
protons are dynamically and physically tightly coupled to each 
other, since undergoing strong and frequent mutual interactions, 
both by Coulomb collisions and by Compton collisions with 
photons. Under such prerequisites a pure thermodynamical 
equilibrium state seems to be guaranteed, in fact implying that 
protons and electrons are distributed in velocity-space according 
to a Maxwellian velocity distribution, and photons maintain a 
Planckian blackbody spectrum in frequency. However, looking 
on this relevant point more in detail gives evidence that these 
assumptions are hardly fulfilled even in this early period, mainly 
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because photons and particles react very differently to the cosmic 
expansion.

Photons generally are cooling due to permanently being 
cosmologically redshifted (see e.g. Peacock, 1999, Goenner, 
1996, Fahr and Heyl, 2017). In contrast particles are not directly 
feeling the expansion of the universe, they are more or less freely 
moving through cosmic space, unless they feel the expansion 
adiabatically by mediation of the changing thermodynamic gas 
conditions via numerous Coulomb collisions with other particles.

Over distances D where the cosmic gas atoms can be considered 
as collision-free, i.e. for D ≤ λc (with λc denoting the actual mean 
free path with respect to elastic collisions), they will not feel 
the expansion at all. Only beyond, at distances D > λc, those 
atoms with velocities larger than v ≥ λc • H (i.e. the critical 
Hubble drift!) are touching the so-called "collisional wall" of 
their cosmic environment and will start recognizing the cosmic 
expansion by the fact that the local bulk velocity of particles 
has changed, while others with v ≤ λc • H are not touching this 
wall, i.e. not recognizing this bulk velocity change. Hereby the 
expansion of the universe is described by the Hubble parameter 
with H =  R/R, where R denotes the scale of the universe, and   its 
derivative with respect to cosmic time t. Or expressing it in other 
words, if one expands the walls of a collision-free gas with a 
supersonic velocity V ≫ vs, then this gas will not recognize at all 
the expansion, only the few particles out of the gas distribution 
function with velocities v > vs can interact with the wall and 
thus can react "adiabatically" by returning to the system with 
accordingly reduced energy.

Furthermore an additional problem occurs, since Coulomb 
collisions redistributing velocities among particles and 
reconstituting the distribution function have a specific property 
which seriously aggravates things in this context. Namely 
the fact that Coulomb collision cross sections are strongly 
dependent on the relative velocity w of the colliding particles 
since in case of Coulomb collisions being proportional to (1/
w4) (see Spitzer, 1956). This has the consequence that high-
velocity particles are much less collision-dominated compared 
to low-velocity ones. The latter ones even behave as collison-
free at supercritically large velocities v > vc, not cooling at all. 
While the low-velocity branch of the distribution may still cool 
adiabatically, like a collision-dominated gas would do. Thus 
this low-velocity branch of the distribution feels and reacts to 
the cosmic expansion in an adiabatic form, the high-velocity 
branch in contrast behaves collision-free and hence changes in a 
different, yet at this moment here unspecified form.

This violates the concept of a joint equilibrium temperature and 
of a resulting mono-Maxwellian velocity distribution function. 
It means that there may be a critical evolutionary phase of the 
universe as consequence of different forms of cooling in the low- 
and high-velocity branches of the particle velocity distribution 

function. Such a situation does not permit the endurance of a 
Maxwellian distribution to later cosmic times. Hence we shall 
now look into this interesting evolutionary expansion phase a 
bit deeper and try to draw some first conclusions concerning the 
cosmic gas behaviour in the post-recombination era. We shall 
also demonstrate here that the realistic behaviour of cosmic 
gases during this phase and later depends on the specific form of 
the Hubble expansion of the universe, especially when at these 
days an accelerated expansion phase is discussed, will strongly 
influence the thermodynamics of the cosmic gas , creating - so-
called "over-Maxwellian"- depletions of high velocity particles, 
i.e. distributions with strongly suppressed high-velocity particles. 
Just such types of functions with over-cooled tails we shall try to 
describe in the forthcoming sections of this paper.

2. Derivation of the kinetic transport equation for cosmic 
gases
We start out from the generally accepted assumption in 
modern cosmology, that during the collision-dominated 
phase of the cosmic matter evolution, just before the time of 
matter recombination, matter and radiation, due to frequent 
energy exchange processes between electrons and photons, as 
beween electrons and protons, are in complete thermodynamic 
equilibrium, i.e. the temperatures of matter and radiation are 
identical: i.e. Tm = Tv = T0. In the following cosmic evolution 
this equilibrium will not survive, however, NLTE- perturbations 
will come up, as had already been emphasized in the section 
above and earlier by Fahr and Loch (1991). The upcoming part 
of the paper shall demonstrate now that, even if a Maxwellian 
distribution would actually prevail at the entrance to the collision-
free cosmic expansion phase, it would not persist to times there 
after. Just after the recombination phase when electrons and 
protons recombine to H-atoms, and photons start propagating 
through cosmic space practically without further interaction 
with particles, the thermodynamic contact between matter and 
radiation furtheron hence is abolished or, to say it differently, 
is practically switched off. This is one reason why the initial 
Maxwellian atom distribution function would not persist in the 
universe during the ongoing collision-free expansion. On the 
other hand, however, the isolated fate of the radiation field does 
not lead to a non-equilibrium, nonthermal NLTE radiation field. 
This is because cosmic redshift cooling of a Planck spectrum 
again leads to a Planck spectrum, however with a reduced 
temperature, as has been shown by Fahr and Zoennchen (2009) 
or Fahr and Sokaliwska (2015).

To enlucidate this point let us first consider a collision-free 
particle population in an expanding, spatially symmetric 
Robertson-Walker universe. Hereby it is clear that due to the 
cosmological principle and, connected with it, the requirement 
of spatial homogeneity, also the velocity distribution function of 
the particles must be specifically symmetric and isotropic in v, 
and independent on the local cosmic place x. Thus it must be of 
the following general form 

.
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This is because cosmic redshift cooling of a Planck spectrum again leads to a Planck spectrum,
however with a reduced temperature, as has been shown by Fahr and Zoennchen (2009) or Fahr
and Sokaliwska (2015).

To enlucidate this point let us first consider a collision-free particle population in an
expanding, spatially symmetric Robertson-Walker universe. Hereby it is clear that due to the
cosmological principle and, connected with it, the requirement of spatial homogeneity, also the
velocity distribution function of the particles must be specifically symmetric and isotropic in v,
and independent on the local cosmic place x. Thus it must be of the following general form

fv, t  nt  fv, t   #   

where nt denotes the time-variable, cosmic density, only depending on the worldtime t, and
fv, t is the normalized, time-dependent, isotropic velocity distribution function with the
property:  fv, td³v  1.

If we now do take into account that particles, moving freely with their velocity v into their
v-associated directions over a distance l , at their new place of reappearance have to restitute the
actual cosmic distribution there, despite the differential Hubble flow and the explicit
time-dependence of f , then a locally prevailing co-variant distribution function fv‘ , t´ must
exist with the property that the two associated functions fv‘ , t´ and fv, t are related to each
other in a Liouville-conform way (see e.g. Cercigniani, 1988, Landau-Lifshitz, 1990). To
quantify this request needs some special care, since particles that are freely moving in a
homologously expanding Hubble universe, do in this specific case at their motions not conserve
their associated phasespace volumes d6  d³vd³x as they usually do in gas dynamics, since in a
homologously expanding cosmic space no particle Lagrangian Lv,x does exist, as usually does
in gas dynamics, and thus no Hamiltonian canonical relations of their dynamical coordinates v
and x are valid.

As consequence Liouville‘s theorem (see e.g Chapman and Cowling, 1952) does not require
that the two associated differential 6D-phase space volumes - d6 and d6´ - are identical, but
that the conjugated differential phase space densities are identical to guarantee the cosmic
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where n(t) denotes the time-variable, cosmic density, only 
depending on the worldtime t, and f(v, t) is the normalized, 

time-dependent, isotropic velocity distribution function with the 
property:−
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If we now do take into account that particles, moving freely with 
their velocity v into their v-associated directions over a distance 
l, at their new place of reappearance have to restitute the actual 
cosmic distribution there, despite the differential Hubble flow 
and the explicit time-dependence of f, then a locally prevailing 
co-variant distribution function f(v‘, t´) must exist with the 
property that the two associated functions f(v‘, t´) and f(v, t) 
are related to each other in a Liouville-conform way (see e.g. 
Cercigniani, 1988, Landau-Lifshitz, 1990). To quantify this 
request needs some special care, since particles that are freely 
moving in a homologously expanding Hubble universe, do in 
this specific case at their motions not conserve their associated 

phasespace volumes d6Φ = d³vd³x as they usually do in gas 
dynamics, since in a homologously expanding cosmic space 
no particle Lagrangian L(v, x) does exist, as usually does in gas 
dynamics, and thus no Hamiltonian canonical relations of their 
dynamical coordinates v and x are valid.

As consequence Liouville‘s theorem (see e.g Chapman and 
Cowling, 1952) does not require that the two associated 
differential 6D-phase space volumes - d6Φ and d6Φ´ - are 
identical, but that the conjugated differential phase space 
densities are identical to guarantee the cosmic particle number 
conservation. This is expressed by the following relation:

⃗

particle number conservation. This is expressed by the following relation:

f‘ v‘ , t´d3v‘d³x‘ fv, td³vd³x 1   #   

When arriving at the place x´, these particles, after passage over a distance l need to be
incorporated into a particle population which has a relative Hubble drift with respect to the
original place of the particle given by vH  l  H , co-aligned with v. Thus the original particle
velocity v registered at the new place x´ appears locally tuned down to v‘ v  l  H , since at the
present place x´, deplaced from the original place x by the increment l, all velocities have to be
judged with respect to the new local reference frame (standard of rest) with its differential
Hubble drift of (l  H) with respect to the particle´s origin x.

If all of that is taken into account, it can be shown (see Fahr, 2o21) that one finally is lead to

the following kinetic transport equation:

f
t  vHt   f

v   Ht  f 2

which should enable one to derive the resulting distribution function as function of the velocity
v and of the cosmic time t. Of course it is assumed hereby that the Hubble parameter H  Ht is
known as function of the world time t (as e.g given by Perlmutter, Aldering, Goldhabe et al.,
1999, or Perlmutter, 2003) . As it was shown already by Fahr (2021), the above kinetic transport
equation does not allow for a solution in the form of a separation of variables , i.e. putting
fv, t  ftt  fvv, but one rather needs a different, non-straightforward method of finding a
kinetic solution of this above transport equation 2 which now is done next here.

Cosmic Kappa-functions

One way which may prove to be promising here, is to think of kappa-functions as the
underlying distribution functions at cosmic times after the matter recombination. These latter
functions a priori have the advantage of covering all kinetic function phenomena spanned
between pure power law functions and pure Maxwellian functions (see e.g. Lazar, Fichtner,
Yoon, 2016, Fahr and Fichtner, 2021) which have to be expected at times after matter
recombination in the universe (t  t0!) . Let us therefore now have a look on this latter type of
functions with respect to their applicability on this problem in cosmology.

Starting from an isotropic kappa-distribution in the frame of the cosmic bulk motion which
latter has to dissappear anyway in a Robertson-Walker universe (i.e. due to the cosmological
principle requiring full 3D- space symmetry!). Locally specific bulk motions would evidently
violate this cosmological principle. These types of required functions are generally given in the
following form (see e.g. Lazar, Fichtner and Yoon, 2016)

fv  n
3/23/23

  1
  1/2

1  v2

2 1 3

Here n denotes the particle density,  and  denote two independent, typical kappa-function
parameters, and   z means the well known mathematical Gamma-function for the
argument z. The above distribution function fv is typical for deviations from the normally
expected thermodynamical, collision-dominated equilibrium situation which latter would be
characterized by a Maxwellian distribution and would automatically be contained in the upper
function family by the case   .

Calculating now on the basis of the above distribution function fv the associated pressure
moment P , by carrying out the necessary velocity-space integration, then leads to the following
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principle requiring full 3D- space symmetry!). Locally specific bulk motions would evidently
violate this cosmological principle. These types of required functions are generally given in the
following form (see e.g. Lazar, Fichtner and Yoon, 2016)

fv  n
3/23/23

  1
  1/2

1  v2

2 1 3

Here n denotes the particle density,  and  denote two independent, typical kappa-function
parameters, and   z means the well known mathematical Gamma-function for the
argument z. The above distribution function fv is typical for deviations from the normally
expected thermodynamical, collision-dominated equilibrium situation which latter would be
characterized by a Maxwellian distribution and would automatically be contained in the upper
function family by the case   .

Calculating now on the basis of the above distribution function fv the associated pressure
moment P , by carrying out the necessary velocity-space integration, then leads to the following

particle number conservation. This is expressed by the following relation:

f‘ v‘ , t´d3v‘d³x‘ fv, td³vd³x 1   #   

When arriving at the place x´, these particles, after passage over a distance l need to be
incorporated into a particle population which has a relative Hubble drift with respect to the
original place of the particle given by vH  l  H , co-aligned with v. Thus the original particle
velocity v registered at the new place x´ appears locally tuned down to v‘ v  l  H , since at the
present place x´, deplaced from the original place x by the increment l, all velocities have to be
judged with respect to the new local reference frame (standard of rest) with its differential
Hubble drift of (l  H) with respect to the particle´s origin x.

If all of that is taken into account, it can be shown (see Fahr, 2o21) that one finally is lead to

the following kinetic transport equation:

f
t  vHt   f

v   Ht  f 2

which should enable one to derive the resulting distribution function as function of the velocity
v and of the cosmic time t. Of course it is assumed hereby that the Hubble parameter H  Ht is
known as function of the world time t (as e.g given by Perlmutter, Aldering, Goldhabe et al.,
1999, or Perlmutter, 2003) . As it was shown already by Fahr (2021), the above kinetic transport
equation does not allow for a solution in the form of a separation of variables , i.e. putting
fv, t  ftt  fvv, but one rather needs a different, non-straightforward method of finding a
kinetic solution of this above transport equation 2 which now is done next here.

Cosmic Kappa-functions

One way which may prove to be promising here, is to think of kappa-functions as the
underlying distribution functions at cosmic times after the matter recombination. These latter
functions a priori have the advantage of covering all kinetic function phenomena spanned
between pure power law functions and pure Maxwellian functions (see e.g. Lazar, Fichtner,
Yoon, 2016, Fahr and Fichtner, 2021) which have to be expected at times after matter
recombination in the universe (t  t0!) . Let us therefore now have a look on this latter type of
functions with respect to their applicability on this problem in cosmology.

Starting from an isotropic kappa-distribution in the frame of the cosmic bulk motion which
latter has to dissappear anyway in a Robertson-Walker universe (i.e. due to the cosmological
principle requiring full 3D- space symmetry!). Locally specific bulk motions would evidently
violate this cosmological principle. These types of required functions are generally given in the
following form (see e.g. Lazar, Fichtner and Yoon, 2016)
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Here n denotes the particle density,  and  denote two independent, typical kappa-function
parameters, and   z means the well known mathematical Gamma-function for the
argument z. The above distribution function fv is typical for deviations from the normally
expected thermodynamical, collision-dominated equilibrium situation which latter would be
characterized by a Maxwellian distribution and would automatically be contained in the upper
function family by the case   .

Calculating now on the basis of the above distribution function fv the associated pressure
moment P , by carrying out the necessary velocity-space integration, then leads to the following
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judged with respect to the new local reference frame (standard of rest) with its differential
Hubble drift of (l  H) with respect to the particle´s origin x.
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v and of the cosmic time t. Of course it is assumed hereby that the Hubble parameter H  Ht is
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recombination in the universe (t  t0!) . Let us therefore now have a look on this latter type of
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Starting from an isotropic kappa-distribution in the frame of the cosmic bulk motion which
latter has to dissappear anyway in a Robertson-Walker universe (i.e. due to the cosmological
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parameters, and   z means the well known mathematical Gamma-function for the
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characterized by a Maxwellian distribution and would automatically be contained in the upper
function family by the case   .

Calculating now on the basis of the above distribution function fv the associated pressure
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v and of the cosmic time t. Of course it is assumed hereby that the Hubble parameter H  Ht is
known as function of the world time t (as e.g given by Perlmutter, Aldering, Goldhabe et al.,
1999, or Perlmutter, 2003) . As it was shown already by Fahr (2021), the above kinetic transport
equation does not allow for a solution in the form of a separation of variables , i.e. putting
fv, t  ftt  fvv, but one rather needs a different, non-straightforward method of finding a
kinetic solution of this above transport equation 2 which now is done next here.
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recombination in the universe (t  t0!) . Let us therefore now have a look on this latter type of
functions with respect to their applicability on this problem in cosmology.

Starting from an isotropic kappa-distribution in the frame of the cosmic bulk motion which
latter has to dissappear anyway in a Robertson-Walker universe (i.e. due to the cosmological
principle requiring full 3D- space symmetry!). Locally specific bulk motions would evidently
violate this cosmological principle. These types of required functions are generally given in the
following form (see e.g. Lazar, Fichtner and Yoon, 2016)
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Here n denotes the particle density,  and  denote two independent, typical kappa-function
parameters, and   z means the well known mathematical Gamma-function for the
argument z. The above distribution function fv is typical for deviations from the normally
expected thermodynamical, collision-dominated equilibrium situation which latter would be
characterized by a Maxwellian distribution and would automatically be contained in the upper
function family by the case   .

Calculating now on the basis of the above distribution function fv the associated pressure
moment P , by carrying out the necessary velocity-space integration, then leads to the following
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When arriving at the place x´, these particles, after passage over a distance l need to be
incorporated into a particle population which has a relative Hubble drift with respect to the
original place of the particle given by vH  l  H , co-aligned with v. Thus the original particle
velocity v registered at the new place x´ appears locally tuned down to v‘ v  l  H , since at the
present place x´, deplaced from the original place x by the increment l, all velocities have to be
judged with respect to the new local reference frame (standard of rest) with its differential
Hubble drift of (l  H) with respect to the particle´s origin x.

If all of that is taken into account, it can be shown (see Fahr, 2o21) that one finally is lead to

the following kinetic transport equation:
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which should enable one to derive the resulting distribution function as function of the velocity
v and of the cosmic time t. Of course it is assumed hereby that the Hubble parameter H  Ht is
known as function of the world time t (as e.g given by Perlmutter, Aldering, Goldhabe et al.,
1999, or Perlmutter, 2003) . As it was shown already by Fahr (2021), the above kinetic transport
equation does not allow for a solution in the form of a separation of variables , i.e. putting
fv, t  ftt  fvv, but one rather needs a different, non-straightforward method of finding a
kinetic solution of this above transport equation 2 which now is done next here.

Cosmic Kappa-functions

One way which may prove to be promising here, is to think of kappa-functions as the
underlying distribution functions at cosmic times after the matter recombination. These latter
functions a priori have the advantage of covering all kinetic function phenomena spanned
between pure power law functions and pure Maxwellian functions (see e.g. Lazar, Fichtner,
Yoon, 2016, Fahr and Fichtner, 2021) which have to be expected at times after matter
recombination in the universe (t  t0!) . Let us therefore now have a look on this latter type of
functions with respect to their applicability on this problem in cosmology.

Starting from an isotropic kappa-distribution in the frame of the cosmic bulk motion which
latter has to dissappear anyway in a Robertson-Walker universe (i.e. due to the cosmological
principle requiring full 3D- space symmetry!). Locally specific bulk motions would evidently
violate this cosmological principle. These types of required functions are generally given in the
following form (see e.g. Lazar, Fichtner and Yoon, 2016)
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Here n denotes the particle density,  and  denote two independent, typical kappa-function
parameters, and   z means the well known mathematical Gamma-function for the
argument z. The above distribution function fv is typical for deviations from the normally
expected thermodynamical, collision-dominated equilibrium situation which latter would be
characterized by a Maxwellian distribution and would automatically be contained in the upper
function family by the case   .

Calculating now on the basis of the above distribution function fv the associated pressure
moment P , by carrying out the necessary velocity-space integration, then leads to the following
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Here n denotes the particle density, κ and Θ denote two 
independent, typical kappa-function parameters, and Γ = Γ(z) 
means the well known mathematical Gamma-function for the 
argument z. The above distribution function fκ(v) is typical 
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collision-dominated equilibrium situations which latter would 
be characterized by a Maxwellian distribution and would 
automatically be contained in the upper function family by the 
case κ → ∞.

Calculating now on the basis of the above distribution function 
fκ(v) the associated pressure moment Pκ, by carrying out the 
necessary velocity-space integration, then leads to the following 
expression (see e.g. Heerikhuisen et al., 2008, Fahr and Fichtner, 
2021):

expression (see e.g. Heerikhuisen et al., 2008, Fahr and Fichtner, 2021):

P  4m
3 

0


fvv4dv  m

2 n2 
  3/2

with m denoting the particle mass. This then shows, however, that kappa distributions with
kappa-function parameters  and  nevertheless do lead to the same pressure moment P (i.e.
"isobaric" functions!), – if! the   associated parameter  (i.e. the "thermal" spread of the
function) is a specific function of  , i.e.    , and if! this function  is given through
the following relation:

2  2P
  3/2
mn  ,M

2   3/2


This then opens up another possibility, or if prefered an other way around, one namely can
keep P as a function parameter of the distribution function and can express  as function of the
remaining other function parameters ,n,P in the form:

2,n,P  2P
  3/2
mn  2P

mn
  3/2



This for instance is generally practised in writing Maxwellians Maxv as functions of their
two velocity moments nMax and TMax  PMax/KnMax in the form:

Maxv  nMax
1

TMax3/2 exp mv2

KTMax


In this sense, analogue to the above example, the above kappa-type distribution function 3
could as well be expressed through its parameter  and the function moments n and P in the
form:

fv  n
3/23/2 2P

mn
3/2
 3/2

  1
  1/2

1  mnv2

2P  3/2

1

4

which for    reproduces the upper Maxwellian Maxv.

Now it turns out from a recent paper (Fahr, 2021) that, prior to the knowledge of the
distribution function fv itself, one can show that the moments of the above function, starting
from the kinetic transport equation Equ.(2) for gases in an expanding universe, can be found
without having at first available the solution of this kinetic transport equation. Namely from the
corresponding moment transport equations of this equation (see Fahr, 2021) the moments nt
and Pt can be derived, and with the Hubble parameter H0  R 0/R0 (the problem of treating
the Hubble parameter as a constant will be discussed in the next section) , lead to the following
results for the time-dependence of these moments can be found as given in the following form:

n n0 exp4H0t  t0 5   #   

and:

Pt  P0exp6H0t  t0 6

This requires prior to solving Equ.(1) that the kinetic distribution function, whatever form it
has, has to obey the following fact:
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2 n2 
  3/2

with m denoting the particle mass. This then shows, however, that kappa distributions with
kappa-function parameters  and  nevertheless do lead to the same pressure moment P (i.e.
"isobaric" functions!), – if! the   associated parameter  (i.e. the "thermal" spread of the
function) is a specific function of  , i.e.    , and if! this function  is given through
the following relation:

2  2P
  3/2
mn  ,M

2   3/2


This then opens up another possibility, or if prefered an other way around, one namely can
keep P as a function parameter of the distribution function and can express  as function of the
remaining other function parameters ,n,P in the form:

2,n,P  2P
  3/2
mn  2P

mn
  3/2



This for instance is generally practised in writing Maxwellians Maxv as functions of their
two velocity moments nMax and TMax  PMax/KnMax in the form:

Maxv  nMax
1

TMax3/2 exp mv2

KTMax


In this sense, analogue to the above example, the above kappa-type distribution function 3
could as well be expressed through its parameter  and the function moments n and P in the
form:

fv  n
3/23/2 2P

mn
3/2
 3/2

  1
  1/2

1  mnv2

2P  3/2

1

4

which for    reproduces the upper Maxwellian Maxv.

Now it turns out from a recent paper (Fahr, 2021) that, prior to the knowledge of the
distribution function fv itself, one can show that the moments of the above function, starting
from the kinetic transport equation Equ.(2) for gases in an expanding universe, can be found
without having at first available the solution of this kinetic transport equation. Namely from the
corresponding moment transport equations of this equation (see Fahr, 2021) the moments nt
and Pt can be derived, and with the Hubble parameter H0  R 0/R0 (the problem of treating
the Hubble parameter as a constant will be discussed in the next section) , lead to the following
results for the time-dependence of these moments can be found as given in the following form:

n n0 exp4H0t  t0 5   #   

and:

Pt  P0exp6H0t  t0 6

This requires prior to solving Equ.(1) that the kinetic distribution function, whatever form it
has, has to obey the following fact:

This then opens up another possibility, or if prefered an other 
way around, one namely can keep Pκ as a function parameter of 

the distribution function and can express Θ as function of the 
remaining other function parameters κ, nκ, Pκ in the form:

This for instance is generally practised in writing Maxwellians Max(v) as functions of their two velocity moments nMax and TMax 
= PMax/(KnMax) in the form:

In this sense, analogue to the above example, the above kappa-type distribution function (3) could as well be expressed through its 
parameter κ and the function moments nκ and Pκ in the form:

which for κ → ∞ reproduces the upper Maxwellian Max(v).

Now it turns out from a recent paper (Fahr, 2021) that, prior to 
the knowledge of the distribution function fκ(v) itself, one can 
show that the moments of the above function, starting from the 
kinetic transport equation (2) for gases in an expanding universe, 
can be found without having at first available the solution of 

this kinetic transport equation. Namely from the corresponding 
moment transport equations of this equation (see Fahr, 2021) 
the moments nκ(t) and Pκ(t) can be derived, and with the Hubble 
parameter H0 = (R0) R/R0 (the problem of treating the Hubble 
parameter as a constant will be discussed in the next section), 
lead to the following results for the time-dependence of these 
moments can be found as given in the following form:

̇

and:

This requires prior to solving equation (1) that the kinetic distribution function, whatever form it has, has to obey the following fact:

Pt
nt

 P0
n0

exp2H0t  t0

If we now take this knowledge and introduce it into the upper form of a cosmic
kappa-function, we then obtain the following form for it:

fv, t
n0 exp4H0t  t0

3/23/2 2P0
mn0 exp2H0t  t0 3/2

 3/2

  1
  1/2

 1  mnov2

2P0 exp2H0t  t0  3/2

1

or after some evident mathematical rearrangements:

fv, t
n0 expHot  t0
3/23/2 2P0

mn0
3/2
 3/2

  1
  1/2

 1 
1
2 mv

2

P0/n0exp2H0t  t0  3/2

1

7

We now introduce the following quantity, - one could call it: the mean thermal particle energy

E0 at the cosmic time t  t0 - :

E0  P0
n0

 n0kT0
n0

and, when doing so, obtain the upper distribution function 7 in the following form:

fv, t 
n0 expH0t  t0
3/23/2 2E0

m
3/2
 3/2

  1
  1/2

1 
1
2 mv

2

E0
exp2H0t  t0
  3/2


1

8

or when expressing for practical reasons the mean thermal energy by E0  1/2mv0
2 one

obtains:

fv, t 
n0 expH0t  t0
3/23/2v0

3 3/2
 3/2

  1
  1/2

1 
v2

v0
2 exp2H0t  t0

  3/2

1

9

Finally one obtains the differential velocity space density, with introduction of the normalized
variable w  v/v0, by the following expression:

fx, tx2dx  n0 expH0t  t0
3/2  3/23/2

  1
  1/2

 1  x2 exp2H0t  t0
  3/2

1w2dw 10

The above function is essentiallly well defined concerning its v  and t  dependencies , - up to
the missing knowledge on the time-dependence of the parameter   t. Assuming, however,
the prevalence of a Maxwellian distribution at time t  to would imply that t0  0  10, and
then expecting for later cosmic times t  t0 due to the Hubble-drift influence more
low-velocity-loaded "over-Maxwellian ´ized" distributions should suggest that the   parameter
perhaps continues to decrease according to t  0 expHt  t0. This then leads to the

Pt
nt

 P0
n0

exp2H0t  t0

If we now take this knowledge and introduce it into the upper form of a cosmic
kappa-function, we then obtain the following form for it:

fv, t
n0 exp4H0t  t0

3/23/2 2P0
mn0 exp2H0t  t0 3/2

 3/2

  1
  1/2

 1  mnov2

2P0 exp2H0t  t0  3/2

1

or after some evident mathematical rearrangements:

fv, t
n0 expHot  t0
3/23/2 2P0

mn0
3/2
 3/2

  1
  1/2

 1 
1
2 mv

2

P0/n0exp2H0t  t0  3/2

1

7

We now introduce the following quantity, - one could call it: the mean thermal particle energy

E0 at the cosmic time t  t0 - :

E0  P0
n0

 n0kT0
n0

and, when doing so, obtain the upper distribution function 7 in the following form:

fv, t 
n0 expH0t  t0
3/23/2 2E0

m
3/2
 3/2

  1
  1/2

1 
1
2 mv

2

E0
exp2H0t  t0
  3/2


1

8

or when expressing for practical reasons the mean thermal energy by E0  1/2mv0
2 one

obtains:

fv, t 
n0 expH0t  t0
3/23/2v0

3 3/2
 3/2

  1
  1/2

1 
v2

v0
2 exp2H0t  t0

  3/2

1

9

Finally one obtains the differential velocity space density, with introduction of the normalized
variable w  v/v0, by the following expression:

fx, tx2dx  n0 expH0t  t0
3/2  3/23/2

  1
  1/2

 1  x2 exp2H0t  t0
  3/2

1w2dw 10

The above function is essentiallly well defined concerning its v  and t  dependencies , - up to
the missing knowledge on the time-dependence of the parameter   t. Assuming, however,
the prevalence of a Maxwellian distribution at time t  to would imply that t0  0  10, and
then expecting for later cosmic times t  t0 due to the Hubble-drift influence more
low-velocity-loaded "over-Maxwellian ´ized" distributions should suggest that the   parameter
perhaps continues to decrease according to t  0 expHt  t0. This then leads to the

Pt
nt

 P0
n0

exp2H0t  t0

If we now take this knowledge and introduce it into the upper form of a cosmic
kappa-function, we then obtain the following form for it:

fv, t
n0 exp4H0t  t0

3/23/2 2P0
mn0 exp2H0t  t0 3/2

 3/2

  1
  1/2

 1  mnov2

2P0 exp2H0t  t0  3/2

1

or after some evident mathematical rearrangements:

fv, t
n0 expHot  t0
3/23/2 2P0

mn0
3/2
 3/2

  1
  1/2

 1 
1
2 mv

2

P0/n0exp2H0t  t0  3/2

1

7

We now introduce the following quantity, - one could call it: the mean thermal particle energy

E0 at the cosmic time t  t0 - :

E0  P0
n0

 n0kT0
n0

and, when doing so, obtain the upper distribution function 7 in the following form:

fv, t 
n0 expH0t  t0
3/23/2 2E0

m
3/2
 3/2

  1
  1/2

1 
1
2 mv

2

E0
exp2H0t  t0
  3/2


1

8

or when expressing for practical reasons the mean thermal energy by E0  1/2mv0
2 one

obtains:

fv, t 
n0 expH0t  t0
3/23/2v0

3 3/2
 3/2

  1
  1/2

1 
v2

v0
2 exp2H0t  t0

  3/2

1

9

Finally one obtains the differential velocity space density, with introduction of the normalized
variable w  v/v0, by the following expression:

fx, tx2dx  n0 expH0t  t0
3/2  3/23/2

  1
  1/2

 1  x2 exp2H0t  t0
  3/2

1w2dw 10

The above function is essentiallly well defined concerning its v  and t  dependencies , - up to
the missing knowledge on the time-dependence of the parameter   t. Assuming, however,
the prevalence of a Maxwellian distribution at time t  to would imply that t0  0  10, and
then expecting for later cosmic times t  t0 due to the Hubble-drift influence more
low-velocity-loaded "over-Maxwellian ´ized" distributions should suggest that the   parameter
perhaps continues to decrease according to t  0 expHt  t0. This then leads to the

If we now take this knowledge and introduce it into the upper form of a cosmic kappa-function, we then obtain the following form 
for it:

or after some evident mathematical rearrangements:
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We now introduce the following quantity, - one could call it: the mean thermal particle energy E0 at the cosmic time t = t0 - :

Pt
nt

 P0
n0

exp2H0t  t0

If we now take this knowledge and introduce it into the upper form of a cosmic
kappa-function, we then obtain the following form for it:

fv, t
n0 exp4H0t  t0

3/23/2 2P0
mn0 exp2H0t  t0 3/2

 3/2

  1
  1/2

 1  mnov2

2P0 exp2H0t  t0  3/2

1

or after some evident mathematical rearrangements:

fv, t
n0 expHot  t0
3/23/2 2P0
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3/2
 3/2

  1
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P0/n0exp2H0t  t0  3/2

1

7

We now introduce the following quantity, - one could call it: the mean thermal particle energy

E0 at the cosmic time t  t0 - :

E0  P0
n0

 n0kT0
n0

and, when doing so, obtain the upper distribution function 7 in the following form:

fv, t 
n0 expH0t  t0
3/23/2 2E0
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  3/2


1

8

or when expressing for practical reasons the mean thermal energy by E0  1/2mv0
2 one

obtains:

fv, t 
n0 expH0t  t0
3/23/2v0

3 3/2
 3/2
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  3/2

1

9

Finally one obtains the differential velocity space density, with introduction of the normalized
variable w  v/v0, by the following expression:

fx, tx2dx  n0 expH0t  t0
3/2  3/23/2

  1
  1/2

 1  x2 exp2H0t  t0
  3/2

1w2dw 10

The above function is essentiallly well defined concerning its v  and t  dependencies , - up to
the missing knowledge on the time-dependence of the parameter   t. Assuming, however,
the prevalence of a Maxwellian distribution at time t  to would imply that t0  0  10, and
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the prevalence of a Maxwellian distribution at time t  to would imply that t0  0  10, and
then expecting for later cosmic times t  t0 due to the Hubble-drift influence more
low-velocity-loaded "over-Maxwellian ´ized" distributions should suggest that the   parameter
perhaps continues to decrease according to t  0 expHt  t0. This then leads to the
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If we now take this knowledge and introduce it into the upper form of a cosmic
kappa-function, we then obtain the following form for it:
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or after some evident mathematical rearrangements:
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We now introduce the following quantity, - one could call it: the mean thermal particle energy

E0 at the cosmic time t  t0 - :
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or when expressing for practical reasons the mean thermal energy by E0  1/2mv0
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Finally one obtains the differential velocity space density, with introduction of the normalized
variable w  v/v0, by the following expression:
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then expecting for later cosmic times t  t0 due to the Hubble-drift influence more
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Figure 1: The cosmic baryon distribution function in the times t1  1year, t2  10years,
and t3  100years after the matter recombination at t  t0 as function of the normalized
velocity wv/v0.
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Figure 1: The cosmic baryon distribution function in the times t1 = 1year, t2 = 10years, and t3 = 100years after the matter recombination 
at t = t0 as function of the normalized velocity w = v/v0.
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t1 = 1year, t2 = 10years, t3 = 100years - after the cosmic matter 
recombination at time t0.

In our Figures 1 and 2 we have assumed that the parameter κ 
attains a dependence on cosmic time according to κ = κ0 exp[-
H0(t - t0)] with κ0 = 10, and it is shown, how within 1, 10, 100 
years the cosmic distribution function would then change its 
velocity profile starting from a Maxwellian tending to more 
centrally piled-up, "over-Maxwellian", i.e. just the opposite to 
non-equilibrium, power law distributions.

The basis hereby in Figure 1 is a Hubble constant of H0 = 
70km/s/Mpc which is observationally confirmed for the present 

time. If this Hubble constant is used by us for the time after 
matter recombination t ≥ t0, it means and requires that the 
Hubble constant H = H0 more or less should not have changed 
since these times till now - at first glance a rather astonishing 
and audacious assumption. - But, astonishingly enough, this is 
in fact a viable assumption as we are going to show here now at 
the end of this paper.

4. The Hubble parameter in the early universe
ForFriedman-Lemaître-Robertson-Walker cosmologies (FLRW) 
the Hubble parameter H = R/R can be given in form of the 
following differential equation (1. Friedman equation; e.g. see 
Goenner, 1996, Fahr, 2016):

̇

t1  1year, t2  10years, t3  100years - after the cosmic matter recombination at time t0.

In our Figures 1 and 2 we have assumed that the parameter  attains a dependence on cosmic
time according to   0 expH0t  t0 with 0  10 , and it is shown, how within 1,10, 100
years the cosmic distribution function would then change its velocity profile starting from a
Maxwellian tending to more centrally piled-up, "over-Maxwellians", i.e. just the opposite to
non-equilibrium, power law distributions.

The basis hereby in Figure 1 is a Hubble constant of H0  70km/s/Mpc which is
observationally confirmed for the present time. If this Hubble constant is used by us for the time
after matter recombination t  t0, it means and requires that the Hubble constant H  H0 more
or less should not have changed since these times till now - at first glance a rather astonishing
and audacious assumption. - But, astonishingly enough, this is in fact a viable assumption as we
are going to show here now at the end of this paper.

The Hubble parameter in the early universe

For Friedman-Lemaître-Robertson-Walker cosmologies (FLRW) the Hubble parameter
H  R /R can be given in form of the following differential equation (1. Friedman equation; e.g.
see Goenner, 1996, Fahr, 2016):

H2  R 2

R2  8G
3 B  D    

where G is Newton‘s gravitational constant, and B,D,, denote the equivalent cosmic
mass densities of baryons, of dark matter, of photons, and of the vacuum energy. For the case that
all of these quantities do count, then it is complicated to find a solution for H and Rt over all
cosmic times, because B may vary proportional to R3, D most probably also according to R3,
but  is generally thought to vary according to R4 ( see Goenner, 1996, or Fahr and Heyl, 2017,
2018). Amongst these quantities the cosmic vacuum energy density  is perhaps physically the
least certain quantity, but if it is described with Einstein´s cosmological constant  , then it
represents a positive, constant energy density, i.e its mass equivalent  hence would as well be a
positive constant quantity.

From recent supernova SN1a observations (Permutter et al., 1999, Perlmutter, 2003, Riess et
al., 1998, Schmidt et al., 1998) it has been concluded that at the present cosmic era and most
probably already some times ago we were and are in an accelerated cosmic expansion phase of
the universe, expressing the fact that  is the dominant quantity amongst the upper ingredients
in the universe. If this could be taken as the truth even back to times of the matter recombination,
then in fact we can assume that the above differential equation can be written in the much more
simplified form:

H  R
R  8G

3 B  D      8G
3   const

in fact then describing the expansion of the universe by the expression:

Rt  R0 exp 8G
3  t  t0  R0 expHt  t0

Taking the above result and reminding the result that we derived in the section before for the
first moment of the baryon distribution function, i.e. the density nt, given by:
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where G is Newton‘s gravitational constant, and B,D,, denote the equivalent cosmic
mass densities of baryons, of dark matter, of photons, and of the vacuum energy. For the case that
all of these quantities do count, then it is complicated to find a solution for H and Rt over all
cosmic times, because B may vary proportional to R3, D most probably also according to R3,
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least certain quantity, but if it is described with Einstein´s cosmological constant  , then it
represents a positive, constant energy density, i.e its mass equivalent  hence would as well be a
positive constant quantity.

From recent supernova SN1a observations (Permutter et al., 1999, Perlmutter, 2003, Riess et
al., 1998, Schmidt et al., 1998) it has been concluded that at the present cosmic era and most
probably already some times ago we were and are in an accelerated cosmic expansion phase of
the universe, expressing the fact that  is the dominant quantity amongst the upper ingredients
in the universe. If this could be taken as the truth even back to times of the matter recombination,
then in fact we can assume that the above differential equation can be written in the much more
simplified form:

H  R
R  8G

3 B  D      8G
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in fact then describing the expansion of the universe by the expression:

Rt  R0 exp 8G
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Taking the above result and reminding the result that we derived in the section before for the
first moment of the baryon distribution function, i.e. the density nt, given by:

where G is Newton‘s gravitational constant, and ρB, ρD, ρv, ρΛ 
denote the equivalent cosmic mass densities of baryons, of dark 
matter, of photons, and of the vacuum energy. For the case that 
all of these quantities do count, then it is complicated to find a 
solution for H and R(t) over all cosmic times, because ρB may 
vary proportional to R-3, ρD most probably also according to R-3, 
but ρv is generally thought to vary according to R-4 (see Goenner, 
1996, or Fahr and Heyl, 2017, 2018). Amongst these quantities 
the cosmic vacuum energy density ρΛ is perhaps physically 
the least certain quantity, but if it is described with Einstein´s 
cosmological constant Λ, then it represents a positive, constant 
energy density, i.e its mass equivalent ρΛ hence would as well be 
a positive constant quantity.

From recent supernova SN1a observations (Permutter et al., 
1999, Perlmutter, 2003, Riess et al., 1998, Schmidt et al., 
1998) it has been concluded that at the present cosmic era and 
most probably already some times ago we were and are in an 
accelerated cosmic expansion phase of the universe, expressing 
the fact that ρΛ is the dominant quantity amongst the upper 
ingredients in the universe. If this could be taken as the truth 
even back to times of the matter recombination, then in fact we 
can assume that the above differential equation can be written in 
the much more simplified form:

in fact then describing the expansion of the universe by the expression:
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Taking the above result and reminding the result that we derived in the section before for the first moment of the baryon distribution 
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we obtain a somewhat astonishing result, meaning that in an acceleratedly expanding universe
like the one with H  H the local density is falling off with the inverse of the fourth power of
the scale of the universe . This should mean that the total mass MU of the universe is not
constant, but decreasing like:
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However, the reader must be warned, since the concept of a total mass MU of the universe is
by far not clearcut, it rather must be deeply discussed how precisely the meaning of MU should
defined. It turns out that it must be understood as the value of all masses "instantaneously or
simultaneously" surrounding each arbitrary point in the FLRW- universe and its precise
formulation leads to unexpected complications (see e.g. Overduin and Priester, 2001, Overduin
and Fahr, 2001, Fahr and Heyl, 2006, 2007). So for instance in Fahr and Heyl (2007) it leads to
the following expression
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expressing the fact that the "so-called" total mass of the universe has a "Machian character"
(Mach, 1883) and increases with the size RU of the universe. If therefore it could be concluded
that each mass of a particle increases in the same way as the mass of the universe , then the mass
density is again falling off with t  o  RUt/RU03 and no problem to worry remains.
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(Equ. (2)) for the distribution function fv, t of a baryon gas embedded in the cosmic FLRW-
space-time metrics of an expanding universe. We first could show that this differential equation
does not allow for a solution by separation of the variables in the form fv, t  fvv  ftt, but
could demonstrate that the kinetic transport equation Equ.(2) allows to derive solutions for two of
its velocity moments when underlying Kappa-functions, namely the baryon density nt and the
baryon pressure Pt, prior to the solution of fv, t itself. Based on this knowledge we have then
presented the kinetic distribution function in form of a general isotropic kappa-function
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between two reference points bridged per cosmic time dt by moving baryons in the expanding
universe, high velocity branches of the distribution function are systematically suppressed, and
the velocity spread of the distribution function decreases with increasing cosmic times t, a
phenomenon which we may call "super-Maxwellisation". This is seen in Figures 1 and 2 showing
the resulting distribution function for times t1  1year; t2  10years; t3  100years after the time
t0 of the cosmic matter recombination. The cosmic particles with increasing cosmic times are
systematically more concentrated at the low velocity region of velocity space which is also
described by the temperature decrease with time according to the result derived from the
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we obtain a somewhat astonishing result, meaning that in an 
acceleratedly expanding universe like the one with H = HΛ the 
local density is falling off with the inverse of the fourth power of 

the scale of the universe . This should mean that the total mass 
MU of the universe is not constant, but decreasing like:

However, the reader must be warned, since the concept of a total 
mass MU of the universe is by far not clearcut, it rather must 
be deeply discussed how precisely the meaning of MU should 
defined. It turns out that it must be understood as the value of all 
masses "instantaneously or simultaneously" surrounding each 

arbitrary point in the FLRW- universe and its precise formulation 
leads to unexpected complications (see e.g. Overduin and 
Priester, 2001, Overduin and Fahr, 2001, Fahr and Heyl, 2006, 
2007). So for instance in Fahr and Heyl (2007) it leads to the 
following expression

and evaluates to:

expressing the fact that the "so-called" total mass of the universe 
has a "Machian character" (Mach, 1883) and increases with the 
size RU of the universe. If therefore it could be concluded that 
each mass of a particle increases in the same way as the mass 
of the universe , then the mass density is again falling off with                            
                                             and no problem to worry remains.

5. Conclusions
In the aforegoing sections of this paper we have started from 
the kinetic transport equation (2) for the distribution function 
f(v, t) of a baryon gas embedded in the cosmic FLRW space-
time metrics of an expanding universe. We first could show 
that this differential equation does not allow for a solution 
by separation of the variables in the form f(v, t) = fv(v) • ft(t), 
but could demonstrate that the kinetic transport equation (2) 
allows to derive solutions for two of its velocity moments 
when underlying Kappa-functions, namely the baryon density 
nκ(t) and the baryon pressure Pκ(t), prior to the solution of f(v, 

t) itself. Based on this knowledge we have then presented the 
kinetic distribution function in form of a general isotropic 
kappa-function f(v, t) = fκ(v, κ(t), Θ(t)) which by use of its 
already known moments then can be written in the form f(v, t) 
= nK(t) • fκ(v, κ(t), Pκ(t)). As we can show here, to overcome the 
Hubble drift between two reference points bridged per cosmic 
time dt by moving baryons in the expanding universe, high 
velocity branches of the distribution function are systematically 
suppressed, and the velocity spread of the distribution function 
decreases with increasing cosmic times t, a phenomenon which 
we may call "super-Maxwellisation". This is seen in Figures 1 
and 2 showing the resulting distribution function for times t1 = 
1year; t2 = 10years; t3 = 100years after the time t0 of the cosmic 
matter recombination. The cosmic particles with increasing 
cosmic times are systematically more concentrated at the low 
velocity region of velocity space which is also described by the 
temperature decrease with time according to the result derived 
from the moments:

kTt  Pt/nt  kT0 expHt  t0

telling that in an expanding universe with a constant Hubble-constant H the cosmic gas
temperatures Tt should permanently decrease and finally even fall down to the absolute
zero-point.
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