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Abstract
This paper rederives diameters of the Innermost Stable Circular Orbits (ISCO) in Schwarzschild Metric (RDISCO = 
6RSch for non-rotating BH with a =0) and in Kerr metric with particular reference to recently studied Super Massive 
Black Hole in NGC1365 (RDISCO = 9RSch for retrograde orbits and RDISCO = 1RSch for prograde orbits around 
maximally spinning BH of a=1). Next the same derivations are made in tidally evolving binaries based on kinematic 
model. Kinematic Model derivation corresponds to the derivations made in Kerr Metric for Circular Orbits in all its 
details at weak gravitation regime. At strong gravitation regime in Kerr metric, the two orbits converge to Innermost 
Stable Circular Orbit due to the Space-Time Curvature and Frame-Dragging Effect in the vicinity of SMBH. Kinematic 
model fails to arrive at ISCO since it has not included the relativistic mechanics. 

ISSN: 2834-7706

1. Introduction
1.1 Innermost (Marginally) Stable Circular Orbit Around a 
Spinning Super-Massive Black Hole (SMBH)
Practically all massive Galaxies are anchored by Super 
Massive Black Holes (SMBH). These SMBH are placed at the 
astrometric center of the Galaxy but these centers, including our 
Milky Way center, is highly shrouded by gas and dust and hence 
completely obscured from Optical Telescope view. But mm/sub-
mm astronomy, particularly at 1.3 mm, gives a clear view of 
these shrouded SMBH behemoths of energy which power all 
the distant QUASERS and regulate the growth of all massive 
Galaxies. Hence Radio Astronomy became indispensible for 
unraveling the genesis and evolution of our Universe.

In Cambridge, Massachussetts, Harvard-Smithsonian Center 
for Astrophysics (CfA) has been established for the study of the 
origin, evolution and ultimate fate of the Universe. It is a joint 
collaboration between Smithsonian Astrophysical Observatory 
and the Harvard College of Observatory. CfA Scientists are 
organized into six research divisons to unravel every aspect of 
our evolving Universe. 

The team has used a technique called Very Long Baseline 
Interferometry, or VLBI, which links data from radio dishes 

located thousands of miles apart. Signals from the various dishes, 
taken together, create a "virtual telescope" with the resolving 
power of a single telescope with aperture size as big as the space 
between the disparate dishes . The technique enables scientists 
to view extremely precise details in faraway galaxies. VLBI 
array consists of four telescopes at four geographical locations. 
First is James Clerk Maxwell Telescope (JCMT) on Mount Kea 
at Hawaii. Second is Arizona Radio Observatory Submillimeter 
Telescope. Third location has two telescopes of the Combined 
Array for Research in Millimeter Wave Astronomy (CARMA) 60 
m apart in California. This has a combined resolution of 6RSch 
(6 times the Schwarzschild Radius of Sagittarius A* the SMBH 
at the center of our Galaxy-Milky Way).Through an International 
Collaboration of Europe, USA and E. Asia an advanced and 
upgraded VLBI is coming up in N.Chile on Atacama Plataeu 
known as Atacama Large mm/sub-mm Array (ALMA). This 
will be integrated with the existing VLBI to assemble an Earth-
size Virtual Telescope known as Event Horizon Telescope. 
This international Collaboration is led by ESO (on behalf of 
Europe), National Radio Astronomical Observatory (on behalf 
of N.America) and National Astronomical Observatory of Japan 
(on behalf of E.Asia).

The above International Collaboration, ALMA, has upgraded 
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the VLBI instrumentations in June 2014 by installing an 
Ultraprecise Atomic Clock in the heart of the Supercomputing 
Correlator at ALMA’s Array Operator Site. This Ultraprecise 
Atomic Clock is powered by Hydrogen MASER. Hydrogen 
MASER (Microwave Amplification by Stimulated Emission 
Radiation) produces a pure monochromatic beam of microwave 
from which perfectly periodic Clock Pulses are derived. 
The Global Array of mm and sub-mm Radio Telescopes are 
synchronized through these periodic Clock Pulses. This accurate 
synchronization will convert the Global Array into Earth-size 
Virtual Telescope and has been named Event Horizon Telescope 
(EHT). This will have Earth-size aperture and ultra-precise time 
keeping. Presently observations are carried out at 1.3mm but 
efforts are aimed at observing at 0.87mm. EHT will achieve a 
resolution better than 20μarcsecond. These ALMA systems have 
digital baseband technologies. High Band-Width Digital Signal 
Processors are used to filter VLBI data streams. The signals 
from the phased array Antennas are time stamped and encoded 
by a dedicated Atomic Clock. These are recorded on custom 
built banks of Hards Disk Drives. The data from ALMA and 
similar data from other Radio Network Nodes are shipped to 
the Central Processing Center where identically timed signals 
are combined for analysis. A continuous data throughput of 
16Gb/s been achieved using Field Programmable Gate Array 

(FPGA) computational platform and the goal is to achieve 
64Gb/s. The difference between the existing VLBI and EHT 
is the geographical spread, extension to shorter wavelength of 
operation and addition of unprecedented collecting area enabled 
by phased ALMA. 

The SMBH at the center of M87 which has Schwarzschild 
Radius (RSch) of 5.93479×10-4pc and which is located at D 
=16.7±0.6 Mpc from Earth subtends 2×7.33013 μarcsecond on 
Earth. SMBH at the center of our Galaxy, namely SgrA*, also 
subtends an angle of a similar range. Hence EHT will be up to 
the task of studying the details of the Space-Time around the 
boundaries of BH which is known as Event Horizon. BH strong 
gravity leads to gravitational lensing which in turn leads to the 
annular brightening of the last photon orbit (the innermost stable 
orbit of photon around BH). The last Photon Orbit creates a BH 
shadow as shown in Figure 1: The size and shape of the BH 
shadow is predicted by Einstein’s GR and it depends on the mass 
and spin of BH. The final goal of EHT is to spatially resolve 
Space-Time fabric in the Event Horizon Region of the BH which 
will enable the verification of GR in truly strong gravitation 
regime, develop models of BH growth and develop models of 
triggering Relativistic Jets and Radiation along the polar axis 
of BH.
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Figure 1.This image, created using computer models, shows how the extreme gravity of 
the black hole in M87 distorts the appearance of the jet near the event horizon. Part of the 
radiation from the jet is bent by gravity into a ring that is known as the 'shadow' of the 
black hole. Credit: Avery E. Broderick (Perimeter Institute & University of Waterloo). 

Using VLBI, Doeleman et.al.(2012) and his team studied the SMBH in the Galaxy M87 and 
measured the diameter of inner edge of the accretion disk to be only 5.5 times the size of the 
black hole event horizon i.e. 5.5RSch . A retrograde accretion disk will have an inner diameter 
greater than 7.35RSch  on account of Lense-Thirring effect or Frame Dragging Effect .   
According to the laws of physics, the observed size of  5.5RSch  suggests that the accretion disk is 
prograde and spinning in the same direction as the black hole—the first direct observation to 
confirm theories of how black holes power jets from the centers of galaxies. 

1.1. Accretion Disk. 

Every Galaxy has SMBH at the center. This SMBH regulates the growth as well as it anchors 
the massive Galaxy. SMBH can be in active stage or in quiescent stage. Because light cannot 
escape from SMBH and because the light from outside just wraps around SMBH hence we see a 
dark shadow. So the best way to study SMBH is to study the activities going on outside the 
boundary of SMBH. If it is active, the swirling mass of gas and dust will become the basis of 
studies and if SMBH is in quiescent stage, as Sgr A* is, then the tidally disrupted star within its 
tidal disruption Radius will become the basis of investigation (Gezari et.al. 2012). 

Figure 1: This Image, Created Using Computer Models, Shows How the Extreme Gravity of the Black Hole in m87 Distorts 
the Appearance of the Jet Near the Event Horizon. Part of the Radiation From the Jet is bent by Gravity Into a Ring that is 
Known as the 'Shadow' of the Black Hole. Credit: Avery e. Broderick (Perimeter Institute & University of Waterloo)

Using VLBI, Doeleman et.al. and his team studied the SMBH 
in the Galaxy M87 and measured the diameter of inner edge 
of the accretion disk to be only 5.5 times the size of the black 
hole event horizon i.e. 5.5RSch [1]. A retrograde accretion disk 
will have an inner diameter greater than 7.35RSch on account of 

Lense-Thirring effect or Frame Dragging Effect . According to 
the laws of physics, the observed size of 5.5RSch suggests that 
the accretion disk is prograde and spinning in the same direction 
as the black hole-the first direct observation to confirm theories 
of how black holes power jets from the centers of galaxies.
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1.2 Accretion Disk
Every Galaxy has SMBH at the center. This SMBH regulates the 
growth as well as it anchors the massive Galaxy. SMBH can be 
in active stage or in quiescent stage. Because light cannot escape 
from SMBH and because the light from outside just wraps 
around SMBH hence we see a dark shadow. So the best way 
to study SMBH is to study the activities going on outside the 
boundary of SMBH. If it is active, the swirling mass of gas and 
dust will become the basis of studies and if SMBH is in quiescent 
stage, as Sgr A* is, then the tidally disrupted star within its tidal 
disruption Radius will become the basis of investigation [2].

When SMBH is in active stage the galaxy is referred to as 
Active Galactic Nuclei (AGN). The viewing angle decides the 
luminosity of the Galaxy and accordingly it is classified. 

10% of AGN exhibit collimated relativistic jets which are 
produced by the accretion of stars, gas and dust [1]. These 
powerful collimated jets of relativistic particles can extend for 
hundreds and thousands of light years and terminate into radio 
lobes with minimum energy stored being 1060-64 Ergs. These 
provide an important mechanism for redistributing matter and 
energy on large scales that affect evolution of Galaxies. If we 
happen to be looking down the collimated relativistic jet then 
we classify AGN as Blazer. At 30º angle or less with respect 
to the collimated relativistic jet we see a luminosity in excess 
of 1011LΘ . Such an AGN is classified as QUASER/Seyfert 1. 
Here LΘ is the luminosity of sun-size star. If our line-of-sight is 
at 60º angle or more or if we have an edge-on view with respect 
to the AGN, then it is classified as Seyfert 2/Radio Galaxy. AGN 
viewed from different angles is illustrated in Figure 2 [3].
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When SMBH is in active stage the galaxy is referred to as Active Galactic Nuclei (AGN). 
The viewing angle decides the luminosity of the Galaxy and accordingly it is classified.  

       10% of AGN exhibit collimated relativistic jets which are produced by the accretion of stars, 
gas and dust (Doeleman et.al. 2012). These powerful collimated jets of relativistic particles can 
extend for hundreds and thousands of light years and terminate into radio lobes with minimum 
energy stored being 1060-64 Ergs. These provide an important mechanism for redistributing matter 
and energy on large scales that affect evolution of Galaxies. If we happen to be looking down the 
collimated relativistic jet  then we classify AGN as Blazer. At  30º angle or less with respect to 
the collimated relativistic jet we see a luminosity in excess of 1011LΘ . Such an AGN is classified 
as QUASER/Seyfert 1. Here LΘ is the luminosity of sun-size star. If our line-of-sight is at 60º 
angle or more or if we have an edge-on view with respect to the AGN, then it is classified as 
Seyfert 2/Radio Galaxy. AGN viewed from different angles is illustrated in Figure 2. (Sparke, 
L.S. and Gallagher, J.S.,2000) 

 

Figure 2.AGN at various angles – Blazer (looking down the Jet), QUASER/Seyfert 
1(viewing at angle of 30º or less) and Radio Galaxy/Seyfert2 (at an edge-on view of 
AGN).Credit: Aurore Simonnet, SSU NASA E/PO. 

Cool gas in the filaments of the Cosmic Web of our Universe is continuously being 
channeled into the intersections of the filaments (Cantalupo et.al. 2014). At these intersections, 
large Dark Matter (DM) halo reside and in these DM halo the galaxies are built up. As the gas 
cools and becomes dense, it fragments and collapses into  first stars. Simultaneously a cluster of 

Figure 2: AGN at Various Angles – Blazer (Looking Down the Jet), QUASER/Seyfert 1(Viewing at Angle of 30º or Less) and 
Radio Galaxy/Seyfert2 (at an Edge-On View of AGN).Credit: Aurore Simonnet, SSU NASA E/PO

Cool gas in the filaments of the Cosmic Web of our Universe 
is continuously being channeled into the intersections of the 
filaments [4]. At these intersections, large Dark Matter (DM) 
halo reside and in these DM halo the galaxies are built up. As 
the gas cools and becomes dense, it fragments and collapses into 
first stars. Simultaneously a cluster of stars merge to form the 
Intermediate Mass Black Holes (IMBH). These have a mass of 
102~105MΘ [5]. 

IMBH grow by accreting the surrounding gas. This could be a 
gradual process in which the in-falling material is compressed 
into an accretion disk and heated to high temperature. In the 
process it outshines all the stars in the host galaxy. The full grown 
accreting IMBH after attaining a mass of 106MΘ to 109MΘ are 
called SMBH and accreting SMBH are called QUASERS - a 
radiative manifestation of SMBH. The central compact region 
of the QUASER is behemoth of energy and is powered by 
accreting SMBH. The conversion of gravitational energy into 
Radiation, collimated Relativistic Jets of particles shooting 
along the polar axis of SMBH and gas wind on disc side through 

accretion on the SMBH is the plausible explanation of high 
output power from such compact volume of the Active Galactic 
Nuclei. Mass accretion by IMBH is limited by Eddington Limit 
Luminosity. Rate of accretion is opposed by Radiation Pressure. 
If Luminosity exceeds a critical value described by Mass then 
the star will blow up. Eddington limited accretion is too slow 
to allow stellar-mass BH seeds of 10 MΘ to grow into Super 
Massive Luminous Quasers that are observed 1by after the Big 
Bang. The way out of this impasse is that Pop III remnant BH 
seed is embedded in a nuclear star cluster fed by dense cold gas 
flows from the filaments of the cosmic web [6]. Low mass stellar 
BHs are trapped in ubiquitous dense cold gas flows at z > 1.5. 
These are launched by stellar dynamical processes into a phase 
of supply-limited, supra-exponential accretion. These rapidly 
grow in a few tens of Mega years into greater than 104MΘ BH 
seeds. Subsequent slower Eddington limited growth by disk 
accretion suffices to produce SMBH that power the brightest 
early QUASERS. 

Over a billion of years by accreting stars and gas, by major and 
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minor mergers, by chaotic and coherent mergers, IMBH evolve 
into SMBH (>105MΘ) and also drift to the central position 
of the Galaxy providing kinematic stability to the galaxy as a 
whole. The central position is the bottom of the potential well of 
the Galaxy and the dynamical friction drag causes the SMBH to 
drift to the central position. This is exactly in line with Primary-
centric Architecture proposed by the Author [7].

Evolution of IMBH into SMBH and the subsequent evolution of 
SMBH causes the accretion of interstellar material over cosmic 
time. Accretion process liberates huge amount of energy in form 
of radiation as observed in QUASERS or as energetic gaseous 
outflow and collimated relativistic particle jets moving along 
the polar axis of the SMBH as seen in 10% of AGN. Through 
the production of Winds and Jets, SMBH seeds the surrounding 
with matter and energy. Such heating of the ambient gas in and 
around the Galaxy plays a significant role in regulating the Star 
Formation Rate. 

This enormous energy input from evolving SMBH can either 
blow gas out of the galaxy completely and thus quench 
the subsequent star formation rate (SFR) or can reheat the 
surrounding gas. This stops any further flow of cool gas into the 
intersection of filaments and stops the ongoing SFR [8].

Thus SMBH acts as a thermostat regulator which initially leads 
to the redistribution of matter throughout the galaxy which leads 
to continued SFR in the bulge. But eventually it shuts off the 

runaway SFR and maintains Central Bulge Mass to SMBH Mass 
ratio at 1000:1. This type of feedback has been linked to the 
potential explanation for the famed M-σ relation where M is the 
mass of SMBH and σ is the spread in the velocities of stars in 
the central bulge [5,9].

There is angular momentum transfer from the accreting matter 
to the spinning SMBH. When the spin of SMBH gets sufficiently 
large, greater than 0.93, then the spin regulates the galaxy growth 
on scales far beyond its gravitational sphere of influence. This 
is because at this point the collimated Jets are launched by the 
magnetic extraction of rotational energy from the ergo-sphere of 
the BH [10].

1.3 The Inner Edge of the Accretion Disk is ISCO (Innermost 
Stable Circular Orbit) and its Relation to the Spin of SMBH
In AGN, SMBH is in ON condition. The surrounding gas and 
dust are continuously swirling around the BH. These surrounding 
matter does not fall into the BH instead it tightly orbits the BH. 
Orbiting gas and dust and proximal stars very near ISCO get 
blocked at ISCO and matter builds up into a flat pancake. As 
seen in Figure 3, there is a shallow potential energy valley at 
ISCO and hence ISCO is referred to as marginally stable. In this 
shallow potential valley the swirling mass piles up to form the 
inner edge of the flat pancake. This flat pancake is defined as 
Accretion Disk. The inner edge of the Accretion Disk is defined 
as Innermost Stable Circular Orbit (ISCO) as shown in Figure 3. 
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Figure 3. This artist's impression of the innermost regions of M87 shows the relationship 
between the black hole, the orbiting accretion flow, and the launching of the relativistic jet. 
Credit: Perimeter Institute for Theoretical Physics. 

The matter at the inner edge may be perturbed into orbits shorter than ISCO. This gets 
launched on a  collapsing spiral or death spiral because it ends up as the feedstock of the 
gluttonous SMBH. Gravitational interaction with the neighbouring Galaxies can trigger the in-
spiral or the death spiral from the inner rim of the accretion disk. But normal, undisturbed 
Galaxies also host powerful QUASERS which is the radiative manifestation of mass accretion by 
central SMBH. In these undisturbed Galaxies what triggers the mass accretion is still under 
investigation.   

 So the overall picture is that the accretion disk is orbiting around the spinning SMBH at 
nearly the speed of light and is providing a steady diet of superheated material to the SMBH. The 
mechanism of accretion onto the SMBH is a complex Magneto Hydro Duynamic (MHD) process 
which is yet to be fully understood. The Gravitational Waves radiated during the matter accretion 

Figure 3: This Artist's Impression of the Innermost Regions of M87 Shows the Relationship between the Black Hole, the 
Orbiting Accretion Flow, and the Launching of the Relativistic Jet. Credit: Perimeter Institute for Theoretical Physics
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The matter at the inner edge may be perturbed into orbits shorter 
than ISCO. This gets launched on a collapsing spiral or death 
spiral because it ends up as the feedstock of the gluttonous 
SMBH. Gravitational interaction with the neighbouring Galaxies 
can trigger the in-spiral or the death spiral from the inner rim of 
the accretion disk. But normal, undisturbed Galaxies also host 
powerful QUASERS which is the radiative manifestation of 
mass accretion by central SMBH. In these undisturbed Galaxies 
what triggers the mass accretion is still under investigation. 

So the overall picture is that the accretion disk is orbiting 
around the spinning SMBH at nearly the speed of light and is 
providing a steady diet of superheated material to the SMBH. 
The mechanism of accretion onto the SMBH is a complex 
Magneto Hydro Duynamic (MHD) process which is yet to be 
fully understood. The Gravitational Waves radiated during the 
matter accretion could have given a robust measure of the spin 
parameter of SMBH. But the detection of Gravitational Waves of 
this order will have to wait for another decade. In the absence of 
detecting the Gravitational Wave Signatures we are left with the 
only option of measuring the Electro-Magnetic Waves emitted 
from the accretion disk or reflected from the inner edge of the 
Accretion Disk. GR predicts several Relativistic Signatures 
in the Radiation close to the Event Horizon. Frame Dragging 
(Lense-Thirring Effect) and Gravitational Time Dilation leading 
to Gravitational Redshift should leave its imprint on radiation 
from these regions.

Accretion Disk radiates as a Black Body with Spectral Density 
peak at λWien = 0.1μm (EUV). But inverse comptonization 
effect by the surrounding plasma uptranslates EUV into X-Ray 
Band. In smaller Galactic IMBH, the accretion disk is hotter 
and its λWien = few Angstroms corresponding to X-Ray band. 
This X-Ray emission adds to the X-Ray produced by Inverse 
Comptonization. Thus, X-Ray provide the cleanest probe of 
the spin of SMBH and these can be studied only through Space 
X-Ray Telescope such as NuSTAR and XMM-Newton. 

EXOSAT was launched in 1983 by ESO and it surveyed in the 
energy range of 1 to 50keV. It made detailed observation of 
Quasi-Periodic Oscillations in several low mass X-Ray Binary 
Systems [11]. It carried spectral survey of 48 Seyfert Galaxies. 
These spectrum contained soft X-Ray component of Seyfert 
Galaxies [12]. These soft component was thought to represent 
disk emission in accordance with the theory that postulated 
AGN as SMBH/disk related events.

Both EXOSAT (launched by ESA) and Ginga (launched by 
Japanese Space Organization) discovered Iron-line emission and 
Inverse-Comptonization hump in SMBH X-Ray Spectra [13].

ASCA (Advanced Satellites for Cosmology and Astrophysics) 
was an updated X-Ray Telescope jointly launched by USA and 
Japan in 1993. It had a imaging capability with a broad pass-
band filter, moderately high X-Ray resolution (E/ΔE~ 100) and 
a larger effective area. It was first to employ Charge-Coupled 
Device and an X-Ray Detector. ASCA made the study of Iron-
Emission line precise. ASCA established that it was a highly 

prevalent feature in Seyfert-1 sources and it could be used to 
constrain SMBH Spin.

In 1995, Rossi X-Ray Timing Explorer (RXTE) was launched 
to study the X-Ray Spectral and Temporal variability in 
BH Systems and in the process it made detailed study of 
the accretion disks. In 1999, ESA launched XMM-Newton 
Observatory and NASA launched Chandra-X-Ray Observatory. 
Chandra excels in precision X-Ray imaging whereas XMM-
Newton Observatory has a larger collection area and suitable 
for X-Ray Spectroscopy. This has enabled the study of accretion 
and radiation in high-gravity regime next to the event-horizon of 
a given SMBH. These two Telescopes have enabled to unravel 
the complex interactions between SMBH and its accretion disk 
[14,15]. Detailed characterization of the emission features from 
the disk are providing reliable constraints on SMBH Spin [16].

In 2004, SWIFT had been launched. This is suited for examining 
the X-Ray spectrum in the range of 0.2 – 10 keV. This covers 
the continuum and Kα Iron-line invariably found in AGN and 
SMBH. In 2005, SUZUKA has been launched. This records the 
X-Ray spectrum over a wide range from 0.3 to 600keV with 
enhanced resolution [17,18]. This has enabled Scientists to 
identify the distortion in the Iron-line and the hard X-Ray hump 
due to the spin of the centrally placed SMBH as shown in Figure 
4. 

Gamma Ray Large Area Space Telescope (GLAST) renamed as 
Fermi Gamma Ray Space Telescope (FGST) was launched on 
11th June 2008 as a joint venture of NASA, USA Department 
of Energy, Space Agencies of France, Germany, Italy, Japan 
and Sweden. It has carried out deeper study of High Energy 
COSMOS from Super Massive Black Holes in distant galaxies 
to thunderstorms on Earth. It discovered Giant Bubbles towering 
above and below to a height of 25,000lys. It is looking into high 
energy processes from Pulsars within our Galaxy to Relativistic 
Collimated Jets powered by SMBH in far away young galaxies. 
An unique view is obtained of the transfer of angular momentum 
from the swirling in-spiraling gas, dust and star to the central 
SMBH, of the disk jet interactions and of the jet triggering 
mechanisms.

NuSTAR (Nuclear Spectroscopic Telescope Array) was 
launched on June 13,2012, as aSmall Explorer mission led by 
Caltech and managed by NASA's Jet Propulsion Laboratory in 
Pasadena, California, for NASA's Science Mission Directorate 
in Washington. It has completed its Primary Mission and is 
now on a two-year extended mission. It looks at high energy 
X-Ray beyond the present space X-Ray telescope capabilities. 
The survey of High Energy Universe in X-Ray and Gamma-Ray 
band is revealing how heavier elements were formed and seeded 
throughout the Universe as we know today. SWIFT, Chandra 
X-Ray Telescope and Nu-Star complement one another and 
together they provide a complete data set in the X-Ray band 
of the spectrum. Fermi added data in higher energy γ-band. 
NuSTAR mission is dedicated to the observations of target 
of opportunity which have been detected as targets of high 
opportunity by other space observatories and by ground based 
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observatories. NuSTAR confirmed that SMBH, NGC 253, in 
Sculptor Galaxy has gone dormant but the Galaxy is the nearest 
Star Burst Galaxy. This is rather unusual and it will be resolved in 
future by constant monitoring. The physics of SMBH tells us the 

where Star Formation Rate is high there SMBH is gluttonously 
devouring the surrounding gas, dust and stars leading to 
enormous temperature and enormous X-Ray emission.
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Figure 4.X-ray light streaming from regions near a supermassive black hole known as 
Markarian 335.The yellow line is a model that shows what the data are predicted to look like if 
X-ray light has been distorted by relativistic reflections. The blue line shows what the plot would 
look like without distortions. The white dots show the actual NuSTAR data, indicating the light 
is extremely distorted due to Relativistic Reflections. Credit NASA/JPL-Caltech/Institute for 
Astronomy, Cambridge 

The plot of data in Figure 4 has been captured by NASA's Nuclear Spectroscopic 
Telescope Array, or NuSTAR. It shows X-ray light streaming from regions near a supermassive 
black hole known as Markarian 335 (Parkar 2014). The light is coming from two areas: a 
superheated disk of material feeding the black hole, called the accretion disk shown in Figure 3; 
and a cloud of particles traveling near the speed of light, called the corona3. The exact shape and 
nature of coronas are not clear, but researchers know that X-ray light from the corona is reflected 
off the accretion disk. The reflected light, and the corona's direct light, are mapped in this plot 

                                                            
3In addition to the accretion disk, BH systems often have a plasma layer associated with them, known as the ―corona.‖ It is unclear at present what geometrical form this sea of 

charged particles might take, though possible options are a sandwich-type layer above and below the disk, a ―pill-box‖ or clumpy distribution, or perhaps a more-or-less spherical 

appearance (Paczynski 1978). The presence of the plasma itself in this picture likely originates in magnetized outflows from the surface layer of an ionized disk . Alternatively, 

because BH systems are often associated with bipolar outflows in the form of collimated jets (Blandford & Payne 1982; Blandford & Znajek 1977), the plasma we think of as 

coronal material may indeed be charged particles in the base of such a jet (Merloni & Fabian 2002; Miller et al. 2006b). 

Figure 4: X-ray Light Streaming from Regions Near a Supermassive Black Hole Known as Markarian 335

The yellow line is a model that shows what the data are predicted 
to look like if X-ray light has been distorted by relativistic 
reflections. The blue line shows what the plot would look like 
without distortions. The white dots show the actual NuSTAR 
data, indicating the light is extremely distorted due to Relativistic 
Reflections. Credit NASA/JPL-Caltech/Institute for Astronomy, 
Cambridge.

The plot of data in Figure 4 has been captured by NASA's 
Nuclear Spectroscopic Telescope Array, or NuSTAR. It shows 
X-ray light streaming from regions near a supermassive black 
hole known as Markarian 335 [19]. The light is coming from 
two areas: a superheated disk of material feeding the black 
hole, called the accretion disk shown in Figure 3; and a cloud of 
particles traveling near the speed of light, called the corona. The 
exact shape and nature of coronas are not clear, but researchers 
know that X-ray light from the corona is reflected off the 
accretion disk. The reflected light, and the corona's direct light, 
are mapped in this plot over a range of X-ray energies. (This 
is the highest range of X-rays, which NuSTAR was specially 
designed to see). 

Why does this distortion of the X-Ray light occur ? First, there 
is a Doppler shift happening due to the spinning accretion disk. 
As one side of the accretion disk moves toward us and the other 

side away, the light is squeezed or stretched. A second effect 
has to do with the enormous speeds of the spinning black hole, 
which approach the speed of light and which causes Frame-
Dragging Effect or Lense-Thirring Effect. A final effect is from 
the enormous gravity of the black hole, and the subsequent 
Space-Time bending which pulls on the light, making it harder 
to escape its grasp. The light loses energy in this process. All of 
these factors contribute to the distortion as seen in the plot. 

The data in Figure 4 were taken after a dramatic dip in brightness 
had first been observed by NASA's Swift satellite [19]. NuSTAR's 
high-energy X-ray data pointed to the cause for the observed 
change: Markarian 335's corona had shifted closer to the black 
hole itself -- and this closer proximity meant that the black hole's 
gravity could yank harder on the corona's light, stretching it to 
lower energies than observed before. The astronomers say that 
the corona moved over a period of days, and is still in the close 
configuration. They don't know if and when it would move back 
to where it was previously, or why the corona moved. NuSTAR 
and other high-energy telescopes are busy trying to crack these 
mysteries. 

In December 2009, NASA launched Wide Field Infra Red 
Survey Exploration (WISE). It has led to the discovery of Dust 
Obscured Galaxies (DOG). Daniel Stern et.al. have discovered 
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million such dusty BH candidates and 1000 even dustier objects 
thought to be among the brightest galaxies and are referred to as 
hot DOGs [20]. In another study which is yet to appear WISE 

has identified 2.5 million actively feeding SMBH across the full 
sky stretching back to 10bly. The IR bump betray the BHs.
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Figure 5. Scientists measure the spin rates of supermassive black holes by spreading the X-
ray light into different colors. The light comes from accretion disks that swirl around black 
holes, as shown in both of the artist‘s concepts. They use X-ray space telescopes to study 
these colors, and, in particular, look for a ―fingerprint‖ of iron — the peak shown in both 
graphs, or spectra — to see how sharp it is. Prior to observations with NASA‘s 
Spectroscopic Telescope Array, or NuSTAR, and the European Space Agency‘s XMM-
Newton telescope, there were two competing models to explain why this peak might not 
appear to be sharp. The ―rotation‖ model shown at top held that the iron feature was being 
spread out by distorting effects caused by the immense gravity of the black hole. If this 
model were correct, then the amount of distortion seen in the iron feature should reveal the 
spin rate of the black hole. The alternate model held that obscuring clouds lying near the 
black hole were making the iron line appear artificially distorted. If this model were 
correct, the data could not be used to measure black hole spin. NuSTAR helped to solve the 
case, ruling out the alternate ―obscuring cloud‖ model. Its high-energy X-ray data — 
shown at top as green bump to the right of the peak — revealed that features in the X-ray 
spectrum are in fact coming from the accretion disk and not from the obscuring clouds. 
Together with XMM-Newton, the space observatories were able to make the first 
conclusive measurement of a black hole‘s spin rate, and more generally, confirm that the 
―gravitational distortion‖ model is accurate. Image credit: NASA/JPL-Caltech 
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Nuclear Spectroscopic Telescope Array (NuSTAR).
Through X-Ray Telescopes (ESA’s XMM-Newton Observatory 
and NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR)), 
Risaliti et.al. measured the high energy light emitted by iron 
atoms from the center of the Galaxy [21]. This enabled them to 
measure the radius of rim of accretion disk. From this rim radius 

the spin parameter of NGC1365 was extracted.
 
2. Effective Potential in Schwarzschild Metric
The Schwarschild metric is the most general spherically 
symmetric vacuum solution of the Einstein field equations.
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Let 2GM = gravitational radius/Schwarzschild radius = rG assuming ‘c’=1.
For massive particles, ε = 1 and 2GM is replaced by gravitational radius/Schwarzschild radius = rG and let radial parameter be 
normalized as x = r/ rG.
Hence (1) becomes:
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Differentiate (2) with respect to ‘x’ and we get:

Equating the first derivative of V(x) to zero we get the roots where extremums of V(x) occur.
These roots are:
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Equating the first derivative of V(x) to zero we get the roots where extremums of V(x) occur. 

These roots are: 

       √                       √                                                                       

These roots are real and coincident at k = 3. 

For k = 3, the roots are coincident at x = 3. 

The Plot of V(x) vs x is given in Figure 6. 

 

Figure 6. Potential Profile of a massive particle with a marginally  stable orbit at x = 3. 

 

For k= 4 the roots are at x=2 and x=6. 

V(x) has a MAXIMA at x=2 and MINIMA at x=6 as shown in Figure 2. 
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Figure 6: Potential Profile of a Massive Particle with a Marginally Stable Orbit at x = 3.

For k= 4 the roots are at x=2 and x=6.
V(x) has a MAXIMA at x=2 and MINIMA at x=6 as shown in Figure 2.
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Figure 7. Maxima at x= 2 corresponding to unstable orbit and minima at x = 6 corresponding to 
stable orbit. 

For k = 1,000,000 the roots are x = 1.5 and x = 2×106. Here again the inner root x = 1.5 is the MAXIMA 
of V(x) and the outer root x = 2×106 is the MINIMA of V(x). 

This analysis clearly shows that at x = 3, i.e. at r = 3× rG , we have the innermost marginally stable 
circular orbit known as ISCO (innermost stable circular orbit). As L increases beyond (√3) rG , the roots 
are split up in inner unstable circular orbit and outer stable circular orbit. 

With increase in L, the inner unstable orbit converges to r = 1.5× rG and outermost stable orbit goes on 
increasing indefinitely. Hence it will be valid to say that Innermost Stable Circular Orbit(ISCO) which is 
really MARGINALLY STABLE only as is evident from Figure 1 lies at r =  3× rG .In strict sense of the 
word, r = 3× rG  is a meta-stable orbit which is being referred to as marginally stable. 

3. ISCO for Photons in Schwarzschild Metric 

For Photons, constant term and Newtonian Potential term in (2) does not exist. Gravitational 
lensing is done by the fourth term. Hence (2) is rewritten as: 
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Differential of (5) with respect to ‗x‘ is: 

  
     

    
 
                                                                                                                                               

Equating (6) to zero we get a root at x = 1.5. This corresponds to a potential peak as shown in 
Figure 3. 

Figure 7: Maxima at x= 2 Corresponding to Unstable Orbit and Minima at x = 6 Corresponding to Stable Orbit
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For k = 1,000,000 the roots are x = 1.5 and x = 2×106. Here again 
the inner root x = 1.5 is the MAXIMA of V(x) and the outer root 
x = 2×106 is the MINIMA of V(x).

This analysis clearly shows that at x = 3, i.e. at r = 3× rG, we have 
the innermost marginally stable circular orbit known as ISCO 
(innermost stable circular orbit). As L increases beyond (√3) rG, 
the roots are split up in inner unstable circular orbit and outer 
stable circular orbit.

With increase in L, the inner unstable orbit converges to r = 1.5× 
rG and outermost stable orbit goes on increasing indefinitely. 

Hence it will be valid to say that Innermost Stable Circular 
Orbit(ISCO) which is really MARGINALLY STABLE only as 
is evident from Figure 1 lies at r = 3× rG. In strict sense of the 
word, r = 3× rG is a meta-stable orbit which is being referred to 
as marginally stable.

3. ISCO for Photons in Schwarzschild Metric
For Photons, constant term and Newtonian Potential term in (2) 
does not exist. Gravitational lensing is done by the fourth term. 
Hence (2) is rewritten as:

Differential of (5) with respect to ‘x’ is:

Equating (6) to zero we get a root at x = 1.5. This corresponds to a potential peak as shown in Figure 3.
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Figure 8. Potential Energy Profile for a Photon. For any Angular Term i.e.for any k there 
is a peak at x = 1.5. For this profile k =4. 

For any L, there exists a Potential energy peak at x = 1.5. This peak acts as barrier to photons. 
This peak also implies that at x = 1.5 or r =3×GM  there is an unstable circular orbit of Photon. 
Photon gets wrapped around the black Hole at r = 3×GM. Hence there is a shadow in the sky in 
the position of the Black Hole. 

4. Stable Circular Orbits around Rotating Black Holes. [Physics 161, Black Holes: 
Lecture 22: 26th February 2010. Prof. Kim Griest.] 

We have used the Euler-Langrange formalism to find the geodesics (orbit equations) for the 
Schwarzschild metric. We can find the geodesics for the Kerr metric in a similar way. We can 
then go through the effective potential treatment and find the types of orbits. 
Kerr metric or Kerr geometry describes  the geometry of empty spacetime around a rotating 
uncharged axially symmetric black hole with a quasi spherical event horizon. The Kerr metric is 
an exact solution of of the Einstein Field equations  of General Relativity.  
 
The space-time outside a Black Hole with gravitational mass M, Charge Q and angular 
momentum  a = J/M is described by the Kerr Metric given in Eq.(7). 
 
The generalized form of effective potential is: 
Veff (r,α) =     
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Here α =(M, Q, a, ε, t) 
= a collection of parameters of Black Hole and test particle. 
All the parameters in the equation describing  Veff (r,α)  are described in the paper  
arXiv:1706.05466 v2(gr-qc)   
 
In the limit Q=0 

Figure 8: Potential Energy Profile for a Photon. For any Angular Term i.e.for any k there is a peak at x = 1.5. For this profile 
k =4

For any L, there exists a Potential energy peak at x = 1.5. This 
peak acts as barrier to photons. This peak also implies that at x 
= 1.5 or r =3×GM there is an unstable circular orbit of Photon. 
Photon gets wrapped around the black Hole at r = 3×GM. Hence 
there is a shadow in the sky in the position of the Black Hole.

4. Stable Circular Orbits around Rotating Black Holes
We have used the Euler-Langrange formalism to find the 
geodesics (orbit equations) for the Schwarzschild metric. We 
can find the geodesics for the Kerr metric in a similar way. We 
can then go through the effective potential treatment and find the 
types of orbits.

Kerr metric or Kerr geometry describes the geometry of empty 
spacetime around a rotating uncharged axially symmetric black 
hole with a quasi spherical event horizon. The Kerr metric is 
an exact solution of of the Einstein Field equations of General 
Relativity. 

The space-time outside a Black Hole with gravitational mass M, 
Charge Q and angular momentum a = J/M is described by the 
Kerr Metric given in Eq.(7).

The generalized form of effective potential is:
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Here α =(M, Q, a, ε, t)
= a collection of parameters of Black Hole and test particle.
All the parameters in the equation describing Veff (r,α) are 
described in the paper 
arXiv:1706.05466 v2(gr-qc) 

In the limit Q=0
The effective potential for Kerr Metric is the following:
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  = rotating  body exhibits frame-dragging ( also known as Lense-Thirreing   
   precession) a distinctive prediction of General Relativity; 
   
Here  l  is the conserved angular momentum per unit mass of the test particle, and ε is the 
conserved energy per unit mass of the test particle, and where ĸ  = 0 for light ray geodesics and ĸ 
= 1 for massive particles. 
 
L*/m = l  = the conserved angular momentum per unit mass of the test particle and 
E*/m = ε = the conserved energy per unit mass of the test particle. 

The spin parameter ‗a‘ =(cJ*/(GM2))   is given as a Dimensionless parameter. 

We are going to convert M(kg), l(m2/s), a (dimensionless) in parameters of LENGTH dimension 
and ε(Joules/Kg) in a dimensionless parameter by the conversion rules given in Table 1. This 
achieves the Dimensional Balance in (7). 

Table 1. Conversion Rules. 

Parameter Conversion Rule 
M(Kg) M(kg)×0.7425×10-27(m/Kg) 
l  (m2/s) l  (m2/s)/c(m/s) 
a = (cJ*/(GM2))Dimensionless a×GM(m3/s2)/c2(m/s)2 

ε(Joules/Kg)→(m2/s2) ε(m2/s2)/ c2(m/s)2 

4.1. Consider the rapidly spinning Black Hole in NGC 1365.[Reiss et.al.(2014), 
Brennemann (2013), Done et.al.(2013)] 

Done et.al.(2013) have extensively studied the SMBH(Super Massive Black Hole)  at the 
center of the NGC1365. A black hole‘s gravity is so strong that, as the black hole spins, it 
drags the surrounding space along. The edge of this spinning hole is called the event 
horizon. Any material crossing the event horizon is pulled into the black hole. Inspiraling 
matter collects into an accretion disk, where friction heats it and causes it to emit X-rays. 

The team measured X-rays from the center of NGC 1365 to determine where the inner 
edge of the accretion disk was located. This Innermost Stable Circular Orbit – the disk‘s 
point of no return – depends on the black hole‘s spin. Since a spinning black hole distorts 
space, the disk material can get closer to the black hole before being sucked in. 

The system parameters of SMBH at the center of NGC1365 is given in Table 2. 

Table 2. System parameters of SMBH at the center of NGC1365. 
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as Lense-Thirreing      
precession) a distinctive prediction of General Relativity;
  
Here l is the conserved angular momentum per unit mass of the 
test particle, and ε is the conserved energy per unit mass of the 
test particle, and where ĸ = 0 for light ray geodesics and ĸ = 1 
for massive particles.

L*/m = l = the conserved angular momentum per unit mass of 
the test particle and
E*/m = ε = the conserved energy per unit mass of the test particle.
The spin parameter ‘a’ =(cJ*/(GM2)) is given as a Dimensionless 
parameter.
We are going to convert M(kg), l(m2/s), a (dimensionless) 
in parameters of LENGTH dimension and ε(Joules/Kg) in a 
dimensionless parameter by the conversion rules given in Table 
1. This achieves the Dimensional Balance in (7).

Table 1: Conversion Rules

4.1 Consider the Rapidly Spinning Black Hole in NGC 1365 
[22-24]
Done et.al. have extensively studied the SMBH (Super Massive 
Black Hole) at the center of the NGC1365 [24]. A black hole’s 
gravity is so strong that, as the black hole spins, it drags the 
surrounding space along. The edge of this spinning hole is called 
the event horizon. Any material crossing the event horizon is 
pulled into the black hole. Inspiraling matter collects into an 
accretion disk, where friction heats it and causes it to emit 
X-rays.

The team measured X-rays from the center of NGC 1365 
to determine where the inner edge of the accretion disk was 
located. This Innermost Stable Circular Orbit – the disk’s point 
of no return – depends on the black hole’s spin. Since a spinning 
black hole distorts space, the disk material can get closer to the 
black hole before being sucked in.

The system parameters of SMBH at the center of NGC1365 is 
given in Table 2.

 
 

We have used the Euler-Langrange formalism to find the geodesics (orbit equations) for the 

Schwarzschild metric. We can find the geodesics for the Kerr metric in a similar way. We can 

then go through the effective potential treatment and find the types of orbits. 

 

Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating 
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Here l is the conserved angular momentum per unit mass of the test particle, and ε is the 

conserved energy per unit mass of the test particle, and where ĸ = 0 for light ray geodesics and ĸ 

= 1 for massive particles. 
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Parameter Magnitude  Reference 
M(×MΘ) 2×106  Done 

et.al.(2013) 
a(spin parameter) 0.84 At 90% confidence level Done 

et.al.(2013) 
rG(gravitational 
radius)(m) 

5.91007×109 rG = (2GM/c2) Calculated 

J*(Kg-m2/s) 2.96173×1054 a= (cJ*)/(GM2) Calculated 
L*(Kg-m2/s) 2.54769×1053 From (9)  
E*(Joules) (mc2+ 

4.28197×1036) 
From (10)  

m(×MΘ) 1 Sun like star is the test 
particle 

 

B=√(G(M+m)) (m3/2/s) 1.62968×1013 For use in (9) and (10)  

 

Table 3 contains the system parameters after being scaled to suitable LENGTH dimension. 

Table 3. Scaled System Parameters in Length (Meter) Dimension. 

Parameter Magnitude Reference 
M(×MΘ) 2.95515×109m Calculated 
a(spin parameter)(DL)* 2.51178×109m Calculated 
rG(gravitational radius)(m) 5.91007×109m Calculated 
J*(Kg-m2/s)/M(Kg) 2.48223×109m Calculated 
L*(Kg-m2/s)/m(kg)=l(m2/s) 4.27044×1014m Calculated 
E*(Joules)/m(Kg)=ε(m2/s2) [1+2.39414×10-11](DL)* Calculated 
m(×MΘ) 1477.58m Calculated 

*DL-Dimensionless 

NGC1356 is a great barred Spiral Galaxy at a distance of D= 17.2± 0.8 Mpc from our Earth. 
Angular Parallex of the size of the Galaxy is 50 arcsecond. This corresponds to a diameter of 
4169pc. Therefore the mean radius of the galaxy is about rmax = 2000pc.  

Suppose Sun-like particle is moving from the edge of the Galaxy towards the SMBH at the 
center of the Galaxy. 

The initial angular momentum of the test particle which is going to be conserved is L*. 

By Kepler‘s Third Law: 

      (   )             
             √ (   )                                  
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*DL-Dimensionless

NGC1356 is a great barred Spiral Galaxy at a distance of D= 
17.2± 0.8 Mpc from our Earth. Angular Parallex of the size of 
the Galaxy is 50 arcsecond. This corresponds to a diameter of 
4169pc. Therefore the mean radius of the galaxy is about rmax = 
2000pc. 

Suppose Sun-like particle is moving from the edge of the Galaxy 
towards the SMBH at the center of the Galaxy.

The initial angular momentum of the test particle which is going 
to be conserved is L*.
By Kepler’s Third Law:

By definition, the initial angular momentum L* of the test particle moving from the edge of the galaxy (rmax = 2000pc) which is 
going to be conserved is:
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Table 2: System Parameters of SMBH at the Center of NGC1365.

Table 3: Scaled System Parameters in Length (Meter) Dimension
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By definition, the initial angular momentum L* of the test particle moving from the edge of the 
galaxy (rmax = 2000pc) which is going to be conserved is: 

             
   

    
         

                                                  

Accordingly the total Energy E* of the test particle moving from the edge of the galaxy (rmax = 
2000pc) which is going to be conserved is: 

                               
  

             
    

    
 

       
        

    

    
        

  
  
    

                                                                                         

Energy per unit mass (ε) is given as follows: 
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After applying the conversion rule to scale it and normalize it to Dimensionless quantity we get: 

 
   (               )                                                                                                               

We substitute the system parameters given in Table 3  in (7) and differentiate it with respect to 
‗r‘. The first derivative is equated to zero to obtain the extremum points. 

The two roots are: 

Inner root ‗r‘ = 8.86545×109m  and Outer root ‗r‘ = 6.17114×1019m. 

The Potential Profile at the two roots are given in Figure 4 and Figure5. 
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Accordingly the total Energy E* of the test particle moving from the edge of the galaxy (rmax = 2000pc) which is going to be 
conserved is:

Energy per unit mass (ε) is given as follows:

After applying the conversion rule to scale it and normalize it to Dimensionless quantity we get:

We substitute the system parameters given in Table 3 in (7) and differentiate it with respect to ‘r’. The first derivative is equated to 
zero to obtain the extremum points.
The two roots are:
Inner root ‘r’ = 8.86545×109m and Outer root ‘r’ = 6.17114×1019m.
The Potential Profile at the two roots are given in Figure 4 and Figure5.

Figure 9: Potential Energy Profile for a Spinning BH with Test Particle Launched from the Edge of the Galaxy Towards the 
Center of NGC1365. It has a Energy Minima at r = 6.17114×1019m Corresponding to a Stable Circular Orbit
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Figure 9. Potential Energy Profile for a spinning BH with test particle launched from the 
edge of the Galaxy towards the center of NGC1365. It has a Energy Minima at r = 
6.17114×1019m corresponding to a Stable Circular Orbit.  

 

Figure 10. Potential Energy Profile for a spinning BH with test particle launched from the 
edge of the Galaxy towards  the center of NGC1365. It has a Energy Maxima at r = 
8.86545×109m corresponding to a Unstable Circular Orbit. 

From the analysis of Figure 9 and Figure 10f it is clear that inner Circular Orbit is placed at the 
maxima of the Potential Energy Profile and hence it is Unstable and Outer Circular Orbit is 
placed at the minima of the Potential Energy Profile and hence it is the Stable Outer Circular 
Orbit. 

Now we will look for the Innermost Stable Circular Orbit(ISCO). For this we will consider test 
particles of different L as listed in Table 4.  

Table 4. The Inner Unstable CO and Outer Stable CO and the marginally Innermost 
Stable CO in Kerr Metric. 

Distance 
of 
Launch 

From the 
center 

L*=mr1/2B 

(Kg-m2/s) 

(l/c)(m) E*=mc2+(0.5IΩ2) 

= mc2+(0.5mB/r) 

ε/c2 

(DL) 

Inner 

Unstable 

CO(×109m) 

Outer 

Stable 

CO(×1017m) 

2000pc 2.54769 

×1053 

4.27044 

×1014 

mc2+4.28197 

×1036 

1+2.39414 

×10-11 

8.86545 617.114 

10pc 1.8×1052 3×1013 mc2+8.56×1038 1+4.8×10-9 8.86398 3.08558 
5pc 1.27×1052 2.13×1013 mc2+1.7×1039 1+9.6×10-9 8.86336 1.54279 
1pc 5.69×1051 9.55×1012 mc2+8.56×1039 1+4.8×10-8 8.86079 0.154 
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Figure 10: Potential Energy Profile for a Spinning BH with Test Particle Launched from the Edge of the Galaxy Towards the 
Center of NGC1365. It has a Energy Maxima at r = 8.86545×109m Corresponding to a Unstable Circular Orbit
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From the analysis of Figure 9 and Figure 10f it is clear that inner 
Circular Orbit is placed at the maxima of the Potential Energy 
Profile and hence it is Unstable and Outer Circular Orbit is 
placed at the minima of the Potential Energy Profile and hence it 
is the Stable Outer Circular Orbit.

Now we will look for the Innermost Stable Circular Orbit 
(ISCO). For this we will consider test particles of different L as 
listed in Table 4. 
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0.1pc 1.81×1051 3.02×1012 mc2+8.56×1040 1+4.8×10-7 8.85073 0.031 
0.01pc 5.7×1050 9.55×1011 mc2+8.56×1041 1+4.8×10-6 8.81912 0.0031 
0.001pc 1.8×1050 3.02×1011 mc2+8.56×1042 1+4.8×10-5 8.72103 0.00031 
ISCO 
launch 

6.9×10-8 

1.4985 

×1048 

2.51179 

×109 

mc2+? 1 One marginally stable 

Orbit=2.135×109m 

Inspection of Table 4 tells us that as Angular Momentum of the test particle is reduced the two 
circular orbits converge. Eventually at l/c(m)→ spin parameter = a=2.51178×109m we obtain 
coincident roots corresponding to an Energy Minima as shown in Figure 6. This is the Innermost 
(marginally) Stable Circular Orbit(ISCO) in Kerr Metric.  

So we conclude that for pro-grade orbits, ISCO in KERR Metric is 2.13493×109m = 0.36×rG . 

The Potential Energy Profile for ISCO is shown in Figure 6 covering a spatial range from 
1×109m to 4×109m. 

 

 

Figure 11. Innermost marginally stable orbit at 0.36rG . 

4.2. Consider the retrograde orbit around the rapidly spinning Black Hole in NGC 1365. 

In retrograde orbit, the test particle angular momentum subtracts from the angular 
momentum of the BH. 

I assume l = -K×a . Therefore effective Potential for retrograde massive test particle will be : 
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Inspection of Table 4 tells us that as Angular Momentum of 
the test particle is reduced the two circular orbits converge. 
Eventually at l/c(m)→ spin parameter = a=2.51178×109m we 
obtain coincident roots corresponding to an Energy Minima as 
shown in Figure 6. This is the Innermost (marginally) Stable 
Circular Orbit (ISCO) in Kerr Metric. 

So we conclude that for pro-grade orbits, ISCO in KERR Metric 
is 2.13493×109m = 0.36×rG.
The Potential Energy Profile for ISCO is shown in Figure 6 
covering a spatial range from 1×109m to 4×109m.

Figure 11: Innermost Marginally Stable Orbit at 0.36rG

4.2 Consider the Retrograde Orbit around the Rapidly 
Spinning Black Hole in NGC 1365
In retrograde orbit, the test particle angular momentum subtracts 
from the angular momentum of the BH.

I assume l = -K×a. Therefore effective Potential for retrograde 
massive test particle will be:

Table 4: The Inner Unstable CO and Outer Stable CO and the Marginally Innermost Stable CO in Kerr Metric
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Figure 12. Effective Potential Profile for a retrograde massive particle at Innermost 
Stable Circular Orbit with l = -4.90625997728496×a . It is more appropriately a marginally 
stable circular orbit. 

At K = 4.90625997728496, we get a coincident root of the first derivative of (13). The 
coincident root of the first derivative occurs at : 

                           

5. Primary-centric analysis of Circular Orbits around BH in NGC1365 in weak-
gravitation regime. 

Total Angular Momentum of a binary system is defined as follows: 

                                                                                                        

Here JT = Total Angular Momentum of the Binary System which is conserved through out the 
evolutionary history the Binary System. In our case the binary system is a massive particle of 
solar mass MΘ = 1.99×1030Kg launched at a given point in NGC 1365 into an orbital path around 
the BH at the center of NGC1365. Table 5 gives the initial angular momentums of the BH and 
the massive test particle which is conserved and which decides the circular orbit and which in 
Primary-centric terminology is the triple synchrony orbits or Clarke‘s Orbits. 

At the circular orbit stage which is referred to as Clarke‘s Orbits, the system is in triple 
synchrony state namely: 
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Figure 12: Effective Potential Profile for a Retrograde Massive Particle at Innermost Stable Circular Orbit with l = 
-4.90625997728496×a. It is more appropriately a Marginally Stable Circular Orbit.

At K = 4.90625997728496, we get a coincident root of the first 
derivative of (13). The coincident root of the first derivative 
occurs at :
r=2.56954×1010 m=4.34773×rG

5. Primary-Centric Analysis of Circular Orbits around BH 
in NGC1365 in Weak-Gravitation Regime
Total Angular Momentum of a binary system is defined as 
follows:

Here JT = Total Angular Momentum of the Binary System which 
is conserved through out the evolutionary history the Binary 
System. In our case the binary system is a massive particle 
of solar mass MΘ = 1.99×1030Kg launched at a given point in 
NGC 1365 into an orbital path around the BH at the center of 
NGC1365. Table 5 gives the initial angular momentums of 
the BH and the massive test particle which is conserved and 

which decides the circular orbit and which in Primary-centric 
terminology is the triple synchrony orbits or Clarke’s Orbits.

At the circular orbit stage, which is referred to as Clarke’s Orbits, 
the system is in triple synchrony state namely:
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So at Circular Orbit/Clarke’s Orbit Stage:

According to Primary-centric Analysis, co-evolving Binary will 
have a constant total Angular Momentum JT through out its 
tidally evolving history. Total Angular Momentum is defined as 
in (14).

In a tidally evolving binary there are two possibilities. The 
secondary is initially at aG1 which will be shown to be Energy 
Maxima. This is highly unstable and any disturbance such as 
solar wind or cosmic radiation can cause it to tumble either short 

of aG1 or long of aG1.

If the secondary falls short of aG1 then it is trapped by in-spiral 
path which is a contracting path hence doomed for destruction. 
Therefore this in-spiral path is referred to as death-spiral. During 
this in-spiral journey it can either make a head-on collision with 
the central primary or evaporate as it approaches the central 
primary by the latter’s tidal flexion or it may partially evaporate 
and partially pulverize by tidal disruption.
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If the secondary falls long of aG1 then the secondary is launched 
on an expanding spiral path by gravitational sling shot effect 
[25,26]. But during both these possibilities total angular 

momentum is conserved as long as there is no external torque 
acting on the system 
Because of its constancy, following statement is true:
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Therefore the initial angular momentum satisfies the following condition:

But from Kepler’s Third Law:

Substituting (17) in JTinitial equation (18) and replacing aG2 by ‘A’ we get:

By solving for the roots of (20) we get two roots aG1 and aG2.
for different values of JTini. These correspond to the Circular 
Orbits obtained in Schwarzschild Metric and Kerr Metric 
Effective Potential analysis.

In (20), the most important but uncertain parameter is the polar 
Moment of Inertia of SMBH namely ‘C’. It plays a pivotal role in 

determining the Circular Orbits but till date we have no accurate 
formulation for the rotational inertia of SMBH. I have taken the 
most realistic value of ‘C’ of SMBH residing in NGC1365.

From http://www.sciencepubnet/report we have the following 
formulation:
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By solving for  the roots of (20) we get two roots aG1 and aG2.for different values of JTini. These 
correspond to the Circular Orbits obtained in Schwarzschild Metric and Kerr Metric Effective 
Potential analysis. 

In (20), the most important but uncertain parameter is the polar Moment of Inertia of SMBH 
namely ‗C‘. It plays a pivotal role in determining the Circular Orbits but till date we have no 
accurate formulation for the rotational inertia of SMBH. I have taken the most realistic value of 
‗C‘ of  SMBH residing in NGC1365. 

From http://www.sciencepubnet/report we have the following formulation: 
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From Introductory Lectures on Black Hole Thermodynamics, by Ted Jacobson, Institute of 
Theoretical Physics, University of Uterecht, Section 1.6.1. is devoted to Application of Area 
Theorem. It gives the area of the event horizon as follows: 
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Taking the system parameters from Table 3 namely: 

                                                                     

Substituting the parameters given in (C) in (B) we get the surface area of the event horizon as: 
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Risalliti et.al.(2013) have accurately determined  the dimensionless spin parameter which yields 
the angular momentum of SMBH to be: 
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From (D), polar moment of Inertia of SMBH = C = 4.23702×1055Kg-m2 ;                        E 

Polar Moment of Inertia of the massive test particle is: 
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By solving for  the roots of (20) we get two roots aG1 and aG2.for different values of JTini. These 
correspond to the Circular Orbits obtained in Schwarzschild Metric and Kerr Metric Effective 
Potential analysis. 
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From http://www.sciencepubnet/report we have the following formulation: 
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Polar Moment of Inertia of the massive test particle is:

Risaliti et.al.(2013) observed the center of NGC1365 through 
X-Ray Telescope namely XMM-Newton Observatory launched 
by European Space Agency and through Nuclear Spectroscopic 
Telescopic Array (NuSTAR) launched by NASA [20].

By measuring the high energy light emitted by iron atoms, 
telescopes were able to trace the motion of the inner edge of the 
flat, rotating accretion disk that circles NGC1365’s SMBH and 

funnels gas into the inner region within the event horizon of the 
SMBH.

Substituting (E), (F), M*
sec = 1.99×1030Kg and JT_initial = 

J*(initial angular momentum of SMBH=2.96173×1054Kg-
m2/s)+L*(angular momentum of the massive target particle 
launched at the edge of the Galaxy = 2.54769×1053Kg-m2/s) in 
(20) we get the two Clarke’s Orbits:
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Just as the circular orbits in Kerr Metric Effective Potential correspond to inner unstable circular 
orbit having Energy Maxima and outer stable circular orbit having Energy Minima. In a like-
wise manner it is shown in Figure 8 and Figure 9 that inner Clarke‘s Orbit corresponds to Total 
Energy Maxima and outer Clarke‘s Orbit corresponds to Total Energy Minima. Hence inner 
Clarke is unstable and outer Clarke‘s Orbit is stable. 

Table 5.Initial Total Angular Momentum for different launch points of the solar test 
particle and its Circular Orbits and Clarke‘s Orbits from Kerr Metric and Primary-centric 
Framework respectively. 

Distance 
of 
Launch 

From the 
center 

 

L*=mr1/2B 

(Kg-m2/s) 

JT(initial)= 

L*+J* 

(×1054Kg-
m2-s-1) 

Inner Clarke‘s 
Orbit(×109m) 

Outer 
Clarke‘s 

Orbit 

(×1021m) 

Inner 

Unstable 

CO(×109m) 

Outer 

Stable 

CO(×1017m) 

2000pc 2.54769 

×1053 

3.2165 3.58525 9.83686 8.86545 617.114 

10pc 1.8×1052 2.97973 3.77274 8.44196 8.86398 3.08558 
5pc 1.27×1052 2.97443 3.77722 8.41195 8.86336 1.54279 
1pc 5.69×1051 2.96742 3.78317 8.37235 8.86079 0.154 
0.1pc 1.80×1051 2.96353 3.78648 8.35042 8.85073 0.031 
0.01pc 5.7×1050 2.9623 3.78753 8.34349 8.81912 0.0031 
0.001pc 1.8×1050 2.96191 3.78786 8.34129 8.72103 0.00031 
ISCO 
launch 

7.530127 2.9604 3.78915 8.33279 One marginally stable 

Just as the circular orbits in Kerr Metric Effective Potential 
correspond to inner unstable circular orbit having Energy 
Maxima and outer stable circular orbit having Energy Minima. 
In a like-wise manner it is shown in Figure 8 and Figure 9 that 

inner Clarke’s Orbit corresponds to Total Energy Maxima and 
outer Clarke’s Orbit corresponds to Total Energy Minima. Hence 
inner Clarke is unstable and outer Clarke’s Orbit is stable.
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×1017 Orbit = 2.135×109m 
From Table 5, it is evident that the two results correspond only in weak gravitation regime when 
the test particle is very far from the heavy mass concentration in BH. 

5.1. Primary-centric analysis of Total Energy Profile of the test solar particle in 
NGC1365. 

From (14), the spin angular velocity is given as follows: 

 (                     )    
   (         )

                                                   

In (21) I have assumed that test particle is in synchronous orbit where secondary spin period is 
the same as the  orbital period of the binary. This will be true only in compact and spectroscopic 
binaries where tidal effect is strong. Isec = 0.4mRsec

2 = the moment of inertia of the secondary 
around its polar axis. The mass term for the test particle m* is reduced mass that is: 

     
   

 
                                                                                

From Kepler Third Law as given in (8): 
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Dividing (21) by (8) we get the following: 

 
    

            
    

                                                     

(23) is Spin/Orbital Angular Velocity equation with constants defined as: 

    
        

    
          

     

Total Kinetic Energy of a Binary is formulated as follows: 
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Table 5: Initial Total Angular Momentum for Different Launch Points of the Solar Test Particle and its Circular Orbits and 
Clarke’s Orbits from Kerr Metric and Primary-centric Framework Respectively
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Carrying out the change of variable in KE expression we get: 
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Plot of TE gives a minima corresponding to Outer Clarke‘s Orbit= aG2 , a maxima corresponding 
to Inner Clarke‘s Orbit and again there is a minima which appears to be the potential well 
corresponding to the BH in NGC 1365 or it can be treated as a Mathematical Artefact. 

Rewriting (31) and substituting the complete expressions of the constants we get: 
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At x = 1 we should get ω/Ω = 1 and that is what we get exactly from (35). 

Also equating J at inner Clarke‘s Orbit to J at outer Clarke‘s Orbit we get: 
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The above algorithm will be used to verify the stability of inner and outer Clarke‘s Orbits. 

In Figure 8 and Figure 9, the Total Energy profile is plotted at inner and outer Clarke‘s Orbits. 

From the Figure 8 and 9, it is clear that Inner Clarke‘s Orbit at aG1 is an unstable Circular Orbit 
and Outer Clarke‘s Orbit at aG2 is a stable Circular Orbit. This is analogous to Kerr‘s Circular 
Orbits in weak-gravitation regime. 
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The above algorithm will be used to verify the stability of inner 
and outer Clarke’s Orbits.

In Figure 8 and Figure 9, the Total Energy profile is plotted at 
inner and outer Clarke’s Orbits.

From the Figure 8 and 9, it is clear that Inner Clarke’s Orbit 
at aG1 is an unstable Circular Orbit and Outer Clarke’s Orbit 
at aG2 is a stable Circular Orbit. This is analogous to Kerr’s 
Circular Orbits in weak-gravitation regime.
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Figure 13. Total Energy Profile of a star orbiting SMBH at the center of NGC1365 at the 
Inner Clarke‘s Orbit aG1 and at the potential well created by SMBH at the center of the 
Galaxy 1365. 

 

Figure 14. Total Energy Profile of a star orbiting SMBH at the center of NGC1365 at outer 
Clarke‘s Orbit aG2 .  

 
29 

 

Figure 13. Total Energy Profile of a star orbiting SMBH at the center of NGC1365 at the 
Inner Clarke‘s Orbit aG1 and at the potential well created by SMBH at the center of the 
Galaxy 1365. 

 

Figure 14. Total Energy Profile of a star orbiting SMBH at the center of NGC1365 at outer 
Clarke‘s Orbit aG2 . 

Figure 13: Total Energy Profile of a Star Orbiting SMBH at the Center of NGC1365 at the Inner Clarke’s Orbit aG1 and at 
the Potential Well Created by SMBH at the Center of the Galaxy 1365

Figure 14: Total Energy Profile of a Star Orbiting SMBH at the Center of NGC1365 at Outer Clarke’s Orbit aG2
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6. Estimation of SPIN of Black-Hole
The faster a Black Hole spins, ISCO diameter shortens and 
luminosity of X-ray reflected from the accretion disc increases 
[27]. Future X-ray, radio and gravitational wave observatories 
will transform Black Hole spin into a precision tool for 
astrophysics and it will enable test fundamental theories of 
gravity.

There are two standard methods of estimating spin of Black 
Holes [28]. 

6.1 Method 1
Spectral studies of FeK emission lines emitted from the the inner 
region of accretion disk around the Black Hole.

6.2 Method 2
Continuum-fitting Method: In this method mass (M), distance 

D and the angle of inclination (‘i’) of the accretion disk must 
be known. There are theoretical and observational evidences 
that inner disk is truncated abruptly at R (ISCO) [29-31]. Better 
estimate of spin from R(ISCO) can be made if observed spectrum 
covers a wide range of energy to include FeK emission ine (~ 6 
kev), Compton Hump(~ 10 to 60 kev) and Compton Reflection 
Component (~ 10 to 20 kev) from the accretion disk. Modelling 
of reflection component improves the determination of Black 
Hole spin [32]. 

Dimension-less spin parameter a* = a/J = (cJ)/(GM^2)
Rin= inner radius of the thin acretion disk (thin disk model) = 
R(ISCO) is a monotonic function of a* from 6GM/c^2 to 1GM/
c^2 wgich corrresponds to a* from 0 to 1. That is inner radius of 
the disc has reached ISCO. 

7. Conclusions
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Figure 15.Comparative Graphic study of the Clarke‘s Orbits (Blue and Red) 
obtained from Primary-centric Analysis and of Circular Orbits(Orange and Green) 
obtained from Kerr Metric. 

As can be seen in Figure 10, in the far-field from SMBH, the Clarke‘s Orbits obtained 
from Primary-centric Analysis are well separated and are of the same range as the COs in Kerr 
Metric. Therefore the Author says that there is a correspondence in Primary-centric Framework 
and in Kerr Metric Framework. 

On the other hand as can be seen after a close examination of Figure 10 and 11, in near-
field of SMBH, COs obtained from Kerr Metric converge to give rise to a marginally stable CO 
which is known as Innermost Stable Circular Orbit (ISCO). It is this ISCO which sharply 
delineates the inner edge of the Accretion Disk. A maximmally  spinning SMBH will allow, 
because of Frame Dragging Effect, a much closer inner edge of the Accretion Disk. In a non-
rotating SMBH, ISCO lies at 3Rsch radius whereas in NGC1365, where SMBH is spinning at a 
spin parameter ‗a‘=0.84, inner edge of Accretion Disk to lie at 0.36Rsch. It was the precise 
measurement of this inner edge of the Accretion Disk by Risaliti et.al.(2013) using the Event 
Horizon Radio Telescope which enabled PI to pin down the spin parameter at a = 0.84. 

Figure 15: Comparative Graphic Study of the Clarke’s Orbits (Blue and Red) Obtained from Primary-Centric Analysis and 
of Circular Orbits (Orange and Green) Obtained from Kerr Metric

As can be seen in Figure 10, in the far-field from SMBH, the 
Clarke’s Orbits obtained from Primary-centric Analysis are well 
separated and are of the same range as the COs in Kerr Metric. 
Therefore the Author says that there is a correspondence in 
Primary-centric Framework and in Kerr Metric Framework.

On the other hand, as can be seen after a close examination of 
Figure 10 and 11, in near-field of SMBH, COs obtained from 
Kerr Metric converge to give rise to a marginally stable CO 
which is known as Innermost Stable Circular Orbit (ISCO). 

It is this ISCO which sharply delineates the inner edge of the 
Accretion Disk. A maximmally spinning SMBH will allow, 
because of Frame Dragging Effect, a much closer inner edge 
of the Accretion Disk. In a non-rotating SMBH, ISCO lies at 
3Rsch radius whereas in NGC1365, where SMBH is spinning 
at a spin parameter ‘a’=0.84, inner edge of Accretion Disk to 
lie at 0.36Rsch. It was the precise measurement of this inner 
edge of the Accretion Disk by Risaliti et.al. using the Event 
Horizon Radio Telescope which enabled PI to pin down the spin 
parameter at a = 0.84 [21].
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Figure 16. The convergence of Outer Stable CO and Inner Unstable CO in the 
immediate vicinity of SMBH into the Innermost (marginally) Stable Circular Orbit 
(ISCO). 

This paper has decisively established that Primary-Centric Analysis of Circular Orbits 
corresponds to the analysis of the same Circular Orbits in Kerr Metric in weak-gravitation 
regime but in strong gravitation regime Primary-centric Analysis completely fails to arrive at 
ISCO. Schwarzschild Metric and Kerr Metric account for the space-time curvature in the vicinity 
of SMBH and Kerr Metric also accounts for Frame-Dragging effect hence it very logically 
arrives at ISCO which Newtonian framework or a Post-Newtonian Framework like Primary-
centric Analysis completely fails to arrive at. Strong or Weak Gravitational Field is defined by 
the escape velocity of the object under the study. 

If the mass of the object is M and radius is R the the escape velocity is defined as: 

    Vescape = √(   )        …………………………………..39 

When escape velocity is less than the velocity of light c = 3×10^8 m/sec we have weak 
gravitational regime and when we have escape velocity equal to or greater than c then we have 
strong gravitational regime.   

Figure 16: The convergence of Outer Stable CO and Inner Unstable CO in the Immediate Vicinity of SMBH into the 
Innermost (Marginally) Stable Circular Orbit (ISCO).

This paper has decisively established that Primary-Centric 
Analysis of Circular Orbits corresponds to the analysis of the 
same Circular Orbits in Kerr Metric in weak-gravitation regime 
but in strong gravitation regime Primary-centric Analysis 
completely fails to arrive at ISCO. Schwarzschild Metric and 
Kerr Metric account for the space-time curvature in the vicinity 
of SMBH and Kerr Metric also accounts for Frame-Dragging 
effect hence it very logically arrives at ISCO which Newtonian 
framework or a Post-Newtonian Framework like Primary-
centric Analysis completely fails to arrive at. Strong or Weak 
Gravitational Field is defined by the escape velocity of the 
object under the study.

If the mass of the object is M and radius is R the the escape 
velocity is defined as:

When escape velocity is less than the velocity of light c = 3×108 
m/sec we have weak gravitational regime and when we have 
escape velocity equal to or greater than c then we have strong 
gravitational regime. 
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