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Abstract 
Hepatitis B is a globally infectious disease. HBV-reinfection after HBV-related liver transplantation is a frequent clinical 
problem. The risk of HBV-reinfection directly correlates with the viral load before liver transplantation. If reinfection does occur 
in most cases the course of the disease is enhanced compared to the situation before transplantation. The progression of HBV-
related liver disease is accelerated starting 2 months after transplantation and r in re-transplantation or death of the patients. 
Mathematical modeling of HBV transmission is an interesting research area. In this paper, we present characteristics of HBV 
virus transmission in the form of a mathematical model. We proposed and analyzed a compartmental nonlinear deterministic 
mathematical model SVEIRE for transmission dynamics and control of Hepatitis B virus disease. In this model, we used force 
infection which takes the contact rate of susceptible population and transmission probability into account. We proved that the 
solution of the considered dynamical system is positive and bounded. The model is studied qualitatively using the stability theory 
of differential equations and the basic reproductive number that represents the epidemic indicator is obtained from the largest 
eigenvalue of the next-generation matrix. Both local and global asymptotic stability conditions for disease-free and endemic 
equilibria are determined. Sensitive analysis results show that enhancing the vaccination rate for newborns and treatment for 
chronically infected individuals is very effective to stop the transmission of HBV. It is also shown that re-infection of HBV plays a 
great role in increasing the number of infected populations. Finally, this paper depicts combination of vaccination and treatment 
that will be the most useful way to control Hepatitis B virus infection.
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Introduction
The hepatitis B virus (HBV) is a small, partially double-strand-
ed DNA virus that causes acute and chronic hepatitis in humans. 
More than 350 million people are persistently infected, making 
HBV one of the most hazardous viral pathogens for humans and a 
global public health concern [1, 2]. Although universal vaccination 
being available for over three decades, an estimated 248 million 
persons are chronically infected with the hepatitis B virus (HBV) 
globally, constituting a major health burden.The prevalence of 
acute and chronic infection with hepatitis B virus (HBV) remains 
high worldwide.

Viral reinfection is the main problem after liver transplantation for 
hepatitis B virus (HBV)-related liver disease. Despite universal 
vaccination and antiviral therapies being available for decades, 
chronic hepatitis B (CHB) remains the leading primary liver dis-
ease for liver transplantation in many parts of the world.

Chronically infected individuals are at a risk of 15–25% of dying 

from HBV-related complications such as end-stage liver cirrho-
sis or hepatocellular carcinoma, accounting for over one million 
deaths annually [2, 3]. HBV-reinfection after HBV-related liver 
transplantation is a frequent clinical problem. The risk of HBV-re-
infection directly correlates with the viral load before liver trans-
plantation. If reinfection does occur in most cases the course of 
the disease is enhanced compared to the situation before trans-
plantation [4]. The progression of HBV-related liver disease is 
accelerated starting 2 months after transplantation and resulting 
in re-transplantation or death of the patients. In the early 1990s, 
this observation resulted in the opinion of many transplant centers 
that liver transplantation for HBV-related liver disease might be 
a questionable indication. Earlier results demonstrated that HBV 
vaccination failure—especially after passive immunization with 
a monoclonal antibody—may be associated with the selection of 
mutants in the determinant and thus vaccination was no longer pro-
tective [5, 6]. Individuals with a history of HBV infection who re-
ceive immunosuppressive therapy are at risk for HBV reactivation 
and a flare of their HBV disease. This can result in increased serum 
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aminotransferase levels, fulminant hepatic failure, and/or death 
[2].Long-term antibody to hepatitis B surface antigen (anti-HBs) 
immunoprophylaxis (hepatitis B immune globulin [HBIG]) is an 
efficient way of preventing HBV reinfection in HBV DNA–neg-
ative patients. While the combination of Nucleos(t)ide Analogs 
(NAs) and passive immunization with hepatitis B immunoglobu-
lins (HBIG) revolutionized the effective control of reinfection and 
replication, recent studies indicated NA monotherapy after Liver 
Transplantation for HBV-associated ESLD might be efficient with 
comparable outcomes in certain subgroups. Liver transplantation 
is not a sterilizing cure for CHB infection, therefore long-term an-
tiviral prophylaxis is required. As the virus is never completely 
eradicated after transplant, the main goal of antiviral prophylax-
is is to prevent reactivation, rather than recurrence or reinfection. 
Current available antiviral prophylaxis using nucleos(t)ide analogs 
(NAs) ± hepatitis B immunoglobulin (HBIG) are highly effective 
in preventing HBV reactivation after liver transplantation.

Mathematical models can be a useful tool in this approach which 
helps us to optimize the use of finite sources or simply to goal (the 
incidence of infection) control measures more impressively. Based 
upon these facts, we developed a mathematical model that takes 
vaccination, treatment and re-infection of HBV into account.

Model Description and Formulation
To analyze and control hepatitis B virus (HBV) infection in the 
present paper, we consider a model with two controls: vaccina-
tion and treatment. Firstly, in this study, two controlling variables 
are considered (vaccination and treatment) in order to prevent the 

spread of the HBV and finally to put down the infection from the 
population. We divided the population into five compartments 
namely: Susceptible S(t),Vaccination V(t),Exposed E(t), Infected 
I(t) and Recovered R(t).

Susceptible population increases by coming in of recruitment rate 
b and decreases by subsequently vaccinated population by the rate 
θ ,by force of infection entering exposed population and by natural 
death rate μ.Vaccinated population increases by the coming in of 
susceptible population who are subsequently vaccinated popula-
tion by the rateθ and decreases by immunized population entering 
recovered compartment by the rate δ2. The exposed population in-
crease by the coming in of population from susceptible compart-
ment by force of infection, by re-infection rate γ when recovered 
population make a contact with infected population of HBV and 
decreases by τ,probability of the individual entering I from E,force 
of infection, progression rate k from E to I and natural death rate 
μ. The infected population Increases by the coming in of τ,prob-
ability of the individual entering I from E,force of infection, pro-
gression rate k from E to I and decrease by natural recovery rate 
δ1,treatment rate σ,HBV disease induced death rate d, and natural 
death rate μ. The recovered population increases by the coming in 
of natural recovery rate δ1,treatment rate σ, immunized population 
by the rate δ2 and decreases by re-infection rate γ and natural death 
rate μ. Force of infection λ=βcI/N where:
β-Transmission probability
c- Contact rate of susceptible population with infective population
N- Total Population

Flow Chart of the Model

Figure 1: Flow chart of the model
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Figure 2: Graph of stability of SVEIR model for         



    Volume 7| Issue 2 | 49Int J Psychiatry, 2022 www.opastonline.com

Corresponding Dynamical system

Mathematical Analysis of the Model
In this section, the positivity, boundedness, and existence of the 
solution of the model are checked. This mathematical analysis of 
the model could be considered as the primary result.

Theorem 1 (Positivity) Let the initial data for the model
 S(0) = S0 > 0,V(0) = V0 > 0, E(0) =E0>0, I(0) = I0 > 0, R(0) = R0 > 0.
 
Proof
LetS(0)=S0 > 0, V(0)=V0 > 0, E(0)=E0 > 0, I(0)=I0 > 0, R(0)=R0 > 0. 
Moreover, we assume that all parameters are positive. To show 
this, we take these differential equations of the dynamical system 
given above and show that their solutions are nonnegative as fol-
lows.

1.Let us take the first differential equation
S  ̇= b- (θ + μ + λ)S. This implies dS/dt = b - (θ + μ + λ )S.
dS/dt + (θ + μ + λ)S = b

After solving using the technique of separation of variables and 
applying the initial conditions, the following is obtained:
S(t) ≥ S0 e

-(θ+μ+λ)t). Since S0 > 0 and e-(θ+μ+λ)t is also positive, then we 
can conclude that: S(t) ≥ S0 e

-(θ+μ+λ)t > 0.

2. Let us take the second differential equation
V = θS - (δ2 + μ)V. This implies dV/dt = θS - (δ2+μ)V.
dV/dt + (δ2 + μ)V=θS

After solving using the technique of separation of variables and 
applying the initial conditions, the following is obtained:
V (t) ≥ V0  e

-(δ2+μ)t. Since V0 > 0 and e-(δ2+μ)t is also positive, then we 
can conclude that: V (t) ≥ V0  e

-(δ2+μ)t > 0.

3.Let us consider the third differential equation
E = λS + γλR -(τλ + k + μ)E. This implies dE/dt = λS + γλR-(τλ 
+k + μ)E.

After solving using the technique of separation of variables and 
applying the initial conditions, the following is obtained:
E (t) ≥ E0  e

-(τλ+k+μ)t. Since E0 > 0 and e-(τλ+k+μ)t is also positive, then 

we can conclude that: E (t) ≥ E0 e
-(τλ+k+μ)t > 0.

4. Let us consider the fourth differential equation
İ = (τλ + k )E - (d + δ1 + σ + μ )I. This implies dE/dt = (τλ + k )
E - ( d + δ1+ σ + μ)I.

After solving using the technique of separation of variables and 
applying the initial conditions, the following is obtained:
I (t) ≥ I0 e

-(d+δ_1+σ+μ)t. Since I0 > 0 and e-(d+δ_1+σ+μ)t is also positive, 
then we can conclude that I (t) ≥ I0 e

-(d+δ_1+σ+μ)t > 0.

5. Let us consider the fifth differential equation
R ̇= (δ 1 + σ)I + δ 2 V - (γλ + μ)R. dR/dt + (γλ + μ)R = (δ1 + σ)I + 
δ2 V.

After solving using the technique of separation of variables and 
applying the initial conditions, the following is obtained:
R (t) ≥ R0 e

-(γλ+μ)t. Since R0 > 0 and e-(γλ+μ)t is also positive, then we 
can conclude that R (t) ≥ R0  e

-(γλ+μ)t > 0.
This completes the proof of the theorem. Therefore, the solution of 
the model is positive. 

Theorem 2 (Boundedness)
To show the boundedness of the solution, we have to show a lower 
bound and upper bound. But, initially, N (0) = N0 > 0 ,S (0) = S0 
> 0, V (0) = V0 > 0, E (0) = E0 > 0, I (0) = I0 > 0, R (0) = R0 > 0. 

These initial conditions are considered as lower bounds. Now, we 
are going to show the upper bound. By taking the relation
N (t) = S (t) + V (t) + E (t) + I (t) + R (t)

and differentiating both sides of the equation with respect to time, 
we get: dN/dt = dS/dt + dV/dt + dE/dt + dI/dt + dR/dt

After simplification, we get:
⇒ dN/dt = b - μ N - dI

Then, by using integration by parts and applying initial condition 
N (0) = N0 at t = 0, In the absence of mortality due to Hepatitis B 
virus, that is at d=0,and after simplification we get:
⇒ N ≤ b/μ (b-μN0) e

-μt) / μ
As t→∞, the population size N→b/μ since (b-μN0)e

-μt/μ→0, as 
t→∞.

This implies that 0 ≤ N ≤ b/μ.Thus, feasible solution set of the sys-
tem equation of the model enters and remains in the region.
Ω={(S,V,E,I,R)∈R+

5:N≤b/μ}
Therefore, the basic model is well posed epidemiologically and 
mathematically. Hence, it is sufficient to study the dynamics of the 
basic model in Ω. 

.
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Corresponding Dynamical system

𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 (1)

𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 (2)

𝐸̇𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸 (3)

𝐼𝐼𝐼𝐼̇ = (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼 (4)

𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅                         (5)

Mathematical Analysis of the Model

In this section, the positivity, boundedness, and existence of the solution of the model are 
checked. This mathematical analysis of the model could be considered as the primary result.

Theorem 1 (Positivity) Let the initial data for the model 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) =
𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 > 0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

Then, the solutions 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡),𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡),𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡), 𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡)and 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡) of the model will be remaining positive for all 
time 𝑡𝑡𝑡𝑡 > 0.

Proof

Let 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) = 𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 > 0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

Moreover, we assume that all parameters are positive. To show this, we take these differential 
equations of the dynamical system given above and show that their solutions are nonnegative as 
follows.

1.Let us take the first differential equation

𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆. This implies 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆.

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 𝑏𝑏𝑏𝑏

After solving using the technique of separation of variables and applying the initial conditions, 
the following is obtained:

(1)

(2)

 

 

𝜇𝜇𝜇𝜇𝑉𝑉𝑉𝑉  

  

Figure 1: Flow chart of the model

 

Corresponding Dynamical system

𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 (1)

𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 (2)

𝐸̇𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸 (3)

𝐼𝐼𝐼𝐼̇ = (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼 (4)

𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅                         (5)

Mathematical Analysis of the Model

In this section, the positivity, boundedness, and existence of the solution of the model are 
checked. This mathematical analysis of the model could be considered as the primary result.

Theorem 1 (Positivity) Let the initial data for the model 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) =
𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 > 0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

Then, the solutions 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡),𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡),𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡), 𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡)and 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡) of the model will be remaining positive for all 
time 𝑡𝑡𝑡𝑡 > 0.

Proof

Let 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) = 𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 > 0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

Moreover, we assume that all parameters are positive. To show this, we take these differential 
equations of the dynamical system given above and show that their solutions are nonnegative as 
follows.

1.Let us take the first differential equation

𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆. This implies 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆.

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 𝑏𝑏𝑏𝑏
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the following is obtained:

(3)

(4)

(5)
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Disease-free Equilibrium Point (DFEP)
We calculate disease-free equilibrium point (DFEP) at E1=0,I1=0 
by equating each system of differential equation to zero.

Effective Reproduction Number(REff)
We find the effective reproduction number by using the next gen-
eration matrix method such that the reproduction number is the 
dominant eigenvalue of the next generation matrix G=FV-1 where 
F represents new infection and V represents transfer of infections 
from one compartment to another.

Now, to find the reproduction number Reff by using the next gen-
eration method, we can rearrange the differential equations of the 
dynamical systems (1-5) as follows.

Theorem 2 (Boundedness)

To show the boundedness of the solution, we have to show a lower bound and upper bound. But, 
initially, 𝑁𝑁𝑁𝑁(0) = 𝑁𝑁𝑁𝑁0 > 0, 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) = 𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 >
0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

These initial conditions are considered as lower bounds. Now, we are going to show the upper 
bound. By taking the relation

𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) + 𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡) + 𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) + 𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)

and differentiating both sides of the equation with respect to time, we get:

𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

=
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

After simplification, we get:

⇒
𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝑏𝑏𝑏𝑏 − 𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁 − 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼

Then, by using integration by parts and applying initial condition 𝑁𝑁𝑁𝑁(0) = 𝑁𝑁𝑁𝑁0 at 𝑡𝑡𝑡𝑡 = 0, In the 

absence of mortality due to Hepatitis B virus, that is at 𝑑𝑑𝑑𝑑 = 0, and after simplification we get:

⇒𝑁𝑁𝑁𝑁 ≤ 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
− (𝑏𝑏𝑏𝑏−𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁0)𝑒𝑒𝑒𝑒−𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡

𝜇𝜇𝜇𝜇
 

As 𝑡𝑡𝑡𝑡 → ∞, the population size 𝑁𝑁𝑁𝑁 → 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
since (𝑏𝑏𝑏𝑏−𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁0)𝑒𝑒𝑒𝑒−𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡

𝜇𝜇𝜇𝜇
→ 0, as 𝑡𝑡𝑡𝑡 → ∞.

This implies that 0 ≤ 𝑁𝑁𝑁𝑁 ≤ 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇

.Thus, feasible solution set of the system equation of the model 

enters and remains in the region.

Ω = �(𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉,𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅) ∈ 𝑅𝑅𝑅𝑅+
5 :𝑁𝑁𝑁𝑁 ≤

𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
�

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is 
sufficient to study the dynamics of the basic model in Ω.

Disease-free Equilibrium Point (DFEP)

We calculate disease-free equilibrium point (DFEP) at  𝐸𝐸𝐸𝐸1 = 0,𝐼𝐼𝐼𝐼1 = 0 by equating each system 
of differential equation to zero.

From (1) we have 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0.Since 𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

. At 𝐼𝐼𝐼𝐼 = 0,we get 𝜆𝜆𝜆𝜆 = 0.

This gives us:  𝑆𝑆𝑆𝑆1 =  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

(6)

From (2) we have:  𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us 𝑉𝑉𝑉𝑉1 =  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

(7)

Theorem 2 (Boundedness)

To show the boundedness of the solution, we have to show a lower bound and upper bound. But, 
initially, 𝑁𝑁𝑁𝑁(0) = 𝑁𝑁𝑁𝑁0 > 0, 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) = 𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 >
0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

These initial conditions are considered as lower bounds. Now, we are going to show the upper 
bound. By taking the relation

𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) + 𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡) + 𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) + 𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)

and differentiating both sides of the equation with respect to time, we get:

𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

=
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

After simplification, we get:

⇒
𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝑏𝑏𝑏𝑏 − 𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁 − 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼

Then, by using integration by parts and applying initial condition 𝑁𝑁𝑁𝑁(0) = 𝑁𝑁𝑁𝑁0 at 𝑡𝑡𝑡𝑡 = 0, In the 

absence of mortality due to Hepatitis B virus, that is at 𝑑𝑑𝑑𝑑 = 0, and after simplification we get:

⇒𝑁𝑁𝑁𝑁 ≤ 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
− (𝑏𝑏𝑏𝑏−𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁0)𝑒𝑒𝑒𝑒−𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡

𝜇𝜇𝜇𝜇
 

As 𝑡𝑡𝑡𝑡 → ∞, the population size 𝑁𝑁𝑁𝑁 → 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
since (𝑏𝑏𝑏𝑏−𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁0)𝑒𝑒𝑒𝑒−𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡

𝜇𝜇𝜇𝜇
→ 0, as 𝑡𝑡𝑡𝑡 → ∞.

This implies that 0 ≤ 𝑁𝑁𝑁𝑁 ≤ 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇

.Thus, feasible solution set of the system equation of the model 

enters and remains in the region.

Ω = �(𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉,𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅) ∈ 𝑅𝑅𝑅𝑅+
5 :𝑁𝑁𝑁𝑁 ≤

𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
�

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is 
sufficient to study the dynamics of the basic model in Ω.

Disease-free Equilibrium Point (DFEP)

We calculate disease-free equilibrium point (DFEP) at  𝐸𝐸𝐸𝐸1 = 0,𝐼𝐼𝐼𝐼1 = 0 by equating each system 
of differential equation to zero.

From (1) we have 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0.Since 𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

. At 𝐼𝐼𝐼𝐼 = 0,we get 𝜆𝜆𝜆𝜆 = 0.

This gives us:  𝑆𝑆𝑆𝑆1 =  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

(6)

From (2) we have:  𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us 𝑉𝑉𝑉𝑉1 =  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

(7)

(6)

Theorem 2 (Boundedness)

To show the boundedness of the solution, we have to show a lower bound and upper bound. But, 
initially, 𝑁𝑁𝑁𝑁(0) = 𝑁𝑁𝑁𝑁0 > 0, 𝑆𝑆𝑆𝑆(0) = 𝑆𝑆𝑆𝑆0 > 0,𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 > 0,𝐸𝐸𝐸𝐸(0) = 𝐸𝐸𝐸𝐸0 > 0, 𝐼𝐼𝐼𝐼(0) = 𝐼𝐼𝐼𝐼0 >
0,𝑅𝑅𝑅𝑅(0) = 𝑅𝑅𝑅𝑅0 > 0.

These initial conditions are considered as lower bounds. Now, we are going to show the upper 
bound. By taking the relation

𝑁𝑁𝑁𝑁(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) + 𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡) + 𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) + 𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) + 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)

and differentiating both sides of the equation with respect to time, we get:

𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

=
𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

After simplification, we get:

⇒
𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝑏𝑏𝑏𝑏 − 𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁 − 𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼

Then, by using integration by parts and applying initial condition 𝑁𝑁𝑁𝑁(0) = 𝑁𝑁𝑁𝑁0 at 𝑡𝑡𝑡𝑡 = 0, In the 

absence of mortality due to Hepatitis B virus, that is at 𝑑𝑑𝑑𝑑 = 0, and after simplification we get:

⇒𝑁𝑁𝑁𝑁 ≤ 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
− (𝑏𝑏𝑏𝑏−𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁0)𝑒𝑒𝑒𝑒−𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡

𝜇𝜇𝜇𝜇
 

As 𝑡𝑡𝑡𝑡 → ∞, the population size 𝑁𝑁𝑁𝑁 → 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
since (𝑏𝑏𝑏𝑏−𝜇𝜇𝜇𝜇𝑁𝑁𝑁𝑁0)𝑒𝑒𝑒𝑒−𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡

𝜇𝜇𝜇𝜇
→ 0, as 𝑡𝑡𝑡𝑡 → ∞.

This implies that 0 ≤ 𝑁𝑁𝑁𝑁 ≤ 𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇

.Thus, feasible solution set of the system equation of the model 

enters and remains in the region.

Ω = �(𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉,𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅) ∈ 𝑅𝑅𝑅𝑅+
5 :𝑁𝑁𝑁𝑁 ≤

𝑏𝑏𝑏𝑏
𝜇𝜇𝜇𝜇
�

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is 
sufficient to study the dynamics of the basic model in Ω.

Disease-free Equilibrium Point (DFEP)

We calculate disease-free equilibrium point (DFEP) at  𝐸𝐸𝐸𝐸1 = 0,𝐼𝐼𝐼𝐼1 = 0 by equating each system 
of differential equation to zero.

From (1) we have 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0.Since 𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

. At 𝐼𝐼𝐼𝐼 = 0,we get 𝜆𝜆𝜆𝜆 = 0.

This gives us:  𝑆𝑆𝑆𝑆1 =  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

(6)

From (2) we have:  𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us 𝑉𝑉𝑉𝑉1 =  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

(7)(7)

From (5) we have:𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0.

This gives us:𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

.          (8)

Then, DFEP is given by: 𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

�.

Effective Reproduction Number(𝑹𝑹𝑹𝑹𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬)

We find the effective reproduction number by using the next generation matrix method such that 

the reproduction number is the dominant eigenvalue of the next generation matrix 𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1

where 𝐹𝐹𝐹𝐹 represents new infection and V represents transfer of infections from one compartment 

to another.

Now, to find the reproduction number 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by using the next generation method, we can 

rearrange the differential equations of the dynamical systems (1-5) as follows.

𝐹𝐹𝐹𝐹 = �0 �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁
�

0 0
� ,𝑉𝑉𝑉𝑉 = �

(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇) −𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁

−𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

+ (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)
� where:

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆0 + 𝑉𝑉𝑉𝑉0 and𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
= 𝑆𝑆𝑆𝑆0

𝑆𝑆𝑆𝑆0+𝑉𝑉𝑉𝑉0 = (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

. 𝑅𝑅𝑅𝑅
0

𝑁𝑁𝑁𝑁
= 𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)
.

Then, 𝑉𝑉𝑉𝑉−1 =

⎝

⎜
⎛

− 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑏𝑏𝑏𝑏(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

−𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2�
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�

𝑘𝑘𝑘𝑘
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑘𝑘𝑘𝑘+𝜇𝜇𝜇𝜇
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2 ⎠

⎟
⎞

This implies, 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1 = �

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0
�

The characteristic equation of the Jacobian matrix is given by:

��

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0

��

= 0

From (5) we have:𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0.

This gives us:𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

.          (8)

Then, DFEP is given by: 𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

�.

Effective Reproduction Number(𝑹𝑹𝑹𝑹𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬)

We find the effective reproduction number by using the next generation matrix method such that 

the reproduction number is the dominant eigenvalue of the next generation matrix 𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1

where 𝐹𝐹𝐹𝐹 represents new infection and V represents transfer of infections from one compartment 

to another.

Now, to find the reproduction number 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by using the next generation method, we can 

rearrange the differential equations of the dynamical systems (1-5) as follows.

𝐹𝐹𝐹𝐹 = �0 �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁
�

0 0
� ,𝑉𝑉𝑉𝑉 = �

(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇) −𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁

−𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

+ (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)
� where:

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆0 + 𝑉𝑉𝑉𝑉0 and𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
= 𝑆𝑆𝑆𝑆0

𝑆𝑆𝑆𝑆0+𝑉𝑉𝑉𝑉0 = (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

. 𝑅𝑅𝑅𝑅
0

𝑁𝑁𝑁𝑁
= 𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)
.

Then, 𝑉𝑉𝑉𝑉−1 =

⎝

⎜
⎛

− 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑏𝑏𝑏𝑏(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

−𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2�
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�

𝑘𝑘𝑘𝑘
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑘𝑘𝑘𝑘+𝜇𝜇𝜇𝜇
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2 ⎠

⎟
⎞

This implies, 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1 = �

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0
�

The characteristic equation of the Jacobian matrix is given by:

��

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0

��

= 0

(8)
From (5) we have:𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0.

This gives us:𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

.          (8)

Then, DFEP is given by: 𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

�.

Effective Reproduction Number(𝑹𝑹𝑹𝑹𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬)

We find the effective reproduction number by using the next generation matrix method such that 

the reproduction number is the dominant eigenvalue of the next generation matrix 𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1

where 𝐹𝐹𝐹𝐹 represents new infection and V represents transfer of infections from one compartment 

to another.

Now, to find the reproduction number 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by using the next generation method, we can 

rearrange the differential equations of the dynamical systems (1-5) as follows.

𝐹𝐹𝐹𝐹 = �0 �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁
�

0 0
� ,𝑉𝑉𝑉𝑉 = �

(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇) −𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁

−𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

+ (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)
� where:

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆0 + 𝑉𝑉𝑉𝑉0 and𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
= 𝑆𝑆𝑆𝑆0

𝑆𝑆𝑆𝑆0+𝑉𝑉𝑉𝑉0 = (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

. 𝑅𝑅𝑅𝑅
0

𝑁𝑁𝑁𝑁
= 𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)
.

Then, 𝑉𝑉𝑉𝑉−1 =

⎝

⎜
⎛

− 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑏𝑏𝑏𝑏(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

−𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2�
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�

𝑘𝑘𝑘𝑘
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑘𝑘𝑘𝑘+𝜇𝜇𝜇𝜇
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2 ⎠

⎟
⎞

This implies, 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1 = �

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0
�

The characteristic equation of the Jacobian matrix is given by:

��

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0

��

= 0

From (5) we have:𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0.

This gives us:𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

.          (8)

Then, DFEP is given by: 𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

�.

Effective Reproduction Number(𝑹𝑹𝑹𝑹𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬)

We find the effective reproduction number by using the next generation matrix method such that 

the reproduction number is the dominant eigenvalue of the next generation matrix 𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1

where 𝐹𝐹𝐹𝐹 represents new infection and V represents transfer of infections from one compartment 

to another.

Now, to find the reproduction number 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by using the next generation method, we can 

rearrange the differential equations of the dynamical systems (1-5) as follows.

𝐹𝐹𝐹𝐹 = �0 �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁
�

0 0
� ,𝑉𝑉𝑉𝑉 = �

(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇) −𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁

−𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

+ (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)
� where:

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆0 + 𝑉𝑉𝑉𝑉0 and𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
= 𝑆𝑆𝑆𝑆0

𝑆𝑆𝑆𝑆0+𝑉𝑉𝑉𝑉0 = (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

. 𝑅𝑅𝑅𝑅
0

𝑁𝑁𝑁𝑁
= 𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)
.

Then, 𝑉𝑉𝑉𝑉−1 =

⎝

⎜
⎛

− 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑏𝑏𝑏𝑏(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

−𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2�
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�

𝑘𝑘𝑘𝑘
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑘𝑘𝑘𝑘+𝜇𝜇𝜇𝜇
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2 ⎠

⎟
⎞

This implies, 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1 = �

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0
�

The characteristic equation of the Jacobian matrix is given by:

��

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0

��

= 0

The eigenvalues of the matrix are given by:{𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2} = �0,
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�.

Then, spectral radius of the characteristic equation is given by:

𝜆𝜆𝜆𝜆 =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

and simplified to:

𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Then the Effective reproduction number �𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � becomes:

𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Endemic Equilibrium Point(EEP)

It is obtained by equating differential equation (1)-(5) to zero and solving it.

From (1) we have: 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0. This gives us:

𝑆𝑆𝑆𝑆1 = 𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆

. (9)

From (2), we have: 𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us:

𝑉𝑉𝑉𝑉1 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇

= Ʌ𝜃𝜃𝜃𝜃
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

(10)

From (3) we have:   𝐸̇𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸 = 0. This gives us:

𝐸𝐸𝐸𝐸1 = 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)] (11)                                                                        

From (4), we have: 𝐼𝐼𝐼𝐼̇ = (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝜌𝜌𝜌𝜌 + 𝜑𝜑𝜑𝜑 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼 = 0. This gives us:

𝐼𝐼𝐼𝐼1 = (𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)
(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)

� 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)]

�

(12)

From (5), we have: 𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0. This gives us:

𝑅𝑅𝑅𝑅1 = (𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)

. (13)  

Then, Endemic Equilibrium Point (EEP) is given by: 𝐷𝐷𝐷𝐷∗ = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) where:

From (5) we have:𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0.

This gives us:𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

.          (8)

Then, DFEP is given by: 𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

�.

Effective Reproduction Number(𝑹𝑹𝑹𝑹𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬)

We find the effective reproduction number by using the next generation matrix method such that 

the reproduction number is the dominant eigenvalue of the next generation matrix 𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1

where 𝐹𝐹𝐹𝐹 represents new infection and V represents transfer of infections from one compartment 

to another.

Now, to find the reproduction number 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by using the next generation method, we can 

rearrange the differential equations of the dynamical systems (1-5) as follows.

𝐹𝐹𝐹𝐹 = �0 �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁
�

0 0
� ,𝑉𝑉𝑉𝑉 = �

(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇) −𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅0

𝑁𝑁𝑁𝑁

−𝑘𝑘𝑘𝑘 − 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

+ (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)
� where:

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆0 + 𝑉𝑉𝑉𝑉0 and𝑆𝑆𝑆𝑆
0

𝑁𝑁𝑁𝑁
= 𝑆𝑆𝑆𝑆0

𝑆𝑆𝑆𝑆0+𝑉𝑉𝑉𝑉0 = (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

. 𝑅𝑅𝑅𝑅
0

𝑁𝑁𝑁𝑁
= 𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)
.

Then, 𝑉𝑉𝑉𝑉−1 =

⎝

⎜
⎛

− 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑏𝑏𝑏𝑏(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

−𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2�
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�

𝑘𝑘𝑘𝑘
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑘𝑘𝑘𝑘+𝜇𝜇𝜇𝜇
−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2 ⎠

⎟
⎞

This implies, 𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉−1 = �

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0
�

The characteristic equation of the Jacobian matrix is given by:

��

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝑏𝑏𝑏𝑏 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

+ 𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) + 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

0 0

��

= 0
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The eigenvalues of the matrix are given by:{𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2} = �0,
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�.

Then, spectral radius of the characteristic equation is given by:

𝜆𝜆𝜆𝜆 =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

and simplified to:

𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Then the Effective reproduction number �𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � becomes:

𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Endemic Equilibrium Point(EEP)

It is obtained by equating differential equation (1)-(5) to zero and solving it.

From (1) we have: 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0. This gives us:

𝑆𝑆𝑆𝑆1 = 𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆

. (9)

From (2), we have: 𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us:

𝑉𝑉𝑉𝑉1 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇

= Ʌ𝜃𝜃𝜃𝜃
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

(10)

From (3) we have:   𝐸̇𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸 = 0. This gives us:

𝐸𝐸𝐸𝐸1 = 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)] (11)                                                                        

From (4), we have: 𝐼𝐼𝐼𝐼̇ = (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝜌𝜌𝜌𝜌 + 𝜑𝜑𝜑𝜑 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼 = 0. This gives us:

𝐼𝐼𝐼𝐼1 = (𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)
(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)

� 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)]

�

(12)

From (5), we have: 𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0. This gives us:

𝑅𝑅𝑅𝑅1 = (𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)

. (13)  

Then, Endemic Equilibrium Point (EEP) is given by: 𝐷𝐷𝐷𝐷∗ = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) where:

Endemic Equilibrium Point(EEP)
It is obtained by equating differential equation (1)-(5) to zero and solving it.

The eigenvalues of the matrix are given by:{𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2} = �0,
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�.

Then, spectral radius of the characteristic equation is given by:

𝜆𝜆𝜆𝜆 =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

and simplified to:

𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Then the Effective reproduction number �𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � becomes:

𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Endemic Equilibrium Point(EEP)

It is obtained by equating differential equation (1)-(5) to zero and solving it.

From (1) we have: 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0. This gives us:

𝑆𝑆𝑆𝑆1 = 𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆

. (9)

From (2), we have: 𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us:

𝑉𝑉𝑉𝑉1 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇

= Ʌ𝜃𝜃𝜃𝜃
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

(10)

From (3) we have:   𝐸̇𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸 = 0. This gives us:

𝐸𝐸𝐸𝐸1 = 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)] (11)                                                                        

From (4), we have: 𝐼𝐼𝐼𝐼̇ = (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝜌𝜌𝜌𝜌 + 𝜑𝜑𝜑𝜑 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼 = 0. This gives us:

𝐼𝐼𝐼𝐼1 = (𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)
(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)

� 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)]

�

(12)

From (5), we have: 𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0. This gives us:

𝑅𝑅𝑅𝑅1 = (𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)

. (13)  

Then, Endemic Equilibrium Point (EEP) is given by: 𝐷𝐷𝐷𝐷∗ = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) where:

(9)

(10)

(11)

(12)

The eigenvalues of the matrix are given by:{𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2} = �0,
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

�.

Then, spectral radius of the characteristic equation is given by:

𝜆𝜆𝜆𝜆 =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 (𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)

−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)+𝑏𝑏𝑏𝑏(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )

𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

and simplified to:

𝜆𝜆𝜆𝜆 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Then the Effective reproduction number �𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � becomes:

𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )
[−𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝛿𝛿𝛿𝛿2+𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)(𝑑𝑑𝑑𝑑+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇 )+𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝛿𝛿𝛿𝛿1+𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇+𝜃𝜃𝜃𝜃)].

Endemic Equilibrium Point(EEP)

It is obtained by equating differential equation (1)-(5) to zero and solving it.

From (1) we have: 𝑆̇𝑆𝑆𝑆 =    𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆 = 0. This gives us:

𝑆𝑆𝑆𝑆1 = 𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆

. (9)

From (2), we have: 𝑉̇𝑉𝑉𝑉 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉 = 0. This gives us:

𝑉𝑉𝑉𝑉1 = 𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇

= Ʌ𝜃𝜃𝜃𝜃
(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

(10)

From (3) we have:   𝐸̇𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸 = 0. This gives us:

𝐸𝐸𝐸𝐸1 = 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)] (11)                                                                        

From (4), we have: 𝐼𝐼𝐼𝐼̇ = (𝛿𝛿𝛿𝛿1𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝜌𝜌𝜌𝜌 + 𝜑𝜑𝜑𝜑 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼 = 0. This gives us:

𝐼𝐼𝐼𝐼1 = (𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)
(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)

� 𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)

+ 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 [(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)]
(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿1+𝜎𝜎𝜎𝜎+𝑑𝑑𝑑𝑑)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)]

�

(12)

From (5), we have: 𝑅̇𝑅𝑅𝑅 = (𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅 = 0. This gives us:

𝑅𝑅𝑅𝑅1 = (𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿1+𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)+𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃 (𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜑𝜑𝜑𝜑+𝜌𝜌𝜌𝜌)−𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌+𝜇𝜇𝜇𝜇 )(𝜇𝜇𝜇𝜇+𝜆𝜆𝜆𝜆+𝑘𝑘𝑘𝑘)

. (13)  

Then, Endemic Equilibrium Point (EEP) is given by: 𝐷𝐷𝐷𝐷∗ = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) where:

(13)

𝑆𝑆𝑆𝑆1 =
𝑏𝑏𝑏𝑏

𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆
,𝑉𝑉𝑉𝑉1 =

𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇

=
Ʌ𝜃𝜃𝜃𝜃

(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆),

𝐸𝐸𝐸𝐸1

=
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)

+
𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆[(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)]

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)], 

𝐼𝐼𝐼𝐼1

=
(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)

(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) �
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)

+
𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆[(𝜌𝜌𝜌𝜌 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)]

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)]
�

𝑅𝑅𝑅𝑅1 =
(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)

(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)

Local Stability Analysis of Disease-free Equilibrium Point (DFEP)

𝐽𝐽𝐽𝐽(𝐷𝐷𝐷𝐷1) =

⎝

⎜
⎜
⎜
⎜
⎛

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎠

⎟
⎟
⎟
⎟
⎞

Let 𝑎𝑎𝑎𝑎 = 𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇, 𝑏𝑏𝑏𝑏 = 𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇, 𝛽𝛽𝛽𝛽 = 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘,𝑑𝑑𝑑𝑑 = �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� , 𝑒𝑒𝑒𝑒 = 𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒 =

�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

�

Then, the characteristic equation of the Jacobian matrix is given by:

�

�

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇
�

�

= 0

Then, the determinant gives us: 

�1
2

(−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 − √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 − 2𝜆𝜆𝜆𝜆)� �1
2

(−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 + √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 −

2𝜆𝜆𝜆𝜆)� (−𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆)(−𝑏𝑏𝑏𝑏 − 𝜆𝜆𝜆𝜆)(−𝜆𝜆𝜆𝜆 − 𝜇𝜇𝜇𝜇) = 0 . From this we have:
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𝑆𝑆𝑆𝑆1 =
𝑏𝑏𝑏𝑏

𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆
,𝑉𝑉𝑉𝑉1 =

𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇

=
Ʌ𝜃𝜃𝜃𝜃

(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆),

𝐸𝐸𝐸𝐸1

=
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)

+
𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆[(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)]

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)], 

𝐼𝐼𝐼𝐼1

=
(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)

(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) �
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)

+
𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆[(𝜌𝜌𝜌𝜌 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)]

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)]
�

𝑅𝑅𝑅𝑅1 =
(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)

(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)

Local Stability Analysis of Disease-free Equilibrium Point (DFEP)

𝐽𝐽𝐽𝐽(𝐷𝐷𝐷𝐷1) =

⎝

⎜
⎜
⎜
⎜
⎛

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎠

⎟
⎟
⎟
⎟
⎞

Let 𝑎𝑎𝑎𝑎 = 𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇, 𝑏𝑏𝑏𝑏 = 𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇, 𝛽𝛽𝛽𝛽 = 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘,𝑑𝑑𝑑𝑑 = �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� , 𝑒𝑒𝑒𝑒 = 𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒 =

�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

�

Then, the characteristic equation of the Jacobian matrix is given by:

�

�

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇
�

�

= 0

Then, the determinant gives us: 

�1
2

(−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 − √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 − 2𝜆𝜆𝜆𝜆)� �1
2

(−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 + √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 −

2𝜆𝜆𝜆𝜆)� (−𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆)(−𝑏𝑏𝑏𝑏 − 𝜆𝜆𝜆𝜆)(−𝜆𝜆𝜆𝜆 − 𝜇𝜇𝜇𝜇) = 0 . From this we have:

Local Stability Analysis of Disease-free Equilibrium Point (DFEP)

𝑆𝑆𝑆𝑆1 =
𝑏𝑏𝑏𝑏

𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆
,𝑉𝑉𝑉𝑉1 =

𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆
𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇

=
Ʌ𝜃𝜃𝜃𝜃

(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆),

𝐸𝐸𝐸𝐸1

=
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)

+
𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆[(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)]

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝜌𝜌𝜌𝜌 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)], 

𝐼𝐼𝐼𝐼1

=
(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)

(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) �
𝑏𝑏𝑏𝑏𝜆𝜆𝜆𝜆

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)

+
𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆[(𝜌𝜌𝜌𝜌 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)]

(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)[(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)]
�

𝑅𝑅𝑅𝑅1 =
(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) + 𝛿𝛿𝛿𝛿2𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)

(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)(𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) − 𝛿𝛿𝛿𝛿2𝜆𝜆𝜆𝜆(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)

Local Stability Analysis of Disease-free Equilibrium Point (DFEP)

𝐽𝐽𝐽𝐽(𝐷𝐷𝐷𝐷1) =

⎝

⎜
⎜
⎜
⎜
⎛

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎠

⎟
⎟
⎟
⎟
⎞

Let 𝑎𝑎𝑎𝑎 = 𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇, 𝑏𝑏𝑏𝑏 = 𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇, 𝛽𝛽𝛽𝛽 = 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘,𝑑𝑑𝑑𝑑 = �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� , 𝑒𝑒𝑒𝑒 = 𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒 =

�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

�

Then, the characteristic equation of the Jacobian matrix is given by:

�

�

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇
�

�

= 0

Then, the determinant gives us: 

�1
2

(−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 − √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 − 2𝜆𝜆𝜆𝜆)� �1
2

(−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 + √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 −

2𝜆𝜆𝜆𝜆)� (−𝑎𝑎𝑎𝑎 − 𝜆𝜆𝜆𝜆)(−𝑏𝑏𝑏𝑏 − 𝜆𝜆𝜆𝜆)(−𝜆𝜆𝜆𝜆 − 𝜇𝜇𝜇𝜇) = 0 . From this we have:

𝜆𝜆𝜆𝜆1 = −𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜆𝜆𝜆𝜆2 = −𝑏𝑏𝑏𝑏, 𝜆𝜆𝜆𝜆3 = −𝜇𝜇𝜇𝜇, 𝜆𝜆𝜆𝜆4 = 1
2
�−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 − √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘� 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜆𝜆𝜆𝜆5 =

1
2
�−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 + √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘�.

As it is shown above, the eigenvalues 𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2and𝜆𝜆𝜆𝜆3are negatives and 𝜆𝜆𝜆𝜆4 and 𝜆𝜆𝜆𝜆5 have negative real 

parts. Then, we can conclude that Disease free equilibrium point is locally asymptotically stable.

Local stability Analysis of Endemic Equilibrium Point (EEP)

𝐽𝐽𝐽𝐽(𝐸𝐸𝐸𝐸∗)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜆𝜆𝜆𝜆 0 −(𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆

0 0 (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)
𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

− (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −(𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)⎠

⎟
⎟
⎟
⎟
⎟
⎞

Let 𝐴𝐴𝐴𝐴 = 𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 = 𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇,𝐶𝐶𝐶𝐶 = 𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘,𝐷𝐷𝐷𝐷 = �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� ,𝐻𝐻𝐻𝐻 = 𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘, 𝐼𝐼𝐼𝐼 = 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

−

(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑), 𝐽𝐽𝐽𝐽 = �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� ,𝐾𝐾𝐾𝐾 = 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)

Then, the characteristic equation of the Jacobian matrix is given by:

�

�

�

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜆𝜆𝜆𝜆 0 −(𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆

0 0 (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)
𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

− (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −(𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)
�

�

�

= 0

Determinant of the characteristic equation gives us:

(−𝐴𝐴𝐴𝐴 − 𝜆𝜆𝜆𝜆)(−𝐵𝐵𝐵𝐵 − 𝜆𝜆𝜆𝜆)(𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 +
ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0.This implies 𝜆𝜆𝜆𝜆1 = −𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜆𝜆𝜆𝜆2 = −𝐵𝐵𝐵𝐵 or 
(𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 + ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+
𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0.

Let us check for 𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 +
(ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0. Here 𝑎𝑎𝑎𝑎0𝜆𝜆𝜆𝜆3 + 𝑎𝑎𝑎𝑎1𝜆𝜆𝜆𝜆2 + 𝑎𝑎𝑎𝑎2𝜆𝜆𝜆𝜆 + 𝑎𝑎𝑎𝑎3 = 0.

Then, 𝑎𝑎𝑎𝑎0 = 1,𝑎𝑎𝑎𝑎1 = (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3),𝑎𝑎𝑎𝑎2 = (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3),𝑎𝑎𝑎𝑎3 =
(ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻).
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Local stability Analysis of Endemic Equilibrium Point (EEP)

𝜆𝜆𝜆𝜆1 = −𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜆𝜆𝜆𝜆2 = −𝑏𝑏𝑏𝑏, 𝜆𝜆𝜆𝜆3 = −𝜇𝜇𝜇𝜇, 𝜆𝜆𝜆𝜆4 = 1
2
�−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 − √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘� 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜆𝜆𝜆𝜆5 =

1
2
�−𝛽𝛽𝛽𝛽 − 𝑒𝑒𝑒𝑒 + √𝛽𝛽𝛽𝛽2 − 2𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑒2 + 4𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘�.

As it is shown above, the eigenvalues 𝜆𝜆𝜆𝜆1, 𝜆𝜆𝜆𝜆2and𝜆𝜆𝜆𝜆3are negatives and 𝜆𝜆𝜆𝜆4 and 𝜆𝜆𝜆𝜆5 have negative real 

parts. Then, we can conclude that Disease free equilibrium point is locally asymptotically stable.

Local stability Analysis of Endemic Equilibrium Point (EEP)

𝐽𝐽𝐽𝐽(𝐸𝐸𝐸𝐸∗)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜆𝜆𝜆𝜆 0 −(𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆

0 0 (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)
𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

− (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −(𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)⎠

⎟
⎟
⎟
⎟
⎟
⎞

Let 𝐴𝐴𝐴𝐴 = 𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 = 𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇,𝐶𝐶𝐶𝐶 = 𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘,𝐷𝐷𝐷𝐷 = �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� ,𝐻𝐻𝐻𝐻 = 𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘, 𝐼𝐼𝐼𝐼 = 𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

−

(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑), 𝐽𝐽𝐽𝐽 = �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

� ,𝐾𝐾𝐾𝐾 = 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)

Then, the characteristic equation of the Jacobian matrix is given by:

�

�

�

−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆) 0 0 0 0
𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜆𝜆𝜆𝜆 0 −(𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆

0 0 (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)
𝜏𝜏𝜏𝜏𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁𝑁𝑁

− (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −(𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)
�

�

�

= 0

Determinant of the characteristic equation gives us:

(−𝐴𝐴𝐴𝐴 − 𝜆𝜆𝜆𝜆)(−𝐵𝐵𝐵𝐵 − 𝜆𝜆𝜆𝜆)(𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 +
ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0.This implies 𝜆𝜆𝜆𝜆1 = −𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜆𝜆𝜆𝜆2 = −𝐵𝐵𝐵𝐵 or 
(𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 + ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+
𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0.

Let us check for 𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 +
(ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0. Here 𝑎𝑎𝑎𝑎0𝜆𝜆𝜆𝜆3 + 𝑎𝑎𝑎𝑎1𝜆𝜆𝜆𝜆2 + 𝑎𝑎𝑎𝑎2𝜆𝜆𝜆𝜆 + 𝑎𝑎𝑎𝑎3 = 0.

Then, 𝑎𝑎𝑎𝑎0 = 1,𝑎𝑎𝑎𝑎1 = (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3),𝑎𝑎𝑎𝑎2 = (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3),𝑎𝑎𝑎𝑎3 =
(ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻).
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So, for 𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 + ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 +
ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0,

�
𝑆𝑆𝑆𝑆3

𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆0

�

𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎2
𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎3

𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3

𝑎𝑎𝑎𝑎1

𝑎𝑎𝑎𝑎3

𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎0 = 1 > 0. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎3 > 0.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2−𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3
𝑎𝑎𝑎𝑎1

> 0 implies 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3 > 0.Then,𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3 = (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)(𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 +

𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3) − (ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) > 0 which is 
valid.

Therefore, we can conclude that the Endemic Equilibrium Point is locally asymptotically stable.

Theorem 3:

Global Stability of Disease-Free Equilibrium Point (DFEP)

The Disease-Free Equilibrium Point (DFEP)𝐷𝐷𝐷𝐷1 is given by:

𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇 (𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

� is globally asymptotically stable 

if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1.

Proof:

We construct a Lyapunov function by:𝐿𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼. This implies:

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸̇𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼̇

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼 = 𝛼𝛼𝛼𝛼1(𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸) + 𝛼𝛼𝛼𝛼2((𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼)

Collecting like terms and simplifying gives us:

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1 �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

𝑆𝑆𝑆𝑆1 + 𝛾𝛾𝛾𝛾
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

𝑅𝑅𝑅𝑅1 − 𝜇𝜇𝜇𝜇�𝐸𝐸𝐸𝐸 − 𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼

𝐿̇𝐿𝐿𝐿 ≤ 𝛼𝛼𝛼𝛼1(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) ��𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆1 + 𝛾𝛾𝛾𝛾 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅1� − 1� where 𝑆𝑆𝑆𝑆1 =  𝑏𝑏𝑏𝑏

𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇
,𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
.

𝐿̇𝐿𝐿𝐿 ≤ 𝛼𝛼𝛼𝛼1𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)�𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1�

Global Stability of Disease-Free Equilibrium Point (DFEP)
Theorem 3:

So, for 𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 + ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 +
ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0,

�
𝑆𝑆𝑆𝑆3

𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆0

�

𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎2
𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎3

𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3

𝑎𝑎𝑎𝑎1

𝑎𝑎𝑎𝑎3

𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎0 = 1 > 0. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎3 > 0.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2−𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3
𝑎𝑎𝑎𝑎1

> 0 implies 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3 > 0.Then,𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3 = (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)(𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 +

𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3) − (ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) > 0 which is 
valid.

Therefore, we can conclude that the Endemic Equilibrium Point is locally asymptotically stable.

Theorem 3:

Global Stability of Disease-Free Equilibrium Point (DFEP)

The Disease-Free Equilibrium Point (DFEP)𝐷𝐷𝐷𝐷1 is given by:

𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇 (𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

� is globally asymptotically stable 

if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1.

Proof:

We construct a Lyapunov function by:𝐿𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼. This implies:

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸̇𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼̇

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼 = 𝛼𝛼𝛼𝛼1(𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸) + 𝛼𝛼𝛼𝛼2((𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼)

Collecting like terms and simplifying gives us:

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1 �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

𝑆𝑆𝑆𝑆1 + 𝛾𝛾𝛾𝛾
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

𝑅𝑅𝑅𝑅1 − 𝜇𝜇𝜇𝜇�𝐸𝐸𝐸𝐸 − 𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼

𝐿̇𝐿𝐿𝐿 ≤ 𝛼𝛼𝛼𝛼1(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) ��𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆1 + 𝛾𝛾𝛾𝛾 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅1� − 1� where 𝑆𝑆𝑆𝑆1 =  𝑏𝑏𝑏𝑏

𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇
,𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
.

𝐿̇𝐿𝐿𝐿 ≤ 𝛼𝛼𝛼𝛼1𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)�𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1�
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So, for 𝜆𝜆𝜆𝜆3 + (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)𝜆𝜆𝜆𝜆2 + (𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3)𝜆𝜆𝜆𝜆 + ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 +
ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0,

�
𝑆𝑆𝑆𝑆3

𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆0

�

𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎2
𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎3

𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3

𝑎𝑎𝑎𝑎1

𝑎𝑎𝑎𝑎3

𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎0 = 1 > 0. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎3 > 0.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2−𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3
𝑎𝑎𝑎𝑎1

> 0 implies 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3 > 0.Then,𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2 − 𝑎𝑎𝑎𝑎0𝑎𝑎𝑎𝑎3 = (𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝐼𝐼𝐼𝐼 + 3)(𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 +

𝐼𝐼𝐼𝐼𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + 2𝐼𝐼𝐼𝐼 + 2𝐶𝐶𝐶𝐶 + 2𝐾𝐾𝐾𝐾 + 3) − (ⅈ𝐾𝐾𝐾𝐾 + 𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 + ⅈ+ 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 − 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + ⅈ𝐶𝐶𝐶𝐶𝐾𝐾𝐾𝐾 − 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) > 0 which is 
valid.

Therefore, we can conclude that the Endemic Equilibrium Point is locally asymptotically stable.

Theorem 3:

Global Stability of Disease-Free Equilibrium Point (DFEP)

The Disease-Free Equilibrium Point (DFEP)𝐷𝐷𝐷𝐷1 is given by:

𝐷𝐷𝐷𝐷1 = (𝑆𝑆𝑆𝑆1,𝑉𝑉𝑉𝑉1,𝐸𝐸𝐸𝐸1, 𝐼𝐼𝐼𝐼1,𝑅𝑅𝑅𝑅1) = �  𝑏𝑏𝑏𝑏
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

,  𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃
(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

, 0,0, 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2
𝜇𝜇𝜇𝜇 (𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)

� is globally asymptotically stable 

if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1.

Proof:

We construct a Lyapunov function by:𝐿𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼. This implies:

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸̇𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼̇

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1𝐸𝐸𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝐼𝐼𝐼𝐼 = 𝛼𝛼𝛼𝛼1(𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸) + 𝛼𝛼𝛼𝛼2((𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼)

Collecting like terms and simplifying gives us:

𝐿̇𝐿𝐿𝐿 = 𝛼𝛼𝛼𝛼1 �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

𝑆𝑆𝑆𝑆1 + 𝛾𝛾𝛾𝛾
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁

𝑅𝑅𝑅𝑅1 − 𝜇𝜇𝜇𝜇�𝐸𝐸𝐸𝐸 − 𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼

𝐿̇𝐿𝐿𝐿 ≤ 𝛼𝛼𝛼𝛼1(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇) ��𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼
𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆1 + 𝛾𝛾𝛾𝛾 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅1� − 1� where 𝑆𝑆𝑆𝑆1 =  𝑏𝑏𝑏𝑏

𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇
,𝑅𝑅𝑅𝑅1 = 𝑏𝑏𝑏𝑏𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )(𝛿𝛿𝛿𝛿2+𝜇𝜇𝜇𝜇)
.

𝐿̇𝐿𝐿𝐿 ≤ 𝛼𝛼𝛼𝛼1𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)�𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1�

Then, we note that 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
≤ 0 if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1.Furthermore, 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
= 0 if and only if 𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐼𝐼 = 0. Therefore, 

the largest compact invariant set in (𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉,𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅) ∈ Ω: 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

< 0 where 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1 is the singleton 
{𝐸𝐸𝐸𝐸1}. Lasalle’s (1976) invariance principle then implies that 𝐷𝐷𝐷𝐷1 is globally stable in Ω if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 <
1 otherwise it is unstable.

Global Stability of Endemic Equilibrium Point (EEP)

Liao and Wang proposed a combination of the Lyapunov function method and Volterra–

Lyapunov properties and proved the global asymptotic stability of the endemic equilibria. This 

method does not meet the challenges of the Lyapunov function method, including determining 

the appropriate Lyapunov function and coefficients [35].

In this work, we will present a modification of the method of Lyapunov functions combined with 

the theory of Volterra–Lyapunov stable matrices [35,36].  The fundamental difference between 

the two methods is that our modified method repeatedly uses Lemma 1, Lemma 2, and reduces 

the dimensions of the matrices, while in some parts of the original method this technique is not 

used. We will analyze the global stability of the endemic equilibrium points applying the 

approach in [36]. 𝐿𝐿𝐿𝐿 = ∑ 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖5
𝑖𝑖𝑖𝑖=1 (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗)2 where  𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is properly selected positive constant, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is 

the population of 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ compartment and  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ is the equilibrium point. This approach has been 

found to be useful for more complex compartmental epidemic models [42].

Theorem 5:

The endemic equilibrium point 𝐷𝐷𝐷𝐷∗ = (𝑆𝑆𝑆𝑆∗,𝑉𝑉𝑉𝑉∗,𝐸𝐸𝐸𝐸∗, 𝐼𝐼𝐼𝐼∗,𝑅𝑅𝑅𝑅∗)

of the dynamical system of HBV, model of (1 – 5) is globally asymptotically stable (GAS) if  
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 1.

Proof: - Let the Lyapunov function  𝑅𝑅𝑅𝑅+
5 → 𝑅𝑅𝑅𝑅+ is defined by:  

𝐿𝐿𝐿𝐿 = 𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)2 + 𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)2 + 𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)2 + 𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)2 + 𝑤𝑤𝑤𝑤1(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)2where 
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3,𝑤𝑤𝑤𝑤4,and 𝑤𝑤𝑤𝑤5are positive constants. Calculating the time derivative of 𝐿𝐿𝐿𝐿 along the 
trajectories of equations (1-5). We obtain: 

𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 2𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)𝑆̇𝑆𝑆𝑆 + 2𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)𝑉̇𝑉𝑉𝑉 + 2𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)𝐸̇𝐸𝐸𝐸 + 2𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)𝐴̇𝐴𝐴𝐴 + 2𝑤𝑤𝑤𝑤5(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)𝑅̇𝑅𝑅𝑅

Global Stability of Endemic Equilibrium Point (EEP)
Liao and Wang proposed a combination of the Lyapunov function 
method and Volterra–Lyapunov properties and proved the global 
asymptotic stability of the endemic equilibria. This method does 
not meet the challenges of the Lyapunov function method, includ-
ing determining the appropriate Lyapunov function and coeffi-
cients [1].

In this work, we will present a modification of the method of Lya-
punov functions combined with the theory of Volterra–Lyapunov 
stable matrices [1, 2].The fundamental difference between the 

two methods is that our modified method repeatedly uses Lemma 
1, Lemma 2, and reduces the dimensions of the matrices, while 
in some parts of the original method this technique is not used. 
We will analyze the global stability of the endemic equilibrium 
points applying the approach in [7]. L=∑i=1

5 wi  (xi- xi*)2 where 
wi is properly selected positive constant, xi is the population of ith 

compartment and xi* is the equilibrium point. This approach has 
been found to be useful for more complex compartmental epidem-
ic models [8].

Then, we note that 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
≤ 0 if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1.Furthermore, 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
= 0 if and only if 𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐼𝐼 = 0. Therefore, 

the largest compact invariant set in (𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉,𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅) ∈ Ω: 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

< 0 where 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 1 is the singleton 
{𝐸𝐸𝐸𝐸1}. Lasalle’s (1976) invariance principle then implies that 𝐷𝐷𝐷𝐷1 is globally stable in Ω if 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 <
1 otherwise it is unstable.

Global Stability of Endemic Equilibrium Point (EEP)

Liao and Wang proposed a combination of the Lyapunov function method and Volterra–

Lyapunov properties and proved the global asymptotic stability of the endemic equilibria. This 

method does not meet the challenges of the Lyapunov function method, including determining 

the appropriate Lyapunov function and coefficients [35].

In this work, we will present a modification of the method of Lyapunov functions combined with 

the theory of Volterra–Lyapunov stable matrices [35,36].  The fundamental difference between 

the two methods is that our modified method repeatedly uses Lemma 1, Lemma 2, and reduces 

the dimensions of the matrices, while in some parts of the original method this technique is not 

used. We will analyze the global stability of the endemic equilibrium points applying the 

approach in [36]. 𝐿𝐿𝐿𝐿 = ∑ 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖5
𝑖𝑖𝑖𝑖=1 (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗)2 where  𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is properly selected positive constant, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is 

the population of 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ compartment and  𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ is the equilibrium point. This approach has been 

found to be useful for more complex compartmental epidemic models [42].

Theorem 5:

The endemic equilibrium point 𝐷𝐷𝐷𝐷∗ = (𝑆𝑆𝑆𝑆∗,𝑉𝑉𝑉𝑉∗,𝐸𝐸𝐸𝐸∗, 𝐼𝐼𝐼𝐼∗,𝑅𝑅𝑅𝑅∗)

of the dynamical system of HBV, model of (1 – 5) is globally asymptotically stable (GAS) if  
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 1.

Proof: - Let the Lyapunov function  𝑅𝑅𝑅𝑅+
5 → 𝑅𝑅𝑅𝑅+ is defined by:  

𝐿𝐿𝐿𝐿 = 𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)2 + 𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)2 + 𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)2 + 𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)2 + 𝑤𝑤𝑤𝑤1(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)2where 
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3,𝑤𝑤𝑤𝑤4,and 𝑤𝑤𝑤𝑤5are positive constants. Calculating the time derivative of 𝐿𝐿𝐿𝐿 along the 
trajectories of equations (1-5). We obtain: 

𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 2𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)𝑆̇𝑆𝑆𝑆 + 2𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)𝑉̇𝑉𝑉𝑉 + 2𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)𝐸̇𝐸𝐸𝐸 + 2𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)𝐴̇𝐴𝐴𝐴 + 2𝑤𝑤𝑤𝑤5(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)𝑅̇𝑅𝑅𝑅

𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 2𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)(𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆) + 2𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)(𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉)

+ 2𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)(𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸)

+ 2𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)((𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼)

+ 2𝑤𝑤𝑤𝑤5(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)�(𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅�

After some calculation and simplifications, we get:

𝐿̇𝐿𝐿𝐿 = 𝑌𝑌𝑌𝑌(𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑊𝑊𝑊𝑊)𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 where 𝑌𝑌𝑌𝑌 = [𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗,𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗,𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗, 𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗,𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗]

𝑊𝑊𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3,𝑤𝑤𝑤𝑤4,𝑤𝑤𝑤𝑤5) and 

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0
0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
� 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0
0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
� −𝜇𝜇𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎤

(9)

To establish the global stability of the endemic equilibrium 𝐸𝐸𝐸𝐸∗, we investigate that the matrix A 

defined in (9) is Volterra-Lyapunov stable. Below, we briefly review the following pre-

requisites. Here, we recall the basic definitions related to Volterra-Lyapunov stable matrices. 

Suppose 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is real matrix.

(𝐷𝐷𝐷𝐷1) All the eigenvalues of A have negative (positive) real parts if and only if there exists a 

matrix 𝐻𝐻𝐻𝐻 > 0 (that means 𝐻𝐻𝐻𝐻 is symmetric positive definite) such that 𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇 < 0(> 0).

(𝐷𝐷𝐷𝐷2) The non-singular matrix 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is diagonal matrix 𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛such that 𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 > 0.

𝐿𝐿𝐿𝐿1: The 𝐷𝐷𝐷𝐷 = �𝑑𝑑𝑑𝑑11 𝑑𝑑𝑑𝑑12
𝑑𝑑𝑑𝑑21 𝑑𝑑𝑑𝑑22

� is Volterra-Lyapunov stable if and only if 

𝑑𝑑𝑑𝑑11 < 0,𝑑𝑑𝑑𝑑22 < 0 ⇒ det(𝐷𝐷𝐷𝐷) = 𝑑𝑑𝑑𝑑11𝑑𝑑𝑑𝑑22 − 𝑑𝑑𝑑𝑑12𝑑𝑑𝑑𝑑21 > 0.

𝐿𝐿𝐿𝐿2: Suppose the non-singular 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 = �𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �, (𝑛𝑛𝑛𝑛 ≥ 2),

𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚1, … ,𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) is a positive diagonal matrix and 𝐻𝐻𝐻𝐻 = 𝐷𝐷𝐷𝐷−1 such that:
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𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 2𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)(𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆) + 2𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)(𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉)

+ 2𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)(𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸)

+ 2𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)((𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼)

+ 2𝑤𝑤𝑤𝑤5(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)�(𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅�

After some calculation and simplifications, we get:

𝐿̇𝐿𝐿𝐿 = 𝑌𝑌𝑌𝑌(𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑊𝑊𝑊𝑊)𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 where 𝑌𝑌𝑌𝑌 = [𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗,𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗,𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗, 𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗,𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗]

𝑊𝑊𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3,𝑤𝑤𝑤𝑤4,𝑤𝑤𝑤𝑤5) and 

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0
0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
� 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0
0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
� −𝜇𝜇𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎤

(9)

To establish the global stability of the endemic equilibrium 𝐸𝐸𝐸𝐸∗, we investigate that the matrix A 

defined in (9) is Volterra-Lyapunov stable. Below, we briefly review the following pre-

requisites. Here, we recall the basic definitions related to Volterra-Lyapunov stable matrices. 

Suppose 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is real matrix.

(𝐷𝐷𝐷𝐷1) All the eigenvalues of A have negative (positive) real parts if and only if there exists a 

matrix 𝐻𝐻𝐻𝐻 > 0 (that means 𝐻𝐻𝐻𝐻 is symmetric positive definite) such that 𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇 < 0(> 0).

(𝐷𝐷𝐷𝐷2) The non-singular matrix 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is diagonal matrix 𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛such that 𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 > 0.

𝐿𝐿𝐿𝐿1: The 𝐷𝐷𝐷𝐷 = �𝑑𝑑𝑑𝑑11 𝑑𝑑𝑑𝑑12
𝑑𝑑𝑑𝑑21 𝑑𝑑𝑑𝑑22

� is Volterra-Lyapunov stable if and only if 

𝑑𝑑𝑑𝑑11 < 0,𝑑𝑑𝑑𝑑22 < 0 ⇒ det(𝐷𝐷𝐷𝐷) = 𝑑𝑑𝑑𝑑11𝑑𝑑𝑑𝑑22 − 𝑑𝑑𝑑𝑑12𝑑𝑑𝑑𝑑21 > 0.

𝐿𝐿𝐿𝐿2: Suppose the non-singular 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 = �𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �, (𝑛𝑛𝑛𝑛 ≥ 2),

𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚1, … ,𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) is a positive diagonal matrix and 𝐻𝐻𝐻𝐻 = 𝐷𝐷𝐷𝐷−1 such that:

(9)

𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 2𝑤𝑤𝑤𝑤1(𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗)(𝑏𝑏𝑏𝑏 − (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆)𝑆𝑆𝑆𝑆) + 2𝑤𝑤𝑤𝑤2(𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗)(𝜃𝜃𝜃𝜃𝑆𝑆𝑆𝑆 − (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇)𝑉𝑉𝑉𝑉)

+ 2𝑤𝑤𝑤𝑤3(𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗)(𝜆𝜆𝜆𝜆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)𝐸𝐸𝐸𝐸)

+ 2𝑤𝑤𝑤𝑤4(𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗)((𝜏𝜏𝜏𝜏𝜆𝜆𝜆𝜆 + 𝑘𝑘𝑘𝑘)𝐸𝐸𝐸𝐸 − (𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇)𝐼𝐼𝐼𝐼)

+ 2𝑤𝑤𝑤𝑤5(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗)�(𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎)𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿2𝑉𝑉𝑉𝑉 − (𝛾𝛾𝛾𝛾𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇)𝑅𝑅𝑅𝑅�

After some calculation and simplifications, we get:

𝐿̇𝐿𝐿𝐿 = 𝑌𝑌𝑌𝑌(𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑊𝑊𝑊𝑊)𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 where 𝑌𝑌𝑌𝑌 = [𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆∗,𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉∗,𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸∗, 𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼∗,𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅∗]

𝑊𝑊𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3,𝑤𝑤𝑤𝑤4,𝑤𝑤𝑤𝑤5) and 

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0
0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
� 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0
0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 − 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
� −𝜇𝜇𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎤

(9)

To establish the global stability of the endemic equilibrium 𝐸𝐸𝐸𝐸∗, we investigate that the matrix A 

defined in (9) is Volterra-Lyapunov stable. Below, we briefly review the following pre-

requisites. Here, we recall the basic definitions related to Volterra-Lyapunov stable matrices. 

Suppose 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is real matrix.

(𝐷𝐷𝐷𝐷1) All the eigenvalues of A have negative (positive) real parts if and only if there exists a 

matrix 𝐻𝐻𝐻𝐻 > 0 (that means 𝐻𝐻𝐻𝐻 is symmetric positive definite) such that 𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇 < 0(> 0).

(𝐷𝐷𝐷𝐷2) The non-singular matrix 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is diagonal matrix 𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛such that 𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 > 0.

𝐿𝐿𝐿𝐿1: The 𝐷𝐷𝐷𝐷 = �𝑑𝑑𝑑𝑑11 𝑑𝑑𝑑𝑑12
𝑑𝑑𝑑𝑑21 𝑑𝑑𝑑𝑑22

� is Volterra-Lyapunov stable if and only if 

𝑑𝑑𝑑𝑑11 < 0,𝑑𝑑𝑑𝑑22 < 0 ⇒ det(𝐷𝐷𝐷𝐷) = 𝑑𝑑𝑑𝑑11𝑑𝑑𝑑𝑑22 − 𝑑𝑑𝑑𝑑12𝑑𝑑𝑑𝑑21 > 0.

𝐿𝐿𝐿𝐿2: Suppose the non-singular 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 = �𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �, (𝑛𝑛𝑛𝑛 ≥ 2),

𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚1, … ,𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛) is a positive diagonal matrix and 𝐻𝐻𝐻𝐻 = 𝐷𝐷𝐷𝐷−1 such that:

1. 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 0

2. 𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷� + (𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷�)𝑇𝑇𝑇𝑇 > 0

3. 𝑀𝑀𝑀𝑀�𝐻𝐻𝐻𝐻� + (𝑀𝑀𝑀𝑀�𝐻𝐻𝐻𝐻�)𝑇𝑇𝑇𝑇 > 0

4. it is possible to choose 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 > 0 such that 𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷� + (𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷�)𝑇𝑇𝑇𝑇 > 0

Note that 𝐷𝐷𝐷𝐷� denote the (𝑛𝑛𝑛𝑛 − 1) × (𝑛𝑛𝑛𝑛 − 1) matrix obtained from 𝐷𝐷𝐷𝐷 by deleting its last row and 

last column.

Theorem 6:

The matrix A defined in equation (9) is Volterra-Lyapunov stable.

Proof:

We have:

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Then,

−𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −�
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 −𝛿𝛿𝛿𝛿2 0 −�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Clearly, −𝐴𝐴𝐴𝐴55 = −�−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)� = (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) > 0. Let us consider 𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴,denote the 4 × 4 matrix 

obtained from −𝐴𝐴𝐴𝐴 by deleting its last row and last column. From equation (11), we obtain:

𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0
0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −(𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
)

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)⎦
⎥
⎥
⎥
⎤

(10)
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1. 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 0

2. 𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷� + (𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷�)𝑇𝑇𝑇𝑇 > 0

3. 𝑀𝑀𝑀𝑀�𝐻𝐻𝐻𝐻� + (𝑀𝑀𝑀𝑀�𝐻𝐻𝐻𝐻�)𝑇𝑇𝑇𝑇 > 0

4. it is possible to choose 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 > 0 such that 𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷� + (𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷�)𝑇𝑇𝑇𝑇 > 0

Note that 𝐷𝐷𝐷𝐷� denote the (𝑛𝑛𝑛𝑛 − 1) × (𝑛𝑛𝑛𝑛 − 1) matrix obtained from 𝐷𝐷𝐷𝐷 by deleting its last row and 

last column.

Theorem 6:

The matrix A defined in equation (9) is Volterra-Lyapunov stable.

Proof:

We have:

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Then,

−𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −�
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 −𝛿𝛿𝛿𝛿2 0 −�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Clearly, −𝐴𝐴𝐴𝐴55 = −�−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)� = (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) > 0. Let us consider 𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴,denote the 4 × 4 matrix 

obtained from −𝐴𝐴𝐴𝐴 by deleting its last row and last column. From equation (11), we obtain:

𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0
0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −(𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
)

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)⎦
⎥
⎥
⎥
⎤

(10)

1. 𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 0

2. 𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷� + (𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷�)𝑇𝑇𝑇𝑇 > 0

3. 𝑀𝑀𝑀𝑀�𝐻𝐻𝐻𝐻� + (𝑀𝑀𝑀𝑀�𝐻𝐻𝐻𝐻�)𝑇𝑇𝑇𝑇 > 0

4. it is possible to choose 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 > 0 such that 𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷� + (𝑀𝑀𝑀𝑀�𝐷𝐷𝐷𝐷�)𝑇𝑇𝑇𝑇 > 0

Note that 𝐷𝐷𝐷𝐷� denote the (𝑛𝑛𝑛𝑛 − 1) × (𝑛𝑛𝑛𝑛 − 1) matrix obtained from 𝐷𝐷𝐷𝐷 by deleting its last row and 

last column.

Theorem 6:

The matrix A defined in equation (9) is Volterra-Lyapunov stable.

Proof:

We have:

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Then,

−𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −�
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 −𝛿𝛿𝛿𝛿2 0 −�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Clearly, −𝐴𝐴𝐴𝐴55 = −�−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)� = (𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) > 0. Let us consider 𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴,denote the 4 × 4 matrix 

obtained from −𝐴𝐴𝐴𝐴 by deleting its last row and last column. From equation (11), we obtain:

𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0
0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −(𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+ 𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
)

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑)⎦
⎥
⎥
⎥
⎤

(10)
(10)
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Based on 𝐿𝐿𝐿𝐿2, we state and prove the following results.

The first Lemma proves that 𝐷𝐷𝐷𝐷 = −𝐴̃𝐴𝐴𝐴 is diagonal stable and in the next lemma, we show the 

𝐻𝐻𝐻𝐻 = −𝐴𝐴𝐴𝐴−1� is diagonal stable. Therefore, all the conditions of (𝐿𝐿𝐿𝐿2) are satisfied. Hence, the 

matrix 𝐴𝐴𝐴𝐴 is a Volterra-Lyapunov stable.

Lemma 1:

The matrix 𝐷𝐷𝐷𝐷 defined in Equation (10) is diagonal stable.

Proof:

Let us discuss the diagonal stability of 𝐷𝐷𝐷𝐷. It is guaranteed by the following steps.

Step 1: 𝐷𝐷𝐷𝐷44 > 0.

Step 2: By using 𝐿𝐿𝐿𝐿2, we shall prove that the matrix 𝐷𝐷𝐷𝐷� is diagonal stable. From (10), we obtain

𝐷𝐷𝐷𝐷� = �
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0
0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘)

�

Obviously, 𝐷𝐷𝐷𝐷�11 > 0,𝐷𝐷𝐷𝐷�22 > 0,nd𝐷𝐷𝐷𝐷�33 > 0. It remains to show that 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐷𝐷𝐷𝐷�) > 0. 

⇒ 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝐷𝐷𝐷𝐷�� = (𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2) > 0 . Therefore, 𝐷𝐷𝐷𝐷� is diagonally stable.

Step 3: Now we must show that 𝐷𝐷𝐷𝐷−1� is diagonally stable.

𝐷𝐷𝐷𝐷−1� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇

0 0

−𝑘𝑘𝑘𝑘𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇
(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)

1
𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2

0

0 0
1

𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎤

It is easy to see 𝐷𝐷𝐷𝐷−1�
11 = 1

𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇
> 0,𝐷𝐷𝐷𝐷−1�

22 = 1
𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿2

> 0,𝐷𝐷𝐷𝐷−1�
33 = 1

𝑘𝑘𝑘𝑘+𝜇𝜇𝜇𝜇
> 0. Therefore, 𝐷𝐷𝐷𝐷−1� is 

diagonal stable.

Lemma 2: The matrix 𝐻𝐻𝐻𝐻 = −𝐴𝐴𝐴𝐴−1� is diagonal stable.

Proof:
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We obtain the −𝐴𝐴𝐴𝐴−1� as following.

𝐻𝐻𝐻𝐻 = −𝐴𝐴𝐴𝐴−1� =
1

det(−𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(−𝐴𝐴𝐴𝐴)

We have :

𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 −(𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 −(𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) �
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 𝑘𝑘𝑘𝑘 −(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 𝛿𝛿𝛿𝛿2 0 �𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � −𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Let 𝐵𝐵𝐵𝐵 = −𝐴𝐴𝐴𝐴 then, 

where 

𝐵𝐵𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇) 0 0 0 0

𝜃𝜃𝜃𝜃 (𝛿𝛿𝛿𝛿2 + 𝜇𝜇𝜇𝜇) 0 0 0

0 0 (𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘) −�
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁
+
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 0

0 0 −𝑘𝑘𝑘𝑘 (𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿1 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑𝑑𝑑) 0

0 −𝛿𝛿𝛿𝛿2 0 −�𝛿𝛿𝛿𝛿1 + 𝑘𝑘𝑘𝑘 −
𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 � 𝜇𝜇𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

−𝐴𝐴𝐴𝐴−1 = 𝐵𝐵𝐵𝐵−1 =

⎣
⎢
⎢
⎢
⎡
𝛽𝛽𝛽𝛽11 0 0 0 0
𝛽𝛽𝛽𝛽21 𝛽𝛽𝛽𝛽22 0 0 0
0 0 𝛽𝛽𝛽𝛽33 𝛽𝛽𝛽𝛽34 0
0 0 𝛽𝛽𝛽𝛽43 𝛽𝛽𝛽𝛽44 0
𝛽𝛽𝛽𝛽51 𝛽𝛽𝛽𝛽52 𝛽𝛽𝛽𝛽53 𝛽𝛽𝛽𝛽54 𝛽𝛽𝛽𝛽55⎦

⎥
⎥
⎥
⎤

Let  𝛽𝛽𝛽𝛽11 = 1
𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇

, 𝛽𝛽𝛽𝛽21 =
−𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 −𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇2−𝑘𝑘𝑘𝑘𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇2−𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇3−𝑘𝑘𝑘𝑘𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 −𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇2𝜎𝜎𝜎𝜎+𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁 +𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁 −𝑘𝑘𝑘𝑘𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 𝛿𝛿𝛿𝛿1−𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇2𝛿𝛿𝛿𝛿1

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃+𝜇𝜇𝜇𝜇 )�𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘+𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇+𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇+𝜇𝜇𝜇𝜇2+𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 −𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁 −𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁 +𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1+𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1�(𝜇𝜇𝜇𝜇+𝛿𝛿𝛿𝛿2)
, 

𝛽𝛽𝛽𝛽22 =
1

𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2
, 𝛽𝛽𝛽𝛽33 =

𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇2 + 𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1 + 𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1
,

𝛽𝛽𝛽𝛽34 = −
− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇2 + 𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1 + 𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1
,
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𝛽𝛽𝛽𝛽43 = 𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘+𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇+𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇+𝜇𝜇𝜇𝜇2+𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎+𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁 −𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1

𝑁𝑁𝑁𝑁 +𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1+𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1
,

𝛽𝛽𝛽𝛽44 =
𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇2 + 𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1 + 𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1
, 𝛽𝛽𝛽𝛽51

= −
𝜃𝜃𝜃𝜃𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2),

𝛽𝛽𝛽𝛽52 =
𝛿𝛿𝛿𝛿2

𝜇𝜇𝜇𝜇(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)
, 𝛽𝛽𝛽𝛽53 = −

𝑘𝑘𝑘𝑘 �−𝑘𝑘𝑘𝑘 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛿𝛿𝛿𝛿1�

𝜇𝜇𝜇𝜇 �𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇2 + 𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1 + 𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1�
,

𝛽𝛽𝛽𝛽54 = −
(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇) �−𝑘𝑘𝑘𝑘 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1

𝑁𝑁𝑁𝑁
− 𝛿𝛿𝛿𝛿1�

𝜇𝜇𝜇𝜇 �𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇2 + 𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1 + 𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1�
, 𝛽𝛽𝛽𝛽55 =

1
𝜇𝜇𝜇𝜇

then,

𝐻𝐻𝐻𝐻 = �−𝐴𝐴𝐴𝐴−1�� = �

𝛽𝛽𝛽𝛽11 0 0 0
𝛽𝛽𝛽𝛽21 𝛽𝛽𝛽𝛽22 0 0
0 0 𝛽𝛽𝛽𝛽33 𝛽𝛽𝛽𝛽34
0 0 𝛽𝛽𝛽𝛽43 𝛽𝛽𝛽𝛽44

�

It is obvious that:

𝐻𝐻𝐻𝐻44 = 𝛽𝛽𝛽𝛽44 =
𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇 + 𝑘𝑘𝑘𝑘𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇2 + 𝑘𝑘𝑘𝑘𝜎𝜎𝜎𝜎 + 𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅1
𝑁𝑁𝑁𝑁

− 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑆𝑆𝑆𝑆1
𝑁𝑁𝑁𝑁

+ 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿1 + 𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿1
> 0.

Below, we show that 𝐻𝐻𝐻𝐻�and𝐻𝐻𝐻𝐻−1� are diagonally stable.

𝐻𝐻𝐻𝐻� =
1

det(−𝐴𝐴𝐴𝐴) �
𝛽𝛽𝛽𝛽11 0 0
𝛽𝛽𝛽𝛽21 𝛽𝛽𝛽𝛽22 0
0 0 𝛽𝛽𝛽𝛽33

�

=
𝑁𝑁𝑁𝑁

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝑘𝑘𝑘𝑘(−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1) + 𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1))(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2) �
𝛽𝛽𝛽𝛽11 0 0
𝛽𝛽𝛽𝛽21 𝛽𝛽𝛽𝛽22 0
0 0 𝛽𝛽𝛽𝛽33

�

𝐻𝐻𝐻𝐻� = �
𝑒𝑒𝑒𝑒11 0 0
𝑑𝑑𝑑𝑑21 𝑒𝑒𝑒𝑒22 0
0 0 𝑒𝑒𝑒𝑒33

� where:

𝑑𝑑𝑑𝑑11 =
𝛽𝛽𝛽𝛽11𝑁𝑁𝑁𝑁

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)�𝑘𝑘𝑘𝑘(−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1) + 𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1)�(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)
,
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𝑑𝑑𝑑𝑑21 =
𝛽𝛽𝛽𝛽21𝑁𝑁𝑁𝑁

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝑘𝑘𝑘𝑘(−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1) + 𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1))(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)
,

𝑑𝑑𝑑𝑑22 =
𝛽𝛽𝛽𝛽22𝑁𝑁𝑁𝑁

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)�𝑘𝑘𝑘𝑘(−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1) + 𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1)�(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)
,

𝑑𝑑𝑑𝑑33 =
𝛽𝛽𝛽𝛽33𝑁𝑁𝑁𝑁

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝑘𝑘𝑘𝑘(−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1) + 𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1))(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)
,

First, we show that det⁡(−𝐴𝐴𝐴𝐴) > 0.

det(−𝐴𝐴𝐴𝐴) =
𝑁𝑁𝑁𝑁

𝜇𝜇𝜇𝜇(𝜃𝜃𝜃𝜃 + 𝜇𝜇𝜇𝜇)(𝑘𝑘𝑘𝑘(−𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅1 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆1) + 𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝜇𝜇𝜇𝜇)(𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛿𝛿𝛿𝛿1))(𝜇𝜇𝜇𝜇 + 𝛿𝛿𝛿𝛿2)
> 0.

Next, we check for  det�𝐻𝐻𝐻𝐻�� = 𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33 > 0 which is valid.

It remains to show that 𝐻𝐻𝐻𝐻−1� is diagonal stable.

Define 

𝐻𝐻𝐻𝐻−1� =
1

det(𝐻𝐻𝐻𝐻) �
𝑒𝑒𝑒𝑒11 0 0
𝑑𝑑𝑑𝑑21 𝑒𝑒𝑒𝑒22 0
0 0 𝑒𝑒𝑒𝑒33

� =
1

𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33
�
𝑒𝑒𝑒𝑒11 0 0
𝑑𝑑𝑑𝑑21 𝑒𝑒𝑒𝑒22 0

0 0 𝑒𝑒𝑒𝑒33

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33

0 0

𝑒𝑒𝑒𝑒21

𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33

1
𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒33

0

0 0
1

𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22⎦
⎥
⎥
⎥
⎥
⎥
⎤

= �
𝑒𝑒𝑒𝑒11 0 0
𝑒𝑒𝑒𝑒21 𝑒𝑒𝑒𝑒22 0
0 0 𝑒𝑒𝑒𝑒33

� where 𝑒𝑒𝑒𝑒11 = 1
𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33

,𝑒𝑒𝑒𝑒21 = 𝑒𝑒𝑒𝑒21
𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33

,𝑒𝑒𝑒𝑒22 = 1
𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒33

,𝑒𝑒𝑒𝑒33 = 1
𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22

.

It is easy to show that det�𝐻𝐻𝐻𝐻−1� � = 1
𝑒𝑒𝑒𝑒11𝑒𝑒𝑒𝑒22𝑒𝑒𝑒𝑒33

> 0.

Therefore, 𝐻𝐻𝐻𝐻−1� is a diagonal stable.

Summarizing the above discussions, we have the following conclusions for the globally 
asymptotically stability of the endemic equilibrium.

Theorem 7: When 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 1 , the endemic equilibrium  𝐸𝐸𝐸𝐸∗(𝑆𝑆𝑆𝑆∗,𝑉𝑉𝑉𝑉∗,𝐸𝐸𝐸𝐸∗, 𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅∗)of Model (1-5) is 
globally asymptotically stable, in Ω.  

Proof: Lemmas 1 and 2 with the aid of Theorem 1, guarantee that the endemic equilibrium of the 
model System (1-5) is globally asymptotically stable.

Numerical Simulation

Sensitivity Analysis
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Numerical Simulation
Sensitivity Analysis
Definition: The normalized forward sensitivity index of Reff that depends differentiable on a parameter P is defined by:
                                                SI (P) = (∂Reff) / ∂P × P/Reff 
Therefore, we calculated Sensitivity Index in terms of each parameter by using the parametric values from Table 2 below as follows.

Table 1:Parameters used in numerical simulation

The resulting sensitivity indices of Reff  to the seven different parameters in the model are shown in the following table in the order from 
the most sensitive to least.
Table 2: The sensitivity index of the parameters 

Order Sensitivity Index
1 σ -1.830187
2 θ -1.1216
3 γ 1.1
4 c 1
5 β 0.7654
6 k 0.6887
7 δ1 -0.64427

The resulting sensitivity indices of REff to the thirteen different parameters in the model are shown in the above table in the order from 
the most sensitive to least. From the sensitivity index of the model, we consider that the most sensitive parameter is σ , which is rate 
at which the infectious individuals at the chronic stage are isolated for treatment. The least sensitive parameter is δ1,which is natural 
recovery rate of acutely infected population.

Parameter Description Values Range Reference
c Contact rate 0.2-0.46  [2]
γ re-infection rate  0.32  [31]
φ Level of infectiousness of chronically infected population 0-1  [2]

θ Vaccination rate 0.1-0.9  [9]
μ Death rate 0.0121-0.05  [30]
b Recruitment rate  0.11  [31]
k Transfer rate from E to I    3 per year  [31]
σ Treatment rate 0-0.045  [7]
δ1 Natural recovery rate of Acutely infected population  0.05–0.9  [31]
δ2 Rate of moving from Acute to recovery 0.04  [2]
φ Recovery rate 0.32  [9]
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Stability of Disease-free equilibrium point of SVEIR 
model for effective reproduction number less than a uni-
ty

Figure 2: Graph of stability of SVEIR model for REff<1.

As shown on Figure 2, above, at effective reproduction number 
less than one, susceptible population and recovered population 
increase whereas the remaining compartment (infectious class) 
decreases. This confirms that when average number of infected 
population that infect susceptible population in his/her lifetime 
becomes less than one, then the number of infected populations 
decreases and the diseases dies out.

Stability of infectious class of SVEIR model for REff less 
than a unity

Figure 3:Graph of infectious class of SVEIR model for REff<1.

From Figure 3,we can understand that at effective reproduction 
number less than a unity, the infectious class converges to zero. By 
keeping REff less than one, the population can get rid of the HBV 
disease and enable the disease dies out.

Stability of SVEIR model for effective reproduction 
number greater than a unity

Figure 4:Stability of SVEIR model at REff>1.

As shown on Figure 4, above, at effective reproduction number 
greater than a unity, the exposed population increases exponential-
ly. This shows that as the average number of susceptible popula-
tions infected by infectious population becomes greater than one, 
then infected class increases in the reverse the number of suscepti-
ble populations decreases exponentially.

The role of Vaccination and treatment rate on reproduc-
tion number
Here, we will discuss the relation between intervention strategy 
parameters and the basic reproduction number. 

Figure 5: Reproduction number vs treatment rate

As it is shown on Figure 5, as we increase the rate of treatment of 
infected population, then reproduction number of HBV decreases. 
This shows treatment is one of the strategies that helps us to con-
trol spread and transmission of HBV.

Fig 
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Figure 6: Reproduction number vs recovery rate of acute infective 
population 

On Figure 6, it is shown that as natural recovery rate of acute infec-
tive population increases, reproduction number of HBV decreases. 
Then, by immunizing acutely infected population, it is possible to 
decrease transmission of HBV in the society.

Figure 7: Reproduction number vs Vaccination rate

From Figure 7, we can understand that as we increase vaccina-
tion rate of the population, reproduction number of HBV decrease. 
This shows that vaccination is one of the best strategies to decrease 
transmission of HBV in the society. To do so, we should vaccinate 
large proportion of the society to get rid of HBV transmission.

Figure 8: Effect of vaccination rate on infective population

In Figure 8, it is shown that as we increase the vaccination rate, the 
number of infective populations decreases. So, by subsequently 
vaccinating the population, it is possible to decrease the number of 
infective populations in the society.

Figure 9: Effect of re-infection rate in infected population

As shown in Figure 9, as we increase re-infection rate, the number 
of infective populations also increases. From this we can under-
stand that re-infection plays a great role in increasing number of 
infective populations in the society.

Figure 10: Effect of treatment rate on Susceptible population

As it is shown in Figure 10, increasing treatment rate of infective 
population leads to increment of number of susceptible popula-
tions. This shows that number of susceptible populations is direct-
ly proportional to treatment rate.
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Figure 11: Effect of vaccination rate on susceptible population

From Figure 11, it is shown that as vaccination rate increases, the 
number of susceptible populations also increases. Subsequently 
vaccinating the population helps us in decreasing the number of 
infective population and in increasing susceptible population in 
the society. 

Conclusion
In this paper, we propose an S-V-E-I- R-E model of hepatitis B 
virus infection with two controls: vaccination and treatment. First, 
we analyzed the dynamic behavior of the system for constant 
controls. In the constant controls case, we calculate the basic re-
production number and investigate the existence and stability of 
equilibria. There are two nonnegative equilibria of the system, 
namely, the disease-free and endemic. We see that the disease-free 
equilibrium which always exists and is locally asymptotically sta-
ble if REff<1, and endemic equilibrium which exists and is locally 
asymptotically stable if REff>1. 

Reactivation of HBV is a common occurrence after immune sup-
pression and can be clinically severe and result in death from acute 
liver failure or progressive liver disease and cirrhosis. HBV reac-
tivation can be prevented in some instances by prophylactic use of 
antiviral agents. Controlled clinical trials and several subsequent 
meta-analyses have shown that prophylaxis with nucleoside an-
alogs (most commonly lamivudine) decreases the incidence of 
HBV reactivation and the frequency of clinical hepatitis and death 
from HBV-associated liver injury in patients undergoing cancer 
chemotherapy [9, 10]. Initiating therapy once reactivation has oc-
curred is typically done for control subjects in these trials and ap-
pears to be ineffective.

Thus, these meta-analyses clearly demonstrated that prophylac-
tic lamivudine decreased the rate of HBV reactivation. Given the 
safety and tolerability of current nucleoside analogs for hepatitis 
B and given that prophylaxis against reactivation of hepatitis B 
appears to be effective, it would seem appropriate to recommend 

its application widely.

We have shown that vaccination and treatment strategies are cru-
cial in decreasing infective population and in increasing suscep-
tible population. Then, by increasing vaccination and treatment 
rate, it is found possible to decrease reproduction number of HBV 
which leads to decrement of infective population in the society. 
We have also shown that re-infection contributes to transmission 
of HBV which leads to increment of infective population in the 
society [11-37]. 
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