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Abstract
The kinematic accuracy of cylindrical rollers bearing isn’t only influenced by the size and form precision of its parts, 
but also more influenced by the cooperation among them. For cylindrical rollers bearing, the main indices of the 
kinematic accuracy are the ending beat and the radial run out of bearings. There must be dependent relationship be-
tween the cooperative action among the parts of bearings and the ending beat or the radial run out of bearings. This 
relationship is hardly expressed by mathematical formula. However, because the parts dimension deviation and the 
run out of bearings follow statistic law and have their distribution characteristics, while the copula joint distribution 
function can connect the run out of bearings with multiple parts dimension accuracy. The copula function is intro-
duced to analyze the dependent relationship between bearing parts cooperative action and its kinematic accuracy. 
Based on the copula function of statistic theory, the kinematic accuracy of bearings can be forecast by parts geometric 
accuracy. 
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Introduction 
The kinematic accuracy of bearings isn’t only restricted by its parts 
dimension precision but also influenced by the cooperation among 
them. In recent years, many researchers have been studying how 
to improving the kinematic accuracy from various aspects, exam-
ple as force, structure, assembly, lubrication and etc. There were 
many paper reported about the dependent connection between the 
parts precision and the bearings kinematic accuracy [1-15]. But, 
very few scholars studied the bearing kinematic accuracy from a 
statistical standpoint. For cylindrical rollers bearing, the radial run 
out and the ending beat are the most important indices influencing 
on the kinematic accuracy of it. The kinematic accuracy often di-
rectly affect machines performance,especially for high-speed and 
precision instruments [16]. The data from measurement about the 
radial run out and the ending beat obey statistical distribution laws. 
Their distribution characters are decided synthetically by bearing 
parts precision owe to many conditions such as worker technique, 
environment temperature and humidity, the precision grade of ma-
chining tool and so on. On account of various unexpected factors, 

the part size and form can not be standard value with more or less 
deviation. 

While, the bearings is a assembly which consist of multiple parts 
such as rollers, cage, outer ring , inner ring and etc. When assem-
bling parts together into the bearings, the parts were taken random-
ly and their precision synthetically decide the bearings kinematic 
accuracy. So, the kinematic accuracy of the bearings is a compre-
hensive effect. It needn’t only to study the parts precision, but also 
to study the cooperation among them. While, the relationship be-
tween the kinematic accuracy of bearings and the parts precision is 
quite complex and difficult to be expressed by mathematical mod-
el. However, because of their distribution characteristics, the Cop-
ula function of joint distribution can connect multiple variables 
distributions to construct the transmission and map relationship 
model between the multiple elements precision distribution and 
the bearing kinematic accuracy. So, the bearing kinematic accu-
racy can be known with the dimensional precision of parts before 
assembly. 
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In 1959, Sklar firstly propounded the copula theory. This theory 
can be applied to construct Copula function which join or “cou-
ple” multivariate distribution functions to their one-dimensional 
marginal distribution function [17]. In the end of the 20th century, 
this theory was rapidly developing at home and abroad. Since the 
1980s, this theory has been widely applied to insurance, banking 
business, machine diagnostic system, even to buildings fields, traf-
fic controlling, space technology and so on [18-32]. General dis-
tribution algorithm can’t build suitable multivariate JDF (joint dis-
tribution function) which can expresses the relationship between 
it and marginal single distribution functions. But, copula function 
can construct copula joint distribution function (CJDF) which join 
the multiple dimensional distribution function to the low dimen-
sional marginal function. At the same time, comparing with BOA, 
PPCA and other algorithms, CJDF can be applied to non paramet-
ric estimation of dependence relation between stochastic variables 
with less operation and can be preferable to give expression to 
distribution situation of dominant group [33] In this paper, CJDF 
will be introduced to research distribution characteristics of the 
inter dependent linkages between kinematic accuracy and multi-
ple variables distributions. With this ideas, the kinematic precision 
of bearings will be approximately estimated with measuring data 
about elements dimension deviation before assembly. 

Copula Joint Distribution Function 
The meaning of CJDF
As the dependent framework between variables, Copula function 
includes almost all reliant messages of stochastic variables. When 
the relationship between variables can’t be determined by tradi-
tional method, the copula function can be utilized to analyze rel-
evant relationship between variables. CJDF, also called joint dis-
tribution function or distribution reliant function, is able to couple 
the joint distribution function of two or more variables with one 
dimensional single distribution functions and to distinguish the 
marginal property from multiple variables distribution. This notion 
stemmed from Sklar ideas: CJDF is able to be split into one joint 
function and multiple marginal distribution functions and then, can 
be applied to analyze dependence among variables [34]. 

Constructing CJDF procedure
Constructing CJDF need two steps. Firstly, there need one joint 
distribution function consisted of two or more variables. Secondly, 
selecting one appropriate copula function by which the joint dis-
tribution function of multiple variables is connected to marginal 
univariant distribution function [35]: 

Step one: Joint distribution function
Given random variables xi∈R ( i=1,2,…, n) with continuous mar-
ginal univariant distribution function Yi(xi), which n-dimensional 
joint distribution function can be set as G(x1,x2,…,xn), (x1, x2,…, 
xn)∈Rn. These exists one unique Copula function written as fol-
lowed [36]:             

Set Ui = Yi(xi) (i = 1,2,...,n) then, xi = Yi
-1 (Ui) (i = 1,2,...,n).Y-1(•) is 

the inverse function of Y(•). The equation (1) can be written as:

Step two: The Type selection of Copula function
From the meaning of CJDF, a lot of functions are capable of being 
used as Copula function, of which there were two kinds functions 
most researched: ACF (Archimedean Copula function) and ECF 
(elliptic Copula function) [36]. The most distinct property of the 
ECP is that its variable has the same  distribution type, moreover, 
the most common type of the ECP is multiple variables Gaussian 
Copula (MVG) and multiple variables student's Copula (MVT)
[36]. 
According to the equation (2), multivariate Gaussian Copula func-
tion can be written as followed:

The density function of (3) is written as followed:

ρ is symmetrical positive matrix and every element is 1 in its di-
agonal line, |ρ| is determinant value of ρ. Φρ (.) expresses multiple 
variables standard normal distribution function, Φ-1(yn) is the in-
verse function of Φ(yn), I is unit matrix.
In building JDF of stochastic variables, CJDF have much superi-
ority:

1) CJDF can be used to build JDF flexibly without limiting mar-
ginal function type [37];
2) when constructuring math model with CJDF, marginal distri-
bution function indicates only individual messages of a single 
variable, while the correlative messages among variables is able 
to be described by CJDF. Therefore, one dimensional distribution 
of variable and correlation between variables can be researched 
individually [37].

Influencing factors on the kinematic accuracy of Cylindrical 
roller bearing
There are many influencing factors on the kinematic accuracy of 
cylindrical roller bearing. Besides load and machine precision, the 
kinematic accuracy of the bearing is mainly decided by elements 
geometrical deviation (dimension deviation of rollers,dimension 
and form deviation of inner ring, dimension and form deviation of 
outer ring), radial clearance and the number of rollers [38]. When 
cylindrical bearing running, the kinematic accuracy can also be 
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affected by lubrication, working loading, the assembled pattern, 
surroundings temperature and pretightening force. In these factors, 
the elements geometrical deviation is the most important influenc-
ing factor. The ending beat and radial run out of bearing are the 
vital indices of the kinematic accuracy of roller bearings. So, there 
must be a certain relationship between the kinematic accuracy and 
the dimension deviation in the radial direction and in the axial di-
rection. To ensure the kinematic accuracy of bearings, the radial 
run out and the ending beat of bearings need to be controlled to 
a certain range. So, in the paper, the relation between the radial 
and ending beat of bearings and the dimension deviation of bear-
ing elements will be analyzed to control the kinematic accuracy of 
bearings.

When the parts has been made, the dimension of them has a certain 
deviation in precision range because of accidental factors such as 
temperature, machine accuracy, technique of worker and etc. The 
deviation value is stochastic and follows the statistic law. Before 
assembling, the dimension distributions of parts are independent 
and self-interrelated. While, after being assembled, they influence 
on each other and interact with each other. This interact would 
cause bearing radial run out and ending beat and then influence on 
the kinematic accuracy. The influence on the kinematic accuracy 
is not single action of one part, but synthetic effect of two or more 
parts. So, the value of the radial run out and ending beat is also 
stochastic and follows the statistic law, which must have a relation 
with the joint distributions of parts. The relationship can be studied 
by the copula theory. 

Data analysis
The stochastic variables
From the above section, the radial run out and the ending beat of 
bearing are the main indices influencing on bearing kinematic ac-
curacy. The influence is a synthetic effect of all bearing parts work-
ing. So, without consideration of the influence of other elements, 
only three elements ( outer ring, inner ring and the rollers) will be 

taken into account to analyze the kinematic accuracy of bearings. 
The dimension deviation of them can be measured by precision 
instrument, so do the the radial run outs and ending beat of bear-
ings. With the statistic theory, the dimension distribution law of 
them can be gotten by the statistic method, while, with the copula 
theory and method the the relation between them can be estimated 
by constructing the mathematics model among them. Then , the ki-
nematic accuracy of the bearings can be known before assembling. 

Take the cylindrical roller bearings (the type of bearing is NU1004) 
for example. Let variable y1 represented the radial run-out and 
variable y2 represented the ending beat of bearing respectively. 
Let stochastic variable u represented the upper deviation of inner 
ring and let stochastic variable v represented the lower deviation of 
outer ring respectively. Because every bearing consists of several 
rollers, the dimension uniformity of rollers is very important factor 
influencing on the kinematic accuracy of bearings. So, let stochas-
tic variable w represented the absolute value of the difference that 
is the biggest deviation minus smallest deviation of rollers. 

Took 200 groups parts of the bearing to be marked by the number 
and measured them respectively and gain 200 groups data about 
u, v, and w. Of these, 100 sets of data were used to data analysis. 
The other 100 groups data were used to verify the result. Then, 
these 200 groups parts were assembled together by the No. and 
200 bearings were gained. At the same time, the radial run out and 
the ending beats of bearings were measured in the exclusive in-
strument[38] and 200 groups data about y_1, y_2 were also gotten. 
Only the 20 groups data of y1, y2, and u, v, w were list in table 1 
because of the limited space. Similarly, the left 10 groups analyz-
ing data were used for the analysis, the right 10 groups verifying 
data used for the validation.  Even if the measuring instrument is 
very precise, it has error itself. The 200 groups data had been pro-
cessed by the error separation method [38]. The following analysis 
come from processed data. 

Table 1:  The 10 groups data measured

No. y1(µm) y2(µm) u(µm) v(µm) w (µm)
1 10.8 9.6 8.61 3.81 2.91
2 9.20 3.8 4.53 5.64 3.62
3 3.61 2.6 8.22 7.42 1.81
4 3.82 12.3 4.61 9.11 2.84
5 5.64 5.61 3.52 10.30 7.65
6 7.90 14.2 2.81 11.2 2.38
7 6.81 9.04 6.90 5.63 2.82
8 8.52 6.51 5.81 2.80 10.55
9 2.91 1.22 3.90 4.60 8.26
10 8.20 2.43 4.63 9.81 4.69
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Data distribution law analysis
Parameters Estimation 
To search for the statistical law of the upper deviation u of the 
outer ring diameter, the lower deviation v of inner ring diameter 
and the absolute value w of dimension difference of rollers, the 
statistic software R can be utilized to plot histograms of u , v and 
w. the deviation distribution of  u , v and w were displayed in the 
histograms forms shown in Figure 1. The dotted curves in the Fig-
ure 1 indicated the kernel density of u , v and w. In the same way, 
the deviation distribution of y1 and y2 were displayed in the his-
tograms forms shown in Figure 2. The dotted curves in the Figure 
2 indicated the kernel density of y1 and y2. From the histogram in 
figure 1 and figure 2 , the five stochastic variables u, v, w and y1, 

y2 all approximately complied with normal distribution, but that 
is only a hypothesis. With the software R, their distributions law 
had been tested and verified. The results indicated their normal 
distribution can’t be refused as shown in table.2. 

In table 2, μ is mean value, σ is standard deviation,    ,   are es-
timation of mean value and standard deviation respectively, P is 
probability. In normal condition, according to statistics theory, if 
P>0.05, the above hypothesis is true, or else, P<=0.05, false. 
From the table 2, the above hypothesis about normal distribution 
of u, v, w, and y1,  y2  can’t be refused. 
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Table 2: Parameters value estimated and verified result
variables
 

parameters value estimated verified result
μ σ P      P >0.05

u 7.026 2.8236 7.036 2.637 0.2896 acceptance
v 2.325 3.0611 2.813 3.250 0.3592 acceptance
w 1.543 0.4839 1.546 0.481 0.2328 acceptance
y1 8.274 3.9479 8.286 3.722 0.2243 acceptance
y2 5.395 3.0622 5.394 2.965 0.2426 acceptance

µ̂ σ̂

Analyzing correlation between stochastic variables
Considering different extent influence of different variable on the 
kinematic accuracy, the correlation among the above variables 
need to be analyzed. With the software R, the covariance matrix 

between variables u, v, w and y1, y2 is shown in table 3. From 
table 3, y1 has a very strong  correlation with u, v, w respectively 
and similarly, y2 has very strong correlation with u, v, w respec-
tively. Because of the deviation in dimension of bearings parts, the 
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bearings working must cause the radial and axial beat of bearings. 
The bigger the u, v, w , the worse the beat. In addition, from the 
table 3, the radial run out has a litter stronger correlation with the 
upper deviation of outer ring than the lower deviation of inner ring 
has, similarly, the ending beat has obviously stronger correlation 
with the upper deviation of outer ring than the lower deviation of 
inner ring. The correlation between the radial run out of bearings 
and the rollers uniformity is the strongest relation in the first row. 
The correlation between the rollers uniformity and the ending beat 

of bearings is also the strongest relation in the second row. To un-
derstand intuitively the correlation between u, v, w and y1,  y2. 
R-Plot can be used to draw the relativity dots plot between them as 
shown in Figure 3. From Figure 3, y1, y2 have stronger relations to 
w than the relation to u and v that illustrates the radial run out and 
the ending beat of bearings bear very stronger correlation to the 
uniformity of rollers. In the standard deviation range, the smaller 
w, the more the uniform and the smaller the ending beat.

Table 3: The covariance matrix between variables

y1 y2 u v w
y1 1.0000000 0.5775901 0.4889608 0.3035497 0.8580857
y2 0.5775901 1.0000000 0.4560412 0.1583584 0.5685766
u 0.4889608 0.4560412 1.0000000 0.1259457 0.4217857
v 0.3035497 0.1583584 0.1259457 1.0000000 0.3650737
w 0.8580857 0.5685766 0.4217857 0.3650737 1.0000000
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Figure 3: the relativity  between u 、v  and  y1 、y2

Constructing mathematic modeling 
variables distribution function
From the above section, the radial run out of bearings results from 
the compositive action of bearings parts. The distribution law of 
the radial run out have connection with the joint distribution of   
u、v 、w , then, the distribution function of the radial run out of 
bearings can be expressed by the joint multivariate distribution 
function of   u、v 、w. So does the ending beat of bearings. A mul-
tivariate distribution function is very difficultly to be described. 
According to Sklar theory, the CJDF can be utilized to build model 
to connect the joint distribution function of multiple variables with 
one-dimensional distribution function. So the distribution function 

of the radial run out of bearings can be described by the single 
dimensional marginal distribution function of the upper deviation 
of outer ring  , the lower deviation of inner ring   and the rollers 
uniformity .

Set the single dimensional marginal distribution functions of the 
variables  u、v 、w  as F(u), F(v) , F(w)  respectively. From the 
section 4.2.1, stochastic variables    u、v and  w approximately 
follow the normal distribution. According to mathematical statis-
tics, the distribution function of  u、v and w  can be expressed as:
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Where μu  , σu  ,  μv ,  σv , μw  , σw , are the mean values and the stan-
dard deviation of   u、v and w  respectively, moreover, the density 
function of   u、v 、w  can be expressed respectively as:

Set the distribution function of the radial run out of bearings as 
F(y1)  and let F(u,v,w)  indicate the joint distribution function of 
variables u 、v and w. From the above stated, there exist the rela-
tion between the single dimensional distribution function F(y1) and 
multiple dimensional distribution function F(u,v,w). Similarly, set 
the distribution function of the ending beat of bearings as F(y2). 
there also exists the relation between the ending beat distribution 
function F(y2) and F(u,v,w) . This two relations can be expressed 
in formula as:

The high dimensional distribution function F(u,v,w)   is very com-
plicated to be solved. In general, many mathematics software such 
as MATLAB and R software only provides two-dimensional cop-
ula functions. To be convenient for analysis, the three dimensional 
joint distribution function F(u,v,w)  can be simplified into three 
items, each of item is one pair-wise joint distribution function con-
taining two-dimension stochastic variables and multiplied by a pa-
rameter λi , ki (i=1,2,3) [39]. Three items of F(u,v,w)  can be written 
as three two-dimensional distribution function F(u,v,) ，F(v,w) , 
F(w,v). Constructing the math modeling is followed as:

Where,  λi , ki ,  (i=1,2,3)  are revising parameters, and moreover, 
the density function modeling of  (8) are expressed as followed:

Where ρuv   is the correlation coefficient variables u and v , ρvw  is 
the correlation coefficient variables v and w , ρwu  is the correlation 
coefficient variables w and u .

Constructing copula function
From the above section, the CJDF of three dimension can be solved 
by dimension reduction. The pair-copula function can use a very 
flexible and intuitive way to construct high dimensional copula 
function [40]. the pair-wise joint distribution function F(u,v,) can 
be easily connected to its one-dimensional marginal distribution 
functions F(u),  F(v) [41]. There exists only one copula function 
C(F(u), F(v)) set as:

Similarly, the pair-wise joint distribution function F(v,w) can be 
connected to its one-dimensional marginal distribution functions 
F(v,) and F(w). The pair-wise joint distribution function F(w,u) can 
be connected to its one-dimensional marginal distribution func-
tions that are F(w), F(u) . There exist copula functions C(F(v), 
F(w))  and  C(F(w), F(u))  respectively set as:

From the section 4.2.1, u 、v 、w   and y1 、y2 satisfied the nor-
mal distribution and follow the normal distribution law. From the 
section 2.2. Gauss copula function can be used to construct mathe-
matical model between the joint distribution function and its mar-
ginal distribution function. Now, for Eq. (10) and Eq. (11), each of 
equation has a Gaussian copula function CG(F(u) ,F(v)), CG(F(v) 
,F(w)),CG(F(w) ,F(u)), respectively written as:

Where  Φ{.}is two-dimensional normal distribution function, 
F-1(u) is the inverse function of F(u), F-1(v) is the inverse function 
of F(v), F-1(w) is the inverse function of F(w). The Eq. (13) is ex-
panded as followed:

Figure 3: the relativity  between u 、 v、 w  and 1y  、 2y  

 

 

Constructing mathematic modeling  

variables distribution function 

From the above section, the radial run out of bearings results from the compositive action of bearings parts. The 

distribution law of the radial run out have connection with the joint distribution of  u 、 v、 w , then, the 

distribution function of the radial run out of bearings can be expressed by the joint multivariate distribution 

function of  u 、 v、 w . So does the ending beat of bearings. A multivariate distribution function is very 

difficultly to be described. According to Sklar theory, the CJDF can be utilized to build model to connect the joint 

distribution function of multiple variables with one-dimensional distribution function. So the distribution function 

of the radial run out of bearings can be described by the single dimensional marginal distribution function of the 

upper deviation of outer ring u , the lower deviation of inner ring v  and the rollers uniformity w . 

 

Set the single dimensional marginal distribution functions of the variables u 、 v、 w  as F(u) , F(v) , F(w)  

respectively. From the section 4.2.1, stochastic variables  u 、 v、and w  approximately follow the normal 

distribution. According to mathematical statistics, the distribution function of u、 v、and w  can be expressed 

as: 

)u(F(w)

)u(F(v)

)u(F(u)

w

w

v

v

u

u



















                 （5) 

Where u  , u  , v  , v  , w  , w , are the mean values and the standard deviation of  u、 v、and w  

respectively, moreover, the density function of  u、 v、 w  can be expressed respectively as: 

)u(f(w)

)u(f(v)

)u(f(u)

w

w

v

v

u

u



















                （6） 

Set the distribution function of the radial run out of bearings as )y(F 1 and let  w) v,F(u,  indicate the joint 

distribution function of variables u、v and w. From the above stated, there exist the relation between the single 

dimensional distribution function )y(F 1 and multiple dimensional distribution function w)v,F(u, . Similarly, set 

the distribution function of the ending beat of bearings as )y(F 2 . there also exists the relation between the ending 

beat distribution function  )y(F 2  and w)v,F(u, . This two relations can be expressed in formula as: 
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Where  uv  is the correlation coefficient variables u and v , vw  is the correlation coefficient variables v and w , 
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Where  uv  is the correlation coefficient variables u and v , vw  is the correlation coefficient variables v and w , 

wu  is the correlation coefficient variables w  and u . 

Constructing copula function 

From the above section, the CJDF of three dimension can be solved by dimension reduction. The pair-copula 

function can use a very flexible and intuitive way to construct high dimensional copula function [40]. the pair-

wise joint distribution function v)F(u, can be easily connected to its one-dimensional marginal distribution 

functions )u(F , )v(F [41]. There exists only one copula function F(v))C(F(u),  set as: 
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between the joint distribution function and its marginal distribution function. Now, for Eq. (10) and Eq. (11), each 
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))u(F),w(F(C))u(F),w(F(C
))w(F),v(F(C))w(F),v(F(C

))v(F),u(F(C))v(F),u(F(C

G

G

G





          (12)      

   
   
   





















)u(F),w(F)u(F),w(FC

)w(F),v(F)w(F),v(FC

)v(F),u(F)v(F),u(FC

G

G

G

11

11

11







       (13) 

Where  is two-dimensional normal distribution function, F-1(u) is the inverse function of F(u), F-1(v) is the 

inverse function of F(v), F-1(w) is the inverse function of F(w). The Eq. (13) is expanded as followed: 
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Where  is two-dimensional normal distribution function, F-1(u) is the inverse function of F(u), F-1(v) is the 

inverse function of F(v), F-1(w) is the inverse function of F(w). The Eq. (13) is expanded as followed: 
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For the specified distribution of stochastic variable, the maximum likelihood method is a widely used parameter 

estimation method[19]. Therefore, The method of Maximum Likelihood can be introduced to estimate parameters 
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Substituting the above 150 groups data into the first formula, the parameter uv can be calculated and the 

result was:   

07980.uv   

In the same way, Substituting the above 150 groups data into the second and the third formula,the parameters 

vw , wu can be calculated and the result were::  

26150.vw  ;  38260.wu   

Substitute Eq. (15) into Eq. (9), the density function can be spread as: 
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Substituting the above 150 groups data into the first formula, the parameter ρuv can be calculated and the result was: 
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From the section 3.2.1, The variables y1, y2 follow the normal distribution and their distribution function 

and density function can be expressed as: 
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the expression Eq. (20 ). can be spread as:
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Similarly, Eq. (6) can be spread as: 
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Substitute Eq. (15), Eq. (16), Eq. (19), Eq. (20) into the first equation in Eq. (18) , then, the first equation of 

Eq. (18) was spread as followed: 
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Substituting the values of uv ， vw , wu  and 150 groups data in the table 1 into Eq. (23) , and then, Substituting 

From the section 3.2.1, The variables y1, y2 follow the normal distribution and their distribution function and density function can be 
expressed as:
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


















 









 


2
2

2
22

2
2

222

2
1

2
11

2
1

111

22
1

22
1













)y(exp),,y(f

)y(exp),,y(f

   
（21）

 

Similarly, Eq. (6) can be spread as: 
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Substitute Eq. (15), Eq. (16), Eq. (19), Eq. (20) into the first equation in Eq. (18) , then, the first equation of 

Eq. (18) was spread as followed: 







 



















 



















 



















 

])u()u)(w()w([
)(

exp

])w()w)(v()v([
)(

exp

])v()v)(u()u([
)(

exp)y(exp

u

u

uw

uw
wu

w

w

wuwuuw

w

w

wv

wv
uv

v

v

vwvwwv

v

v

vu

vu
uv

u

u

uvuvvu

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22
1

2
11

2
1

2
2

12
1

12
1

2
2

12
1

12
1

2
2

12
1

12
1

22
1





































     (23)  

  

Substituting the values of uv ， vw , wu  and 150 groups data in the table 1 into Eq. (23) , and then, Substituting 

the expression Eq. (20 ). can be spread as:
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From the section 3.2.1, The variables y1, y2 follow the normal distribution and their distribution function 
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Similarly, Eq. (6) can be spread as: 
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Substitute Eq. (15), Eq. (16), Eq. (19), Eq. (20) into the first equation in Eq. (18) , then, the first equation of 

Eq. (18) was spread as followed: 
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Substituting the values of uv ， vw , wu  and 150 groups data in the table 1 into Eq. (23) , and then, Substituting 
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Substitute Eq. (15), Eq. (16), Eq. (19), Eq. (20) into the first equation in Eq. (18) , then, the first equation of Eq. (18) was spread as 
followed:

















)u(f)w(f))u(F),w(F(c)w(f)v(f))w(F),v(F(c
)v(f)u(f))v(F),u(F(c),,y(f

)u(f)w(f))u(F),w(F(c)w(f)v(f))w(F),v(F(c
)v(f)u(f))v(F),u(F(c),,y(f

32

1222

32

1111







               (18) 

From the section 3.2.1, The variables y1, y2 follow the normal distribution and their distribution function 

and density function can be expressed as: 
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the expression Eq. (20 ). can be spread as:
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Similarly, Eq. (6) can be spread as: 
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Substitute Eq. (15), Eq. (16), Eq. (19), Eq. (20) into the first equation in Eq. (18) , then, the first equation of 

Eq. (18) was spread as followed: 
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Substituting the values of uv ， vw , wu  and 150 groups data in the table 1 into Eq. (23) , and then, Substituting 

Substituting the values of  ρuv， ρvw , ρwu   and 150 groups data in 
the table 1 into Eq. (23) , and then, Substituting Eq. (21), Eq. (22), 
Eq. (23) into Eq. (18). The least square method was applied to pa-
rameters calculating and then, the value of parameters λi (i=1,2,3) 
can be gained as followed:

In like manner, the value of parameters ki (i=1,2,3)  of the second 
equation in Eq. (18) can be got as follows:

Substitute the values of  λi (i=1,2,3) , ki (i=1,2,3)  into Eq. (8) and 
the math modeling of the distribution of the radial run-out of the 
bearings and the ending beat can be obtained as follows:

Substitute the values of λi (i=1,2,3) , ki (i=1,2,3) ,  into Eq. (9) and 
the math modeling of Eq. (22) was gotten as followed:

From the coefficient of the above mathematics modeling Eq. (24)
and Eq. (25), the interaction with each other between parts of 
bearings can produce different effect on radial run out and ending 
beat of bearings. For the first equation of Eq. (24) or Eq. (25), the 
coefficient of the first item was the biggest one that was 0.2836 
(max (0.2836, 0.0028, 0.0097)), that meant the interaction with 
each other between the inner ring and outer ring can produce the 
greatest effect on radial run out, then, the effect between the roll-
ers and inner ring, the last, the effect between the rollers and the 
outer ring. For the second equation of Eq. (24) or Eq. (25), the  
coefficient of the second item was the biggest one that was 0.0735 
(max (0.0086, 0.0735, 0.0418)), that meant the interaction with 
each other between the inner ring and the rollers can produce the 

biggest effect on the the ending beat, then , the effect between the 
rollers and the outer ring, the last, the effect between the outer ring 
and the inner ring. This shows that when bearing parts are being 
processed, the upper deviation of outer ring and the lower devia-
tion of inner ring need to be controlled strictly besides controlling 
dimension in standard tolerance, simultaneously, the rollers must 
also be strictly selected to guarantee their uniformity. 

In general, it is after the parts are assembled into the bearings that 
can the radial run-out and the ending beat of bearings come into 
being. According to the above method, as long as the dimensions 
precision of inner ring, outer ring and rollers are known , the radial 
and end beat range of the bearing can be calculated before assem-
bling. This meant once the parts precision is determined, the kine-
matic accuracy of bearing will be sure. of course, the above math-
ematics modeling were built according to the data from NU1004 
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mension of parts may be different, the mathematics model may be 
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relevant parts. But the copula method can be used for any bearings. 
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ing 100 groups data of (y1 y2), the mean values    and the standard 
deviation   can be evaluated by statistic software R. the computed 
value by (25) and the evaluated value were list in table4. From 
table.4, the computed value by modeling (25) and the evaluated 
value by measured data is approximately unanimous. There was 
only difference from 0.0001μm to 0.0003μm between two results. 
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Table 4: Ten groups data for verifying
No. y1(µm) y2(µm) u(µm) v(µm) w (µm)
1 4.5 3.2  5.5 4  1.2 
2 .1.8  10.5  5.8  2.8  1.0 
3  8.0  9.5  7.5  6.0  1.4 
4  6.8  6.0  4.5  13.2  1.2 
5  11.2  8.5  15.2  8.5  2.6 
6  5.0  2.5  5.8  3.0  1.0 
7 15.3 15.0 12.0 8.3 2.6
8  12.0  16.8  12.0  8.0  2.6 
9  2.1  14.5  6.5  0.0  0.5 
10  5.5  7.0  6.5  6.5  1.5 

Table 5:  The comparing result of measuring  and computing

Run-out  measuring data(μm) computing result (μm)
Mean value standard deviation Mean value µ standard deviation σ 

y1 7.8864 5.1478 7.8865 5.1478
y2 6.1641 2.1621 6.1644 2.2621

µ̂ σ̂

Conclusions 
(1) Bearing is a system consisted of multiple components. The ra-
dial run out and the ending beat are main indices of the kinematic 
accuracy. The interact with each other among parts exerts joint 
influence on the radial run-out and the ending beat of bearings and 
then on kinematic accuracy. The method of distribution estimation 
algorithm with CJDF was be introduced to constructing the math 
modeling between the precision of parts and the radial and end-
ing beat of bearing. With this modeling, the kinematic accuracy of 
bearing can be forecast by the actual dimension deviation of parts. 
(2) From the mathematics modeling in the paper, for the radial run 
out, the harmonization between the inner ring and the outer ring 
is very important, while for the ending beat, the harmonization 
between the rollers uniformity and the inner ring should be paid 
more attention. Therefore, when the radial beat accuracy of bear-
ings must be requested, the harmonization between the inner ring 
and the outer ring have to be controlled strictly. When the ending 
beat accuracy of bearings must be requested, the harmonization 
between the rollers uniformity and the inner ring need to be con-
trolled strictly.

(3) The coordination among the parts of bearings is very import-
ant. The kinematic accuracy of bearings mainly come from the 
interaction with multiple parts. In general, it is often considered 
that the high grade precision bearings consist of high precision 
parts. But that is not the case, the harmonization among its parts is 
more important. 
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