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Introduction
Acute kidney injury (AKI) is a common and potentially life-
threatening condition associated with morbidity and mortality 
as well as with unfavorable long-term outcomes caused by the 
development of chronic kidney disease (CKD) or the occurrence 
of cardiovascular events [1].

At the time of AKI diagnosis, a number of diagnostic and therapeutic 
measures are needed for determination of the underlying cause 
of AKI and the initiation of specific and supportive therapeutic 
measures, such as antibiotic therapy for sepsis, immunosuppression 
for autoimmune disease, an adjustment of nephrotoxic drugs and 
directed fluid management [2].

As early institution of these measures is critical for their effectiveness, 
efforts have been made to identify subtle insults to the kidney that 
do not cause measurable functional decline, that is subclinical forms 
of AKI, and to identify indicators of a particular risk of AKI [3].

Despite these efforts, there is still little implementation of this 
knowledge in daily clinical practice [4]. Currently, the standard 
diagnostic tools for the detection of AKI are monitoring of urinary 
output and serum creatinine concentration (sCr), both of which are 
markers of kidney function but not kidney injury [5].

Accordingly, AKI is defined by an increase of sCr by ≥0.3 mg/dl in 
48 h or an increase by ≥1.5 fold from a known or assumed baseline 
or by a decrease of urinary output to less than 0.5 ml/kg/h for 6 h [6].

In clinical reality, however, serial measurements of sCrare often 
unavailable complicate the differentiation between AKI and CKD. 
In addition, sCr and urinary output when measured at presentation 
do not always predict adverse outcomes, such as hospital mortality 
or a requirement for renal replacement therapy [6].

Furthermore, all these measures does not account for the etiology 
of AKI. Most importantly, it does not differentiate between quickly 
reversible, volume-sensitive reductions in glomerular filtration 
rate “pre-renal AKI” and primary structural injury to the kidney 
“intrinsic AKI” [4].

One major advantage to detect AKI at an earlier stage would be 
the implementations of new reliable biomarkers that identify AKI 
earlier than conventional tests or that detect subclinical AKI [1].

Based on sCr, kidney injury diagnosis occurs only at the stage of 
reduction of GFR and increased sCr, after a greater degree of renal 
injury, with a reduction of at least 30% in GFR. After an abrupt 
decrease in GFR, there is a delay of days until sCrrises [7].

New Biomarkers of AKI
Novel AKI biomarkers have made significant contributions to 
our understanding of the molecular underpinnings of AKI, they 
could also have use as molecular phenotyping tools that facilitate 
the identification of patients who could benefit from a specific 
intervention, even a biomarker-targeted intervention [8].

They were proved to be useful in facilitating early diagnosis, guiding 
targeted interventions and monitoring the disease progression and 
resolution [9].
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According to Nguyen and Devarajan, Characters of clinically 
applicable AKI biomarkers could be summarized [10].

-	 Non-invasive, Rapidly measurable.
-	 Using easily accessible samples.
-	 Sensitive and using standardized clinical assay platforms. 
-	 Have a wide dynamic range and cut-off values that allow for 

risk stratification. 
-	 Specific for AKI, to differentiate intrinsic AKI from pre-renal 

azotemia & CKD. 
-	 Predictive of outcomes e.g. dialysis, length of hospital stay, 

and mortality. 
-	 Able to guide initiation of therapies and facilitate monitoring 

the response.

Figure 1: Sites of origin of AKI biomarkers. L-LABP: Liver-Fatty 
Acid Binding Protein, KIM-1: Kidney Injury Molecule-1, NGAL: 
Neutrophi Gelatinase Associated Lipocalin, IL-18: Interleukin-18, 
IGFBP7: Insulin-like Growth Factor-Binding Protein7, TIMP2: 
Tissue Inhibitor of Metalloproteinases 2.
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Table 1: Overview of the most recent and promising biomarkers for early detection of AKI (42). EO: endogenous ouabain, ER: 
emergency room, FABPs: fatty acid-binding proteins, ICU: intensive care unit, IGFBP7: insulin-like growth factorbinding protein 7, 
IL-18: interleukin-18, KIM-1: kidney injury molecule-1, NGAL: neutrophil gelatinase-associated lipocalin, ROC: receiver operating 
characteristic curve, TIMP2: tissue inhibitor of metalloproteinases 2, Tx: transplantation.
Biomarker Settings Studied Source Measured from Used for Diagnostic accuracy 

(ROC)
NGAL Cardiac surgery, ER, 

hospitalized patients, 
kindly Tx, sepsis, 

critically-ill patients

Leukocytes, loop of 
henle and collecting 

ducts

Serum plasma Urine Detection of 
established AKI, early 
diagnosis, prognosis

0.53-0.96

Cystatin-C Hospitalized patients, 
cardiac surgery

Nucleated cells Serum plasma Urine Detection of 
established AKI, early 
diagnosis, prognosis

0.79-0.89

KIM-1 Hospitalized patients, 
cardiac surgery

Proximal tubular cells Urine Increased risk of 
AKI, established AKI, 

prognosis

0.61-0.78

IL-18 Cardiac surgery, ICU, 
hospitalized patients, 

Tx

Monocytes, dendritic 
cells, macrophages

Urine Detection of 
established AKI, early 
diagnosis, prognosis

0.70-0.95

FABPs Contrast nephropathy, 
Sepsis, cardiac 

surgery, ischemic/
reperfusion injury

Hepatocytes, proximal 
tubular cells

Urine Detection of 
established AKI, 

progression to CKD

0.84-0.96

TIMP-2 and IGFBP7 Major surgery, sepsis, 
shock, trauma

Tubular epithelial 
cells

Urine Detection of 
established AKI, 

prognosis

0.79-0.85

EO Cardiac surgery Adrenal cells Plasma Identification 
of patients with 

increased risk of AKI

0.73-0.80

Neutrophil Gelatinase-Associated Lipocalin (NGAL)
NGAL is a 25-kDa protein of the lipocalin family. Initially identified bound to gelatinase in specific granules of the neutrophils (Figure 
2). It is synthesized during a narrow window of granulocyte maturation in the bone marrow, but it may also be induced in epithelial cells 
in the setting of inflammation or malignancy [9].

NGAL should be considered as a marker of tubular damage. NGAL (also known as lipocalin 2 or lcn2) to be one of the most upregulated 
genes in the kidney very early after acute injury especially after ischemic or nephrotoxic AKI [11].

The elevation of NGAL is detectable as early as 3 h after the injury and it peaks at approx. 6–12 h after injury depending on the severity 
of injury. The elevation can persist up to 5 days after the initial injury when the injury is severe [12].
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NGAL is the most widely studied biomarker of AKI. It has shown 
its performance in various settings such as the prediction of AKI in 
pediatric and adult cardiac surgery patients, in critically ill patients, 
in patients in the emergency roomas well as in the kidney transplant 
setting [13].

Elevated urinary NGAL levels at AKI diagnosis predicted long-term 
adverse outcomes of ESRD or death [4].

Plasma NGAL measurements may be influenced by a number of 
coexisting variables such as CKD, chronic hypertension, systemic 
infections, and inflammatory conditions. However, the increase in 
plasma NGAL in these situations is generally much less than those 
typically encountered in intrinsic AKI [4]. 

Although it is not clear which test (urine vs. plasma sample) 
provides the best diagnostic performance for AKI. Some authors 
have suggested that a combination of the two tests might be the 
best option [14]. 

Figure 2: Schematic model of the functions of neutrophil gelatinase 
associated lipocalin. NGAL: Neutrophil Gelatinase Associated 
Lipocalin [2].

Cystatin-C (Cys-C)
A 13-kDa protein and is believed to be one of the most important 
extracellular inhibitors of cysteine proteases which is freely filtered 
by the glomerulus, reabsorbed and catabolized, but not secreted, by 
the tubules [9].

Urinary Cys-C levels have been found to be elevated in individuals 
with known tubular dysfunction with high predictive value of poor 
outcome [15].

Koyner et al, (2008) stated that within the first 6 h of renal injury, 
urinary values of Cys-C rise predicting AKI, but no change was 
observed in plasma levels, suggesting that the urinary test might 
be superior to the plasma assay for the early detection of AKI and 
when it is compared withsCr, Cys-C seems to be less affected by 
age, gender, and body weight [16]. Serum levels of Cys-C are a 
more precise indicator of kidney function than s.Cr levels but seem 
to be influenced by large doses of corticosteroids, hyperthyroidism, 
inflammation, hyperbilirubinemia and hypertriglyceridemia [17].

Kidney Injury Molecule-1 (KIM-1)
Is a type I cell membrane glycoprotein containing a unique six-
cysteine immunoglobulin-like domain and a mucin domain in 
its extracellular region. Urinary Kim-1 has been used as an early 
and promising diagnostic biomarker of kidney injury and its 

clinical outcomes in hospitalized patients. Its concentrations were 
significantly increased within 12 hours. The recent availability 
of a rapid urine dipstick test for KIM-1 will facilitate its further 
evaluation in preclinical and clinical studies [18].

Han et al, (2004) demonstrated marked expression of KIM-1 in 
kidney biopsy specimens with acute tubular necrosis (ATN), and 
elevated levels within 12 h after an initial ischemic renal insult, 
prior to the appearance of casts in the urine [19].

In sum, a soluble form of human KIM-1 can be detected in the urine 
of patients with ATN and can serve as a useful biomarker in kidney 
proximal tubular damage, facilitating the early diagnosis and serving 
as a differential diagnosis of renal injury [20].

Figure 3: Schematic model of the functions kidney injury molecule-1. 
KIM-1: Kidney injury molecule-1

Liver-Type Fatty Acid Binding Protein (FABPs)
Small (15 kDa) cytoplasmic proteins abundantly expressed in all 
tissues with active fatty acid metabolism [21]. Two types of FABP 
have been identified in the human kidney: liver-type FABP (L-FABP) 
in the proximal tubule and heart-type FABP (H-FABP) in the distal 
tubule. Free fatty acids (FFAs) in proximal tubules are bound to 
cytoplasmic FABPs and transported to mitochondria or peroxisomes, 
where they are metabolized by β-oxidation. Besides its transport 
function, L-FABP also protects cells from oxidative stress induced 
by H2O2 [22].

In children undergoing cardiac surgery who subsequently developed 
AKI, urine L-FABP concentrations were significantly increased 
within 4 hours of the surgery with higher levels in patients with 
poor outcome [23].

In patients with septic shock and AKI, urinary L-FABP measured 
at admission was significantly higher in the non survivors than in 
the survivors, thus, emerging data point to L-FABP as a promising 
urinary biomarker of AKI and its outcomes. However, the urinary 
excretion of L-FABP is also increased in the setting of CKD [24].

Figure 4: Schematic model of the functions of liver-type fatty acid-
binding protein (L-FABP). FFAs: Free fatty acids [4].
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Interleukin-18 (Interleukin-18)
Also known as interferon-gamma inducing factor is a 24-kDa 
cytokine that belongs to the interleukin-1 superfamily. First 
synthesized as an inactive precursor without a signal peptide and 
it remains intracellular until its cleavage by caspase-1 and its 
subsequent secretion by monocytes/macrophages [25].

Caspase-1 acts as a component of inflammasome that mediates 
cleavage and release of interleukins in response to extrinsic stimuli. 
Several cell surface receptors such as TLRs, retinoic acid-induced 
gene-like receptors, nucleotide-binding domain-leucine-rich repeat, 
scavenger receptors and C-type lectins can start the cascade [26].

Cleaved IL-18 exerts a prion flammatory effect by signal transduction 
through the IL-18 receptor. IL-18 is also produced by the intercalated 
cells of the collecting ducts in the healthy kidney [27].

Because of the pathophysiological plausibility of IL-18 in the 
development and progression of AKI, which was reported in different 
rodent animal models, IL-18 was suggested to be a new biomarker in 
AKI. IL-18- deficient mice are protected from ischemia/reperfusion-
induced AKI [28].

The administration of this IL-18 binding protein just before 
ischaemia/reperfusion injury ameliorated kidney damage in rats. 
Renal IL-18 mRNA levels have been shown to be significantly 
upregulated following ischemia–reperfusion injury, inflammatory/
autoimmune nephritis, and cisplatin-induced nephrotoxicity [29]. IL- 
18 has been shown to be more elevated in patients with established 
acute tubular necrosis AKI than in those with prerenal azotemia, 
urinary tract infection, or chronic kidney disease (CKD) [30].

In sum, even if the prognostic and diagnostic value of IL-18 is 
limited, the use of anti-IL-18 treatment may be a potential future 
AKI treatment option.

Figure 5: Schematic model of the functions of IL-18. RIG: Retinoic 
acid-induced gene-like receptor, TLRs: Toll-like receptors, SR: 
Scavenger receptors, CLR: Cell-type lectin receptor, NLR: 
nucleotide-binding domain-leucine-rich repeat [4].

Tissue Inhibitor of Metalloproteinase-2 (TIMP-2)&Insulin-like 
Growth Factor-Binding Protein 7 (IGFBP7)
TIMP-2 Is a member of the tissue inhibitor of metalloproteinase 
(TIMP) family, which is endogenous inhibitors of metalloproteinase 
activities. IGFBP7, a 29-kDa 14 secreted protein, is known to bind 
to and inhibit signaling through IGF-1 receptors [31].

They are markers of cellular stress in the early phase of tubular cell 
injury caused by a wide variety of insults as inflammation, ischemia, 
oxidative stress, drugs, and toxins. Therefore, both markers are 
involved in the process of G1 cell-cycle arrest that prevents cells 
from dividing in the case of damage to the DNA until such damage 
can be repaired [32].

The finding that IGFBP7 and TIMP-2 are enriched in the urine of 
patients at risk of AKI, the site of synthesis of these molecules in 
the setting of AKI is unknown [4]. While Kashani speculated that 
IGFBP7 and TIMP-2 are synthesized by renal tubular cells there is 
no scientific evidence to support this [33].

It was found that the product of TIMP-2 and 15 IGFBP7 was 
superior to other biomarkers (NGAL, plasma Cys- C, urine KIM-
1, urine IL-18, urine pi-GST, urine L-FABP given the promising 
performance of these markers in some clinical studies, research into 
their pathophysiology will be a major priority [4].

Endogenous Ouabain (EO)
EO is a neuroendocrine hormone synthesized in the adrenal cortex 
that modulates the activity of Na, K-ATPase and induces signal 
transduction via sodium-calcium exchange [34]. The hypertensive 
effect of EO is well established in both animal and human models 
as well as its association with organ damage [35]. Furthermore, a rat 
model of ouabain-induced hypertension exhibited reduced creatinine 
clearance, proteinuria, and impaired podocytenephrin expression; thus, 
elevated EO per se maybe a direct cause of podocyte damage [9].

A significant association has been reported of preoperative EO levels 
with adverse renal outcomes in cardiac surgery patients and with 
mortality in critically-ill patients. In one study, elevated preoperative 
EO levels were associated with a higher incidence of postoperative 
AKI and ICU stay in a second study [36]. Finally, post-operative 
EO levels were also associated with a higher mortality rate after 
cardiac surgery [37].
	
Calprotectin
Is a 24 kDa heterodimer formed from the two monomers S100A8 (10 
835 Da) and S100A9 (13 242 Da) [38]. Intracellular calprotectin’s 
main function is to interact with the cytoskeleton whereas when is 
secreted by activated immune cells it acts as a danger-associated 
molecular pattern protein [39].

It has been shown that renal collecting duct epithelial cells produce 
S100A8 and S100A9 in a model of kidney injury in response to 
unilateral ureteral obstruction (UUO) [40].

S100A8 and S100A9 are also induced in response to ischaemia 
reperfusion injury in mice.Infiltrating kidney neutrophils are the 
main source of S100A8/9 in the ischaemic kidney. S100A9-knockout 
mice, which lack active calprotectin, show an increased transition 
to renal fibrosis in response to ischaemia reperfusion injury, while 
the initial renal injury is similar to wild-type mice [41].

Ebbing et al, (2016) investigated time-dependent changes of 
calprotectin in patients undergoing nephron-sparing surgery 
for kidney tumours, which leads to iatrogenic renal ischaemia 
reperfusion injury due to transient clamping of the renal artery. 
Calprotectin concentrations started to be significantly increased at 
the end of the operation, approximately 2 h after ischaemia, and 
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reached maximal levels 48 h post-surgery, with a 69-fold increase 
over baseline in calprotectin levels with significantly increased its 
level 5 days after surgery [42].

In the clinical interpretation of urinary calprotectin findings, one 
should be aware that there are two clinical settings other than 
AKI that lead to an increase of calprotectin: as calprotectin is 
predominantly derived from neutrophils and monocytes, pyuria 
substantially increases urinary calprotectin. Moreover, urothelial 
carcinoma is associated with increased concentrations [43].

In sum, the diagnostic accuracy of calprotectin in its ability of 
distinguishing pre-renal from intrinsic AKI showed a very high 
accuracy in predicting intrinsic AKI [44].

Figure 6: Schematic model of the functions of calprotectin. TLR 
4: Toll-like receptor 4. [4]

N-Acetyl-β-d-Glucosaminidase (NAG) 
Lysosomal enzyme predominantly found in proximal tubules, so 
that the increased activity of this enzyme in urine suggests tubular 
cell injury and, therefore, it can serve as a specific urinary marker 
for these tubular cells [7]. 

The increase in urinary NAG activity indicates damage to the tubular 
cells, although it may also reflect an increased lysosomal activity 
without cell damage. Increased urinary excretion of NAG was 
reported in acute kidney disease of various etiologies, induced by 
toxic agents, after cardiac surgery and after kidney transplantation 
[45].

It is to be noted that the use of NAG remains limited by the fact that 
the urinary excretion of the enzyme is also high in diseases such as 
diabetic nephropathy, hyperthyroidism and rheumatic diseases [46].

Netrin-1 
One of the kidney injury biomarkers, a laminina-related molecule 
little expressed in tubular epithelial cells of normal kidneys, however, 
it is highly expressed and excreted in the urine after AKI in animals 
[7].

Furthermore, significantly higher levels of netrin-1 were found in 
urine samples from patients with ischemic AKI induced by radio-
contrast agents, sepsis and drugs compared with healthy controls [7].

Therefore netrin-1 is a promising urinary biomarker that rises early 
on for the detection of renal injury and can also serve as a universal 

biomarker for AKI [47].

Vanin-1 
An epithelial ectoenzyme participates in the response to oxidative 
stress in vivo and catalyzes the conversion of pantetheine to 
pantothenic acid (vitamin B5) and cysteamine [7].

It is discovered the existence of increased levels of kidney 
vanin-1 mRNA in rats with ischemia-reperfusion type of lesion. 
In addition it showed increased levels of renal vanin-1 in rats with 
streptozotocin-induced diabetic nephropathy and in patients with 
diabetic nephropathy [48]. It has been found that elevated urinary 
concentration of vanin-1 occurs before conventional markers in rats 
with nephrotoxin-induced lesions, Therefore, it appears that urinary 
vanin-1 may be a potential biomarker for early detection of AKI [49].

To address this issue, it has been found that the urinary vanin-1 was 
detected prior to elevation of s.Cr, NAG, NGAL and KIM-1 in two 
well established animal models of drug-induced AKI [50].

Angiotensinogen
Recently described as a novel prognostic biomarker of AKI, although 
it has not yet been investigated as an early diagnostic biom arker [8].

The findings regarding the prognostic significance of angiotensinogen 
have strong implications for the molecular and cellular mechanisms 
underlying renal injury in AKI and could lead to novel interventional 
approaches [8]. 

Activation of the renin-angiotensin system (RAS) has long been 
recognized as an important contributor to chronic renal injury. 
Urinary angiotensinogen has been proposed as a marker of intrarenal 
RAS activity, and it is predictive of progression of CKD [51].

The prognostic significance of urinary angiotensinogen as an AKI 
biomarker is strongly suggestive of a role for RAS activation in 
modulating the severity of AKI. Given the clearly defined role for 
the RAS in CKD progression, it is plausible that RAS activation not 
only modulates the severity of an episode of AKI but also mediates 
progression to chronic disease [8].

Other New Potential Biomarkers 
Recently, some new potential biomarkers have been proposed 
for early determination of AKI in specific conditions. Clusterin, 
osteopontin, glutathione-S-transferase (GST) and pyruvate kinase 
M2 [52-55]. All were associated with the development of drug-
induced nephrotoxicity [55]. However, further investigations are 
needed to confirm these relationships and the potential benefits of 
these new molecules.

Conclusion 
AKI is a very dangerous complication. It is associated with an 
increased risk of mortality and morbidity, and longer hospital stay, 
requires additional treatment, and increases the costs of the heath 
care. Unfortunately, the heterogeneity of AKI subtypes poses a great 
limit for large population studies in human subjects. In this setting, 
the use of classic clinical predictive models associated with novel 
renal biomarkers may well be the only way to refine the methods 
of treatment and improve the prognosis of patients. Introduction of 
novel biomarkers of AKI into the clinical setting is crucial for earlier 
diagnosis and improved risk assessment. The purpose of this review 
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was to help clarify the biological basis of new AKI biomarkers that 
might contribute to improving the early detection or diagnosis of this 
pathology. But before biomarkers can be advocated for the diagnosis 
of AKI, further research is needed. Our understanding of how to 
prevent and manage AKI in an optimal way requires additional effort. 

Recommendations 
The discovery of new markers of glomerular and tubular function, 
tubular damage and inflammation allows a much better description 
and characterization of AKI than traditional markers of renal function 
can offer. It is therefore very likely that they will be incorporated 
into future definitions and classifications of AKI. As indicators 
of specific pathophysiological processes within the kidney, some 
of the new biomarkers also offer the opportunity to be used as 
diagnostic tools to identify the etiology of AKI. However, a single 
biomarker is unlikely to be useful. Instead, a panel of functional 
and damage biomarkers in combination with traditional markers 
of renal function and clinical judgment will provide best results. 
Some of these biomarkers also have the potential to facilitate the 
development of new drugs by indicating renal injury earlier than 
conventional methods. 
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