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Abstract
An electrocardiogram (ECG) is frequently used to identify heart problems, but it can also identify apnea, diabetes, and 
other conditions that are not heart-related. The study uses deep learning methods from artificial intelligence, particularly 
the Convolutional Neural Network (CNN) approach, to look for patterns in ECG data. To predict illness, two different 
methodologies are used. The first approach makes use of an ECG scale, while the second employs a gradient-boosting 
machine (GBM)-based learning technique. The MIT-BIH Arrhythmia database, the Normal Sinus Rhythm database, the 
BIDMC Congestive Heart Failure database, the Sleep Apnea database, the type 2 diabetes mellitus dataset, and the dataset 
for healthy volunteers were the sources of the data used in the study. Finally, 92% of predictions were accurate.
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1. Introduction
An electrocardiogram is a graphic picture of heart health that has 
been in use for hundreds of years and is sometimes shortened 
as ECG or EKG. In order to diagnose ventricular hypertrophy, 
arrhythmias, heart attacks, or other cardiovascular illnesses, a 
painless, cost-effective test is used (Verdecchia et al., 1998).

The ECG signal is the result of twelve leads that are primarily 
distributed from the chest, arms, and legs. Its design dates back 
to 1922, thanks to Willem Einthoven (1860–1927), who defined 
the foundations of interpretation. Although Augustus D. Waller 
(1856–1922) published the first human electrocardiogram [1].

New computing techniques were produced at the same time using 
a paradigm of artificial intelligence (AI) constructed using the 
analogy of the human brain. Through pattern identification in 
massive amounts of data, this paradigm made machine learning 
and deep learning possible [2]. 

Convolutional Neural Networks (CNN) are one of the deep learning 
algorithms used for time series analysis, while they have more 
recently been used for graphical classification and recognition [3].

With the creation of AlexNet for image recognition in 2012 
(KrizhevskyIlya, et al; 2012), this sort of algorithm gained 

popularity. Google then improved it to minimize code computation 
two years later [4].

The three stages of code creation in CNN are training, optimization, 
and inference. The training step requires the most computation 
time since it employs the supervised learning paradigm. The 
optimization technique is then used to streamline the model 
created in the previous stage and prevent the network from needing 
to be retrained. The inference step of assessment for a particular 
problem is all that remains [5].

1.1 What an ECG Signal Means
An electrical impulse that begins in the sinus node (SA) and moves 
across the heart muscle constitutes a typical heartbeat (Figure 1). 
The P wave, which is brought on by atrial depolarization, the QRS 
complex, which is brought on by ventricular depolarization, the T 
wave, and finally the U wave, which is brought on by ventricular 
repolarization but is not frequently observed in patients, make up 
this heart rhythm.

There are sections in between the signals that are crucial to the 
patient's diagnosis. The time gap between the two R waves and the 
PR segment, which occurs between the P and R waves and ranges 
from 0.12 to 0.2 seconds, is what defines the heart rate. In contrast, 
QT intervals are typically half as long as RR intervals.
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Figure 1: The P, QRS, T, and U waves of the heart are displayed.

The first wave to appear during the cardiac cycle is the P wave, 
which denotes atrial depolarization. The Q wave, which is the 
initial negative wave of the QRS complex and appears when 
ventricular depolarization starts, has a maximum amplitude of 
0.25 mV and a normal duration of less than 0.10 s. Although they 
frequently reach 0.04 seconds in lead III, Q waves in peripheral 
leads typically do not exceed 0.03 seconds.

The ventricular depolarization waves that make up the QRS 
complex have a wavelength of 0.06 to 0.10 seconds and are 
composed of a succession of waves. The QRS complex is longer 
than the T wave, which represents ventricular repolarization. It 
is typically asymmetrical because the rising portion rises more 
slowly than the lowering portion. The U wave, which is positive, 
then emerges behind the T waves.

Recently, the ECG has also been used to diagnose disorders other 
than cardiovascular disease. For instance, a recent study found that 
1,262 people with diabetes were able to be diagnosed long before 
the first blood tests were collected by using the ECG to analyze 
more than 10,000 heartbeats per person [6].

Furthermore, the ability to predict hyperkalemia in individuals 
with renal difficulties using a straightforward ECG was also 
demonstrated in a trial with 1024 participants carried out between 
December 2020 and December 2021 [7]. Without ignoring a 
different investigation that forecasts the likelihood of Alzheimer's 
disease in more than 100,000 individuals aged 60 or older after 
more than seven years of clinical follow-up [8].

Additionally, studies based on the analysis of electrocardiogram 
data have been able to identify anorexia nervosa (AN), which is 
known to be an eating behavior disorder, which is characterized 
by sinus bradycardia and repolarization changes demonstrated in 
QT prolongation and increased dispersion. In order to identify and 
diagnose cardiac and non-cardiac disorders, this effort intends to 
create a computer approach that can recognize patterns in cardiac 
electrical impulses [9].

2. Computational Methodology
All calculations were performed using the Python programming 
language, for which several deep learning libraries have been 
created for data analysis, such as Scikit-learn Keras and PyTorch 
as well as result visualization libraries such as MatPlotLib and 
numerical computing libraries such as Numpy and Scipy [10-15].

The data studied are 96 from the MIT-BIH Arrhythmia Database, 
30 from the Normal Sinus Rhythm Database, 36 from the BIDMC 
Congestive Heart Failure Database, 28 from sleep agnea, 22 from 
type 2 diabetes mellitus, and 48 from healthy people of various 
[6,16-19]. The use of the arrhythmia database is also justified 
by the fact that a number of studies have been published in the 
scientific literature and that subsequent research will compare the 
findings, for example, to assess the effectiveness and accuracy 
of the calculation algorithms described in the literature. First of 
all, the data is not filtered because this could alter the results, 
changing the patterns of the electrocardiographic signs [20-22]. 
This is an important point, and as will be shown in future work, 
filtering information can change results when different diseases are 
evaluated using the same computational methodology.

There are two methods for predicting disease. The first method is 
founded on Gradient Boosting Machines (GBMs). It's important 
to keep in mind that GBM are learning algorithms that continually 
train new models to produce more precise estimates of response 
variables. Their goal is to create new base learners that have the 
highest correlation with the ensemble's associated loss function's 
negative gradient. The researcher has the option of selecting a loss 
function, taking into account both already-existing loss functions 
and employing their own task-specific loss. The second method 
employs scalograms of preprocessed signals generated with CWT 
and Morse wavelets [23]. The ECG signal can be subjected to 
multiresolution analysis by translating it from the time domain to 
the frequency domain using the CWT and Morse wavelets. The 
wavelet transform is an effective method for decomposing a signal 
from a mother wavelet into shifted or scaled forms. 
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3. Results
The algorithm analyzed 228 ECG signals of which 96 are 
arrhythmia, 48 signals obtained from  healthy volunteers, 22 with 
type 2 diabetics mellitus, 28 correspond to sleep apnea, and 34 
are patients where people have no major arrhythmias [6,17,19]. 
The following nomenclature was used to group distinct ECGs 
by illness: CHF for congestive heart failure, ALZ for healthy 
individuals, AGN for sleep apnea, ATR and ARR for different types 
of arrhythmias, and NSR for normal sinus rhythm (another name 
for healthy people). In the first calculation, using Boots Machine's 
model-based gradient method, we calculated a 35-feature vector. 

This configuration is used to train and interpret automatic learning 
models. According to the previously described methodology, 
the feature-vectors are graphically represented by importance in 
Figure 2 to visualize the results obtained (the number of feature-
vectors will be determined in future studies based on the accuracy 
of disease prediction using ECG data). In addition, this figure 
shows that the decision tree obtained from training overlaps with 
the feature vector represented by the blue bar. This decision tree is 
only valid for the group of diseases analyzed in the paper. Further 
studies on this type of outcome will be carried out in the future.
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It is interesting to remember that calculating scalograms has the 
advantage of allowing you to visualize patterns based on the type 
of sickness. A person's disease can be predicted in this way. All of 
this is feasible because the absolute value of a signal's continuous 
wave transformation (also known as CWT) is the outcome of a 
scalogram. 

Moreover, the scalograms display the frequency content and 
temporal position of distinct ECG features, and the CWT may 
eliminate undesired frequency components from the data. One 
advantage of using scalograms is that they can be used to denoise 
the ECG signal (see figure 4).

Figure 4: Some scalograms were obtained with the second methodology (nomenclature inside 

the text). 
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where the numbers 0, 1, 2, 3, 4, 5, and 6 correspond to the letters 
ARR, CHF, NSR, AGN, ALZ, ATR, and DIA, respectively. The 
lowest prediction value is for CHF and continues with ALZ, while 
the remainder is very close to 1.0. The percentages in the second 
method are pretty comparable with the first method (don´t show 
it). The final accuracy score was 0.92 (92.0%) for both methods 
of calculation.

4. Conclusions
Using artificial intelligence (AI) algorithms to anticipate and 
improve patient quality of life is one of information technology's 
problems. Recent scientific articles employ heart electrical activity 
to diagnose cardiovascular problems and other disorders like 
diabetes, and they also try to test for Alzheimer's disease before 
symptoms show. Finally, keep in mind that only doctors can make 
a final diagnosis, and the existing research can only be used as a 
guide to forecast the risk of a specific condition [25-27].
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