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Abstract
Electrons in plasma physics mostly are the underestimated species, since usually they only have to guarantee electric quasineutrality, 
but don’t count in terms of mass-, momentum-, and energy flows. This is different in space plasmas like the heliospheric plasma, 
especially the plasma downstream of the solar wind termination shock. Here it has become evident more recently that electrons 
dominate the plasma pressure and, connected with that, the plasma energy flow. Under these conditions a two-fluid plasma 
theory is needed to adequately describe fields and flows. We first here develop a pure two-fluid thermodynamics of such two-fluid 
plasmas and then study the actual situation in case of the heliospheric plasma that the electron pressure is dominating over the 
proton pressure. Under such auspices the electron pressure determines the mass- and momentum flows of the plasma and in fact 
decreases with the decrease of bulk velocity of the flow.
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Introduction
One may imagine a plasma consisting of heavy protons and light 
electrons, however, the protons are dominating the mass- and mo-
mentum- flows, while the electrons dominate the energy flow, i.e. a 
"hot electron fluid" in a massive background of cold protons! Then 
under these auspices the change of the electron energy flow at the 
actual plasma motion causes the changes both of the mass- and of 
the momentum- flows of the protons. Such a twin-fluid dynamical 
situation, for example, in fact occurs just downstream of the solar 
wind termination shock where electrons get shock-accelerated due 
to the action of the shock-electric field and thereafter get thermally 
randomized into a hot and pressurized electron fluid [1-3].

Another situation leading to similar two-stream plasma phenome-
na comes up in the solar wind near the solar corona where electrons 
and protons generate different temperatures [4-7]. While, however, 
for the solar wind case the effective energy sources for electrons 
and protons essentially are open guesses, in the heliosphere down-
stream of the solar wind termination shock, the actually given facts 
are much better defined. Therefore, we here shall take a look on 
the two-fluid properties of the plasma flow downstream of the ter-
mination shock.

Study of the Two-Fluid Situation in the inner Heliosphere
For a better clarification of this special point of a two-fluid plasma 
situation in the inner heliosphere we look here at the given con-
ditions from a slightly different view, namely following first the 

standard thermodynamical procedures, stating that the work done 
by the pressure at a change of the co-moving plasma volume ΔW 
is reflected by an associated change of the internal energy ϵ of that 
volume, if no other non-LTE effects are operating, like conserva-
tion of magnetic moments or wave-particle interactions or heating 
by compressive MHD waves, which, however, will be taken into 
account lateron here. First then the action of the pressures requires 
that in the Solar Rest Frame (SRF) the following rarely used equa-
tion has to be respected:

where s is the streamline coordinate, and ΔW, as explained in Fahr 
and Dutta-Roy, [8] denotes the co-moving plasma volume on the 
streamline, i.e. a fluid volume that locally co-moves with the com-
mon plasma bulk velocity of electrons and protons, V⃗ = V⃗ 

i = V⃗e. 
Hereby the indices "i, e" indicate ion- or electron- related quanti-
ties - as e.g. densities ni,e, pressures Pi,e and internal energies ϵi,e, 
respectively [8]. We furthermore do consider here the dynamic 
plasma structure on spatial resolution scales large in comparison 
to scales of the order of Debye lengths λD where space charges and 
electric currents play a role. We instead require here in our further 
study equal densities n=ne=ni and bulk velocities V⃗ = V⃗ 

i = V⃗e=Me=M

Then one must take into account the fact that in the SRF the ion 
energy density is given by ϵi = nMV2/2 + (3/2ᴨ)Pi, while the elec-
tron energy density only is given by ϵe = (3/2ᴨ)Pe (i.e.: strongly 
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given by i  nMV2/2  3/2Pi , while the electron energy density only is given by
e  3/2Pe (i.e.: strongly subsonic electron flow: V  ce! ; ce denoting the mean
thermal electron velocity). When furthermore assuming, in order to start the business
from some concrete basis, that the electron pressure competes with or even dominates
over the ion pressure, i.e. Pe  Pi,(i.e in fact the case given just downstream of the
heliospheric termination shock, see Fahr and Siewert, 2013, 2015, Chashei and Fahr,
2013, Chalov and Fahr, 2013, Fahr, Richardson,Verscharen, 2015, Fahr and
Verscharen, 2016), will then bring the upper relation to the following net equation:

 Pe  Pi dWds  d
ds nMV2/2  3

2 Pe  Pi  W

When additionally recognizing here that for an incompressible flow, as given here in
case of the strongly subsonic flow with ce  V, the comoving plasma volume is given
simply by the following relation W  W0  V0/V (see Fahr and Dutta-Roy, 2019). Then
the above equation simplifies into the form:
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subsonic electron flow: V << ce !; ce denoting the mean thermal 
electron velocity). When furthermore assuming, in order to start 
the business from some concrete basis, that the electron pressure 
competes with or even dominates over the ion pressure, i.e. Pe ≥ Pi, 
(i.e in fact the case given just downstream of the heliospheric ter-
mination shock, will then bring the upper relation to the following 
net equation [2, 9-12]:

When additionally recognizing here that for an incompressible 
flow, as given here in case of the strongly subsonic flow with ce >> 
V, the comoving plasma volume is given simply by the following 
relation ΔW = ΔW0 ▪ (V0/V) [8]. Then the above equation simplifies 
into the form:

which for n = const; dn/ds = 0 leads to

and further simplifies to:

In view of this above relation, let us now consider the special situa-
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ly dominating over the ion pressure Pi. Then the upper equation 
first reduces to:

This equation seems to require a solution of the form Pe = Pe (V), 
and with dV/ds >< 0 (exclusion of the heliopause stagnation point) 
leads to

Obviously the solution of the upper differential equation requires 
Pe to be a function of V, tentatively by the following representation

which in connection with the upper differential equation leads to 
the request:

which all together with δ=2 then yields the relation:

To come to an idea of what actual pressure should be used for Pe0, 
one could try to calculate the initial downstream electron pressure 
for that above relation by using the context that for reasons of the 
entropy generation at the termination shock the downstream pres-
sure is connected with the loss of kinetic energy of the plasma flow 
between upstream (index "1") and downstream (index "2") [1]:

where 6 denotes the shock compression ratio (according to VOY-
AGER-2 measurements with 6 = 2.5) [13]:

When assuming that at the solar wind termination shock the loss of 
kinetic energy of the plasma flow is converted into pressure energy 
of the electrons, then we obtain:

where the indices "1" and "2" indicate upstream and downstream 
solar wind quantities left and right of the termination shock, and 
the quantity (1 -1/6) for 6 = 2. 5 evaluates to 0. 6. Hence one ob-
tains the following explicit number:

When inserting all of this into the upper differential equation, one 
then finds the requirement

or yielding the initial electron pressure downstream of the shock 
in the form:

With that result, coming now back to the fact that the electron 
pressure performs thermodynamical work, when pumping down 
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to the following term describing the decrease of the electron ther-
mal energy

Together with the relation for the comoving fluid volume in in-
compressible flows ΔW = (W0) ▪(V0/V) this consequently leads to 
the following expression [8]:

which can be simplified to
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With that result, coming now back to the fact that the electron pressure performs
thermodynamical work, when pumping down the streamline the electron-proton plasma,
one must conclude that without any interaction of ions and electrons, this energy, which
has to be thermodynamically expended, has to be taken from the internal thermal
energy e of the electrons themselves. This leads to the following term describing the
decrease of the electron thermal energy
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and consequently yielding a pressure change due to volume work 
as given by:

This would require the electron pressure Pe to be a function Pe = 
Pe0 ▪ (V/V0)

2 + Ce of the bulk velocity V as already found further 
above.

A more general theoretical approach
This final relation of the above section, however, only correctly 
describes the puristic case that solely the fluid thermodynamics 
determines the electron pressure Pe. When this, to better meet re-
alistic conditions, is combined with other influencing terms in a 
more general pressure transport equation (e.g. see Equ. (14) [8], 
in then it leads to the following more complete form of a pressure 
transport equation written as a differential equation with respect to 
the line element s along the streamline [8]:

where the first term on RHS describes the effect of magnet-
ic moment conservation in magnetized plasmas, the second one 
describes the effect of electron - whistler wave interactions, and 
only the third term describes the pure thermodynamic reaction of 
the electron fluid as we had derived it in the section ahead. This 
equation has been derived by Fahr and Dutta-Roy on the basis of 
kappa-type electron distribution functions selecting exclusively is-
entropic solutions for the electron plasma flow [8].

This differential equation can then be integrated and leads to the 
following more completed solution for the electron pressure in 
case the electron pressure dominates:

The solution shows that the electron pressure under isentropic con-
ditions decreases with the plasma bulk velocity proportional to 
                                   whereas under incompressibility conditions it 
decreases proportional to V(s)2. The above relation, however, fur-
thermore shows that, in addition to that dependence on the plasma 
bulk velocity, dependences on the magnitude of the frozen-in mag-
netic fields B = B(s) along the streamlines enforcing the conserva-
tion of magnetic particle moments, and wave-electron diffusion, 
if at all operating, may independently and additionally modify the 
electron pressure along the streamline. However, for this most gen-
eral case an adequate and consistent two-fluid MHD solution is not 
yet available up to the present date. Only for the simplest case of 
non-magnetic two-fluid solution without wave-particle heating of 
the electrons one can easily derive from the third remaining term 
in the upper equation that the dominant electron pressure when 
experiencing with increasing streamline coordinate s a decrease of 
the downstream bulk velocity V(s) will lead to a decreasing elec-
tron pressure, till the electron pressure finally is not anymore dom-
inant over the proton pressure.

Figure 1: Consistent MHD-pattern of plasma flow lines in the he-
liosphere for the case of a mono-fluid proton plasma, scaled in 
units of AU.

Conclusions
In earlier papers we have shown that classical monofluid MHD 
theory delivers straightforward and consistent MHD solutions for 
the magnetic field configuration and the plasma flow in the he-
liosheath, both for the upwind case for streamlines approaching 
the region near the heliopause stagnation point, and for the down-
wind case for streamlines leading into the heliospheric tail region 
[14,15]. Here in this article we do demonstrate now, however, that 
monofluid solutions in fact cannot be accepted as valid solutions 
of the given problem in the heliosheath region, because it turns 
out that electrons beyond the solar wind termination shock devel-
op their own independent pressures which are comparable with or 
even dominant over the proton pressures. This requires a two-fluid 
representation of the plasma flow system in the heliosphere. Under 
these conditions the electron pressures become a dynamically rel-
evant quantity which strongly co-influences the resulting plasma 
dynamics, i.e. a two-fluid treatment of the plasma flow is definitely 
required here [16-52].

In order to be able to describe electrons and protons as indepen-
dent, but coupled fluids, one, however, has to pay a look on the 
kinetic level of the underlying plasma system and had to derive 
kinetic transport equations for electrons and protons describing the 
evolution of their kinetic distribution functions along streamlines. 
When converting them into pressure transport equations, one can 
arrive at independent solutions for the pressures of electrons and 
protons as functions of the streamline coordinate s. In this paper 
here we present solutions for the MHD plasma flow under the spe-
cial condition that the electron pressure dominates over the proton 
pressure which is shown to be the case immediately downstream 
of the solar wind termination shock, but at decreasing plasma bulk 
velocities electron pressures fall down and may finally be compa-
rable or even be lower than proton pressures.
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interactions, and only the third term describes the pure thermodynamic reaction of the
electron fluid as we had derived it in the section ahead. This equation has been derived
by Fahr and Dutta-Roy (2019) on the basis of kappa-type electron distribution functions
selecting exclusively isentropic solutions for the electron plasma flow.
This differential equation can then be integrated and leads to the following more

completed solution for the electron pressure in case the electron pressure dominates:

Pes  Pe0 B
B0

4/3 V
V0


23
3 exp10D0 

s0

s ds
V   Ce

s

The solution shows that the electron pressure under isentropic conditions decreases
with the plasma bulk velocity proportional to Vs 23

3  Vs3.09, whereas under
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