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Abstract
The process adapted here delivers physiological readings and maps out the major components that make up the physiological 
system. The contribution of this component can also be determined on each of the parameters. The skin conductance response 
(SCR) has a major effect on the synchronous readings of the physiological metrics used. The paper investigates this default by 
developing a prototypical representation of integrated physiological readings with real-time analytics using a convergent dynamic 
control model as the inference engine. 

The major components that make up the physiological system and errors, are characterised by either their noisiness or systematic 
disturbance. The noisy error is based on the obvious pattern in each time interval and it is measured based on the mean root square 
error(MRSE). The SCR has a major effect on the synchronous readings of the physiological metrics used. The results obtained from 
test runs indicate that the Tonic phase of the physiological response signal is the skin conductance level (SCL) that represents the 
base level of the signal.

 The Phasic level is the component of the skin conductance response that reflects the direct response to the external stimulus, and 
this is set between 1-4secs after the stimulus onset at the baseline phase. There also exists the non-specific SCR known as the anom-
alies that appear post-stimuli; this represents the number of conductance responses that appear within and among subsequent 
physiological response readings. The originality of work is its ability to visualise multi-modal response signals in a single frame 
and detect optimal responses significant to a particular event-related protocol.
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Introduction
Very few studies have discussed the concept of the physiological 
system and its association with control dynamics and system engi-
neering. Khoo (2018a), Manor et al. (2010), Stevens et al. (2018), 
Fetanat et al. (2019a), Das et al. (2011), Krendel and McRu-
er (1968) featured applications to the physiological response of 
non-linear dynamics, parameter estimation, and an adaptive esti-
mation of the controls. The papers also illustrated key concepts and 
method that offers in-depth analysis of selected physiological con-
trol models that also highlights the topics in the paper presented. 
Appa and Argyris (1995), Babin (2021), Li and Liu (2012), Yang 
et al. (2014), Li and Todorov (2007), Lee and CHANG (1986), 
discusses the most noteworthy developments in system identifica-
tion, non-linear dynamical analysis, optimal control and targets in 
current bio-engineering advancements. These are designed to be a 

form of practical resources with some text as guided experiments 
on simulated models. 

The physiological control systems also focus on a common con-
trol and its principles that are used to characterize a broad variety 
of the physiological mechanism of the system. It explores both 
identical and non-linear and time-varying systems that provide the 
background for understanding the link between continuous-time 
and discrete-time dynamic models. This paper explores the infer-
ence dynamic control of the physiological system with a conver-
gence higher-order dynamic system to a first-order system:

Where x” is the input physiological metrics due to second-order 
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 x¨ = f(x,x,u˙) (1) 

Where x” is the input physiological metrics due to second-order changes in reaction to a stimulus x’ 

is the first-order change while u is the additional environmental constraint. This relates to state 

control acceleration of the state: 

 x¨ = (d2x)/(dt2) (2) 

where the stacked change or resultant output in the state can be defined as: 
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changes in reaction to a stimulus x’ is the first-order change while 
u is the additional environmental constraint. This relates to state 
control acceleration of the state:

where the stacked change or resultant output in the state can be 
defined as:

with a first-order form given as y’= g(y,u). The research objective 
is set in such a way as to determine the resultant effect:
y(t) for t >0 subject to environmental constraint u(t) = g((x),t) and 
latency
x(0) = x0

Where g((x),t) = d(x,u(x,t)) is the time-varying dynamic function 
of the second-order differential equation. This process is modelled 
and simulated based on time interval t. The main purpose of the 
convergence dynamics is to determine how the response time and 
reaction act on the mechanism, the purpose of the control is to 
determine the system’s possible response to errors and anomalies. 
Studies by Smet et al. (1990), Sarkar et al. (1994), Hu et al. (2003) 
and Koren (1985) have shown the positions of mechanical systems 
in robotics and how to generate continuous paths. 

The main factor, is that executing these paths requires more con-
scious thought and more carefully designed physics for the me-
chanical systems and their mechanisms. The strongest response 
in a person can change instantaneously with time in the external 
environment. It is through the use of the control that mechanical 
systems like the robot move to a positive position with sub-milli-
metre accuracy, this is a means for understanding the locomotion 
and reflexes in the biological sensorimotor system. 

These techniques can also be applied to human physiological re-
sponse systems. Also, both dynamics and control have deep fields 
and can be studied in the present and in the future. However, there 
are significant changes in classical approaches which now rely 
heavily on mathematical models and analysis rather than computa-
tion as the key tool. Studies done by Monostori et al. (2016), Kim 
et al. (2012), Horv´ath et al. (2017), Lee et al. (2015), Franklin et 
al. (1998), have shown the basic concepts that change continu-
ously over time in a physical system with xϵRn being the defining 
quantity of the state of the system, the control input can be defined 
as uϵRm , where m is the number of independent chosen param-
eters or components. The six joint controls of the robot system 
are considered as x = (q,v)ϵR12 and the control variables are set 
as u = (vd1,...,vd0) where vdi indicates the desired flexibility of the 
response in the robot, and  i is the joints that make up the robot. 
These are a few examples of the application of dynamic control 
systems to biological processes. The main purpose of the control 
is to take charge of deviations from the idealised state process state 

and signal transmission besides handling the differential constraint 
of the convergence dynamic function. Some problems are foreseen 
during this period such as noise, bias, errors or uncertainty and 
disturbances. The robot reflex could fail to respond to a stimulus or 
reach an unrecoverable state of awareness. A robust controller can 
then be designed to produce high-quality behavioural deviations 
that recognise errors in a tightly controlled experimental condition.

Literature Review
Recent studies by Kotas and Medzhitov (2015), Nanney (1958), 
Schweppe et al. (1980), Shadel and Horvath (2015), Pickles et al. 
(2018), covered the control mechanisms that provide the basis for 
the maintenance of homeostasis at every level of organisation in 
the hierarchy of living or biological systems (Figure 1). These are 
the working knowledge of the given biological system which is 
mostly incomplete unless we arrive at some understanding of the 
regulatory processes that mostly contribute to the natural operation 
of the characteristics of the body functions. Liem et al. (2013), 
Chen and Stroup (1993), Mel˜ao and Pidd (2000), Ellis and Wainer 
(1994), Peuquet (1994), maintain that to attain an understanding of 
the body functions the conceptual model of the different interacting 
processes is involved which is required and sufficient for response 
parameterisation. Uchino et al. (1996), Stemmler (2004) state that 
to determine whether or not one model reflects the underlying re-
ality, one has to make the predictions with the model, the factors 
in play are often complex and dynamic and their behaviour may 
depend strongly on the numerical values of certain key parameters. 
In such a case, the rigorousness provides a quantitative approach 
to indispensable constraints. Some of the most notable advances 
in the physiological processes over the past decades such as that 
applied in Uchino et al. (1996), Stemmler (2004), Stevens et al. 
(2018), Darrall (1989) have been made through the application of 
quantitative models. The physiological control models also have 
been critical either in both direct and indirect conditions for the 
development of different improved medical diagnostic techniques 
and also novel technological therapeutic innovations in current 
times. The study of the physiological control system is general-
ly incorporated as noted by Khoo (2018b), Fetanat et al. (2019b), 
Petrou et al. (2017), Enderle and Bronzino (2012), because of its 
importance and in one form or another into the study curriculum 
in schools under biomedical engineering. A lot of high-quality re-
search by Doyle et al. (2013), Benner et al. (1999), has topics pub-
lished over the years with a comprehensive text on the upper level 
of educational parastatals, such as the application of control theory 
to physiological systems with methods that employ convergence 
procedures.

The primary goals of most of the research areas by Bobtsov et al. 
(2011), Khoo (2018c), is to highlight the basics and techniques 
employed in the control theory, model identification, and system 
analysis and to give a precise biomedical engineering study to edu-
cational fields that would appreciate how the principles applied can 
be better understood in terms of the processes involved in physio-
logical response and regulations. The assumptions made in some 
studies by Glass and Mackey (1979), Mackey and Glass (1977), 
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Glass et al. (1988), Li (2015) on physiological control systems and 
analysis is the physiological applications of control engineering 
and its focus on the analysis of feedback regulation in contrast to 
the basic concepts and methods of the control theory to mathemat-
ics derivations and proofs. Points are also stated on the differences 
between technological and physiological control systems, and its 
introduction to the basic concepts of classical control theory of 
the physiological control systems. The study state analysis of the 
physiological closed loop systems which can be explored in a tra-
ditional term that relies on the graphical solution or in the form of a 
window-based dynamic control as in the case of this paper. This is 
a more modern approach that employs computer analytics to solve 
the problems of tonic, phasic and baseline estimates of physiolog-
ical response systems in terms of error recurrence.

Figure 1: An integrated physiological system of the body: Cour-
tesy: Google images.

Some studies Hunt et al. (1992), AlOmari et al. (2012) cover the 
topic of stability issue, which is of critical importance to the phys-
iological regulation of the body, with a range of techniques for 
assessing stability under different conditions in the assumption of 
linearity of the physical system. Few studies like Ijaz et al. (2020), 
Murray-Smith (1982), Zamek-Gliszczynski et al. (2013) have paid 
particular interest in the physiological control issues related to pa-
rameter identification, sensitivity to noise and input in the design. 
Other works by Vancouver (2005), Duarte-Galvan et al. (2012), 
Jagacinski and Flach (2018) studied the application of modern 
methods such as the control theory to physiological systems. The 
methods are based on the principle of optimisation and the adap-
tive control theory applied to regulated spontaneous fluctuations 

in the physiological signal. Some more common non-linear analy-
sis methods employ the investigation of the physiological system 
which recognizes space constraints to non-linear techniques and 
applications. This paper focuses mostly on the basic parameter 
components that make up physiological readings and one of its 
major contributions is the integration of the convergent dynamics 
to the multi-modal physiological readings (signals) and parameter 
estimates which can be applied in real-time. The proceeding sec-
tions discuss methods and results from the proposed model design 
(Figure 2 and 3).

Figure 2: Response signal serve as input to inference ordinary dif-
ferential equation engine.

Figure 3: Physiological metrics with computer components.

The Skin conductance response is the major marker for detecting 
the cognitive state of a person and this is used here based on its 
measurement of moisture content related to sweat on the surface 
of the skin due to cognitive workload.
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Figure. 3: Physiological metrics with computer components. 

The Skin conductance response is the major marker for detecting the cognitive state of a person and 

this is used here based on its measurement of moisture content related to sweat on the surface of the 

skin due to cognitive workload. 

 
Figure. 4: Mathematical differential equation task allocation to participants. 

 

Methods 

Errors are characterised by either their noisiness or systematic disturbance. The noisy error is based 

on the obvious pattern in each time interval and it is measured based on the mean root square error 

(MRSE). The error can be systematic in the fact that it does not obey a pattern. For control, these 

natural deviations usually fall under two types of fundamental groups, such as response uncertainty 

and emotional state uncertainty in a person. The disturbance is also a form of movement uncertainty 

that is caused by the state to which the movement is unexpected in a person such as distractions 
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Figure4: Mathematical differential equation task allocation to participants.

Methods
Errors are characterised by either their noisiness or systematic dis-
turbance. The noisy error is based on the obvious pattern in each 
time interval and it is measured based on the mean root square 
error (MRSE). The error can be systematic in the fact that it does 
not obey a pattern. For control, these natural deviations usually fall 
under two types of fundamental groups, such as response uncer-
tainty and emotional state uncertainty in a person. The disturbance 
is also a form of movement uncertainty that is caused by the state 
to which the movement is unexpected in a person such as distrac-
tions during an experimental study. Another form of this distur-
bance can be the nature of the room or room temperature which 
sometimes contributes to an increase in temperature in a normal 
body response. The major error that was tackled in the study is the 
measurement error, a state uncertainty that is due to the sensor’s 
noise which is observed incorrectly. This is critical for a closed-
loop controller in the measurement sensor and also the behaviour 
of the measure state. It can also be similar to modelling error or 
the parameter uncertainty that includes the convergent dynamic 
function, which differs from the human response. This is treated 
as state uncertainty in the response motion as is modelling as a 
disturbance to the convergent dynamics given as:

The response signal x’ is a set vector as input from a physiological 
response to a given set of tasks composed of an aggregate of re-
sponses from participants.

The Task
The allocated attention task in the experimental study was set as 
a given mathematical differential equation which the participants 
have to solve for four (4) minimum intervals and a relaxation task 
in form of the static webpage was served to reduce their cognitive 
responses every twenty (20) seconds. The adaptation task is set 
in the form of a relaxation period where each participant is given 
orientation about the mathematical differential equation task on 
how to solve each given problem set in front of them. The skin 
conductance response and skin temperature were recorded, while 
the pupillary response was recorded from the eye tracker hosting 

the external stimulus. A total of sixteen (16 mins) was used to ob-
tain the overall response signal. The participants (50 people) were 
selected from different parastatals regardless of gender and age 
differences. The rationale is to give a generalised viewpoint on 
response detection at the initial stage. They simply had to sign a 
consent form and agreement to take part in the study that uses a 
non-invasive biosensor SCR tool and a local webcam embedded 
in a labtop. The generated data is modelled in a convergent input 
setup in the form of a mathematical model.

Equation 9 is the given mathematical model that represents the 
input signal with the first derivative where ϵd(t)ϵEd is the error. Ed 
is the possible disturbance and probability function in the motor 
function. The state uncertainty can be modelled as the discrepancy 
between the estimated state dy/dx and the true state of the system 
x such that dy/dx = x + ϵx. The modelled error is then treated as the 
state uncertainty on a different dynamical system on an augmented 
state transmission. Given a response controller with one-dimen-
sional point mass, the unobservant true response m is due to the 
observed body response m which is usually due to response from 
the true value ϵm such that mb = m + ϵm. The augmented state vector 
(p,v,m)ϵR4, results in the convergent dynamics:

Where the modelling error is equal to the state uncertainty re-
sponse vector in the baseline response given as:

The difference between the response time interval of the conver-
gent dynamic system and the response trail is given as the response 
state space x(t) : [0,T] → Rn is the parametric response time inter-
val. The physiological response reading can be visualised within 
a window-based dynamic control system with different parameter 
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sec periods of each of the phase was used to determine the response to amplitude for the task for 

every participant. The aggregate response is used to represent the overall response to external 
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Figure 6: The changes in Tonic phase on both skin conductance (low tonic) and skin conductance level (high tonic).

There also exists the non-specific SCR known as the anomalies 
that appear post-stimuli; this represents the number of conduc-
tance responses that appears within a period. In this case, the pa-
rameters feature extract components from the SCR and anomalies 
interval at an adaptation time interval. This is calculated based on 
20secs overlapping time window frames for both stimulus onset 
and every recovery time interval respectively. The parameters of 
the tonic phase were computed based on every last 20-sec inter-
val; for the relaxation task, the first 20-sec period was selected 
to reflect a response to the stimulus, while for the mathematical 

differential equation task, the final 20-sec periods of each of the 
phase was used to determine the response to amplitude for the task 
for every participant. The aggregate response is used to represent 
the overall response to external stimuli.  

Figure 6 shows the window frame for the overall physiological 
response. The SCR (red line) is decomposed to Baseline (Cyan 
color) and represents the slow-varying optimal tonic phase of the 
skin conductance. The amplitude of the SCL is the standard deriv-
ative of the Skin conductance response and the slope of the SCL.



  Volume 2 | Issue 2 | 94J Curr Trends Comp Sci Res, 2023

 

 

 

Figure 6 shows the window frame for the overall physiological response. The SCR (red line) is 

decomposed to Baseline (Cyan color) and represents the slow-varying optimal tonic phase of the skin 

conductance. The amplitude of the SCL is the standard derivative of the Skin conductance response 

and the slope of the SCL. 

 
Figure. 7: The baseline of the skin conductance to the maximum SCL or optimal phasic level at the 

peak of the response. 

The dashed blue line of Figure 7 shows the baseline of the skin conductance to the maximum SCL or 

optimal phasic level at the peak of the response. Sometimes external causation due to experimental 

setup called artefacts in the data can affect SCL baseline, and the minimum baseline is estimated 

before the peak (minimum SCL) which is used as a baseline measurement for all physiological 

responses. The latency is the time delay from the onset to the start of the SCR; this is the SCR that 

crosses the 0.03µs detected at the set threshold and is a typical representation of a 1-3 secs response 
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SCL). The time to an increase in amplitude is the same as the latency and rise time. The sampling 

window is based on latency taken from the conductance response presented at the time of maximum 

baseline or optimal phasic change. The baseline response is obtained by using the Savistky Golay 

filter to smoothen the original SCR and this is done for each physiological response such as the skin 

temperature, pupil response and baseline response. The Tonic skin conductance is the average 

response from the SCR; these are measured as lower trace mark (Cyan color) as the Phasic level and 

used to determine when a set threshold of 0.03µs is passed for every event-related response 

identified in the automated dynamic control analysis. The push-menu buttons can be automatically 

activated to display the real-time analysis of the signal response of each parameter computed using 

the convergent dynamic control model. 
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Figure 7: The baseline of the skin conductance to the maximum SCL or optimal phasic level at the peak of the response.

The dashed blue line of Figure 7 shows the baseline of the skin 
conductance to the maximum SCL or optimal phasic level at the 
peak of the response. Sometimes external causation due to exper-
imental setup called artefacts in the data can affect SCL baseline, 
and the minimum baseline is estimated before the peak (minimum 
SCL) which is used as a baseline measurement for all physiolog-
ical responses. The latency is the time delay from the onset to the 
start of the SCR; this is the SCR that crosses the 0.03µs detected 
at the set threshold and is a typical representation of a 1-3 secs 
response interval. The rise time denotes the time from the SCR 
at the onset to the peak response (maximum SCL). The time to 
an increase in amplitude is the same as the latency and rise time. 
The sampling window is based on latency taken from the conduc-
tance response presented at the time of maximum baseline or op-
timal phasic change. The baseline response is obtained by using 
the Savistky Golay filter to smoothen the original SCR and this is 
done for each physiological response such as the skin temperature, 
pupil response and baseline response. The Tonic skin conductance 

is the average response from the SCR; these are measured as lower 
trace mark (Cyan color) as the Phasic level and used to determine 
when a set threshold of 0.03µs is passed for every event-related 
response identified in the automated dynamic control analysis. The 
push-menu buttons can be automatically activated to display the 
real-time analysis of the signal response of each parameter com-
puted using the convergent dynamic control model.

Each physiological metric indicates a contribution to the perfor-
mance of the dynamic control shown in Figure 9. Each of the data 
metric reliability is based on the error test computed from the win-
dow frame of (Figure 8), the standard error for each input signal 
for the model attributes is given as 2.10%, this exceeds the stan-
dard threshold for a typical physiological response signal. It can 
also the termed as feasible since behaviour data is usually difficult 
to predict. The application of standard biomedical tools has also 
contributed to the decrease in false positive cases in response de-
tection.
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Figure 9: Performance metrics for each physiological response served as input to the convergent dynamic control.

Conclusion
This paper seeks to investigate the trends in convergent dynamics 
in physiological response modelling in the form of a window-based 
robust control system. The concept of physiological phenomena 
and engineering control systems can be termed as being similar to 
each other in the sense that the physiological control explores the 
biological environment that also includes a person by providing 
a solution to the control, while the engineering control explores 
the software and hardware of a physical system. The biomedical 
application is more efficient and natural due to the involvement 
of control theory; the mechanism of the control system compris-
es components which are necessary for both maintenance and 
homeostasis in the living systems of a person. The negative and 
positive feedback control its mechanisms is used for maintaining 
its homeostasis. The major default is the ability to visualise its pro-
cess in a single frame for easy and real-time model optimisation. 
The paper investigates this default by developing a prototypical 
representation of integrated physiological readings with real-time 
analytics using a convergent dynamic control model as the infer-
ence engine. The process delivers physiological readings and maps 
out the major components that make up the physiological system. 
The contribution of this component can also be determined on 
each of the parameters. The SCR has a major effect on the synchro-
nous readings of the physiological metrics used. The future work 
would be to embed real-time analytics for online response detec-
tion with a multi-modal measuring biosensor both in mobile and 
desktop operating systems that would integrate real-time analytics 
to response detection. This would also include the pupil detection 
sensor that synchronises the effect of the external stimulus to other 
sensors used within a single frame.
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