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Abstract
This study evaluates the performance of domain-specific Large Language Models (dLLMs) versus standard Large Language Models 
(sLLMs) in neurosurgical knowledge assessment, emphasizing the importance of evaluating not merely the factual accuracy of 
model outputs but also model hallucination mechanisms and the quality of their underlying reasoning processes when considering 
potential healthcare applications. We compared AtlasGPT, a neurosurgery-focused dLLM utilizing Retrieval-Augmented 
Generation (RAG), against four sLLMs (GPT-3.5, Gemini, Claude 3.5 Sonnet, and Mistral) using 150 text-only neurosurgical 
board-style multiple-choice questions. AtlasGPT demonstrated superior accuracy (96.7%) compared to Claude (94.7%), Gemini 
(92.0%), Mistral (88.7%), and GPT-3.5 (74.7%). An analysis of variance analysis confirmed statistically significant differences 
between models (F(4,745) = 1127.5, p < 0.00001), with post-hoc Bonferroni analysis revealing the most significant difference 
between AtlasGPT and GPT-3.5 (p = 0.000000028). A neurosurgery subspeciality error distribution analysis showed all models 
performed better in core competencies and critical care while experiencing more difficulties with neuroanatomy, neurology, and 
neurosurgical procedures, with the lowest error rates being skewed to AtlasGPT over all sLLMs. Detailed hallucination analysis 
identified error patterns including factual hallucinations, knowledge retrieval failures, flawed reasoning, and inappropriate 
confidence levels with lowest occurrences being weighted to AtlasGPT over sLLMs. Qualitative assessment of model reasoning 
across clinical scenarios revealed that dLLMs demonstrated more structured clinical reasoning processes compared to sLLMs 
alternatives. These findings suggest that while advanced sLLMs show impressive capabilities in specialized medical domains, 
domain-specific approaches like AtlasGPT's RAG implementation offer meaningful performance advantages for neurosurgical 
applications while highlighting the continued necessity for human oversight. 
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1. Introduction
The rapid advancement of Large Language Models (LLMs) has 
created unprecedented opportunities for artificial intelligence ap-
plications (AI) in specialized medical fields, including neurosur-
gery. Standard Large Language Models (sLLMs) like GPT-4 have 
demonstrated impressive capabilities when evaluated on medical 
knowledge benchmarks, achieving notable accuracy on multi-
ple-choice questions (MCQs) across various medical domains 
[1-6]. However, these sLLMs face significant challenges when 
applied to highly specialized medical disciplines such as neuro-

surgery, where intricate domain-specific knowledge and precise 
factual accuracy are essential for clinical decision-making.  

A primary concern when deploying sLLMs in neurosurgical 
contexts is their tendency to generate plausible but factually 
incorrect information—a phenomenon commonly referred to 
as "hallucination." In neurosurgery, where treatment decisions 
directly impact critical neural structures and patient outcomes, 
such inaccuracies could have serious consequences. To address 
these limitations, a new generation of Domain-specific Large 
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Language Models (dLLMs) has emerged, offering potential 
solutions through specialized training approaches. These dLLMs 
employ techniques such as fine-tuning and Retrieval-Augmented 
Generation (RAG) to enhance performance in targeted domains 
by leveraging specialized training data and external knowledge 
sources.

AtlasGPT represents a pioneering effort in this direction—a 
neurosurgery-focused dLLM developed by fine-tuning the GPT-
4 framework and incorporating a RAG system that retrieves 
contextual information from a curated database of neurological 
literature. This approach aims to reduce hallucinations while 
improving the accuracy and clinical relevance of generated 
content for neurosurgical applications. While preliminary 
investigations have suggested advantages for such specialized 
models, comprehensive comparative evaluations against state-of-
the-art sLLMs remain limited.

This study addresses this research gap by conducting a systematic 
comparison between AtlasGPT and four leading sLLMs (GPT-3.5, 
Gemini, Claude 3.5 Sonnet, and Mistral) using a benchmark of 150 
text-only neurosurgical board-style MCQs derived from established 
preparation resources for the Self-Assessment in Neurological 
Surgery (SANS) examination. Beyond simple accuracy metrics, 
we analyze error distribution across neurosurgical knowledge 
subspeciality, examine hallucination patterns, and assess the quality 
of clinical reasoning demonstrated by these models. By elucidating 
the relative strengths and limitations of different language model 
approaches in neurosurgery, this research contributes to the 
broader discourse on responsible AI implementation in medicine 
while informing the development of more effective AI tools for 
specialized healthcare applications.

2. Related Work
2.1 Large Language Models in Medicine
The application of large language models in medicine has been 
an area of growing interest and research. Chen et al. conducted a 
comprehensive review of sLLMs in healthcare, identifying diverse 
applications including clinical decision support, medical education, 
patient communication, and research assistance [1]. Their analysis 
highlighted both the potential benefits and challenges of integrating 
these technologies into healthcare systems, emphasizing concerns 
related to accuracy, bias, privacy, and regulatory compliance.

The performance of sLLMs on standardized medical examinations 
has been evaluated in several studies. Kung et al. assessed the 
performance of GPT-4 on the United States Medical Licensing 
Examination (USMLE), reporting that the model achieved scores 
comparable to the passing threshold for human medical students 
[2]. Similarly, Nori et al. evaluated multiple sLLMs across various 
medical specialty examinations, finding varying performance 
levels depending on the model and medical specialty [3]. These 
studies suggest that while sLLMs demonstrate impressive 
capabilities in medical knowledge assessment, there remain areas 
for improvement, particularly in highly specialized fields requiring 
detailed domain knowledge and contextual understanding.

2.2. Large Language Models in Neurosurgery
Within the specific domain of neurosurgery, several studies have 
examined the performance of sLLMs on standardized assessments 
and clinical scenarios. For example, Ali et al. evaluated ChatGPT 
and GPT-4 on neurosurgery written board examinations, finding 
promising results but noting limitations in handling complex clinical 
scenarios and image-based questions [4]. Similarly, Hopkins et 
al. conducted a comparative analysis of sLLM performance on 
neurosurgical board-style questions, highlighting the potential 
of these technologies to support neurosurgical education while 
acknowledging current limitations [5]. Additionally, Guerra et 
al. compared GPT-4 against medical students and neurosurgery 
residents on neurosurgery written board-like questions, finding 
that the sLLM outperformed both groups on certain question types 
[6]. This study raised important questions about the implications 
of sLLMs advancement for medical education and assessment. 
Finally, Bečulić et al. conducted a systematic review of ChatGPT's 
contributions to neurosurgical practice and education, identifying 
benefits in knowledge access and educational content creation 
while noting concerns regarding accuracy, liability, and over-
reliance on AI-generated information [7].

These studies collectively suggest that while sLLMs show 
promise in neurosurgical applications, there remain gaps in their 
performance that might be addressed through more specialized 
approaches. The development of dLLMs represents a promising 
approach to enhancing sLLM performance in specialized fields. 
For example, Ram et al. described in-context RAG-based 
language models, demonstrating how retrieval mechanisms can 
improve model performance by incorporating relevant external 
knowledge during inference [8]. In the medical domain, Zakka et 
al. introduced Almanac, a RAG-based language model for clinical 
medicine, showing improved accuracy and reduced hallucination 
compared to traditional sLLMs [9]. Their approach involved 
augmenting model outputs with information retrieved from trusted 
medical sources, allowing for more precise and reliable clinical 
information generation.

Within neurosurgery specifically, Hopkins et al. introduced the 
dLLM, AtlasGPT, describing it as a new era in neurosurgery for 
intelligent care augmentation, operative planning, and performance 
[10]. Their preliminary findings suggested advantages of this 
dLLM approach over sLLMs alternatives. Ali et al. and O'Malley 
et al. further evaluated AtlasGPT in neurosurgical contexts, 
reporting promising results in terms of accuracy and clinical utility. 
Alim et al. explored the integration of RAG-enhanced AtlasGPT 
into aneurysmal subarachnoid hemorrhage outcome prediction, 
demonstrating potential applications beyond knowledge assessment 
[11-13]. While these studies suggest advantages of dLLMs in 
neurosurgery, comprehensive comparative evaluations against 
multiple state-of-the-art sLLMs remain limited, highlighting the 
need for the present study.

3. Medical Education and Ai
The intersection of AI and medical education represents another 
relevant area of research. Mbakwe et al. discussed how ChatGPT 
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passing the USMLE highlights flaws in medical education, 
suggesting that the success of AI on standardized assessments 
raises questions about current educational approaches and 
assessment methods [14]. 

Other studies have explored the potential of sLLMs as educational 
tools in medicine. For example, Ejaz et al. investigated 
medical students' perspectives on AI integration into medical 
curricula, reporting mixed attitudes with enthusiasm for AI as 
a supplementary learning tool but caution regarding its role in 
developing clinical reasoning skills [15]. These studies highlight 
the complex implications of AI advancement for medical education 
and the importance of thoughtful integration that leverages AI 
capabilities while preserving essential aspects of medical training 
and professional development.

4. Research Gap
Despite growing interest in the application of large language 
models to medicine, significant research gaps persist in our 
understanding of how these technologies perform in specialized 
domains like neurosurgery. First, the existing literature has 
only begun to explore the relative merits of sLLMs versus 
dLLMs in medical contexts, leaving several important questions 
unanswered. This absence of direct comparisons limits our ability 
to quantify the potential advantages of specialized approaches like 
AtlasGPT in high-stakes medical domains. Additionally, while 
RAG has emerged as a promising technique for enhancing model 
performance, its specific advantages and limitations in specialized 
medical applications have not been thoroughly explored. 

The medical literature lacks detailed investigations into how 
RAG implementations affect hallucination rates, factual accuracy, 
and reasoning quality in complex neurosurgical scenarios. 
Furthermore, existing studies often report simple accuracy 
metrics without the robust statistical analyses needed to quantify 
meaningful performance differences between competing 
language model approaches. The practical implications of these 
technologies for medical education, clinical practice, and future 
AI development also remain insufficiently addressed. Current 
research rarely moves beyond accuracy assessments to examine 
error patterns across neurosurgery knowledge subspecialties, 
characterize hallucination typologies, or evaluate the quality of 
clinical reasoning demonstrated by these models—all critical 
considerations for responsible deployment in healthcare settings. 

The present study aims to address these substantial gaps by 
providing a comprehensive comparison of AtlasGPT against four 
leading sLLMs using a substantial set of neurosurgical board-
style questions, combined with rigorous statistical analysis and 
multidimensional performance evaluation.
 
5. Materials and Methods
5.1 Study Design
This study employed a comparative cross-sectional design to 
evaluate the performance of five different large language models 
on neurosurgical knowledge assessment. The primary comparison 

was between AtlasGPT, a dLLM developed for neurosurgery, and 
four sLLMs: GPT-3.5, Gemini, Claude 3.5 Sonnet, and Mistral. 
The evaluation was conducted using a benchmark dataset of 150 
text-only, surrogate neurosurgical written board-style MCQs. Each 
model's performance was assessed based on accuracy, defined as 
the percentage of questions answered correctly according to the 
reference answer key.

AtlasGPT is a dLLM developed specifically for neurosurgery. 
It combines fine-tuning of the GPT-4 framework with RAG 
techniques to enhance performance in neurosurgical contexts. The 
RAG component allows AtlasGPT to retrieve relevant information 
from a specialized external database of neurological literature 
when generating responses to queries. The RAG process in 
AtlasGPT functions by systematically identifying and compiling 
relevant data from the external neurosurgical database when a 
prompt is issued. The model constructs answers based on retrieved 
documents, with the context window shaped by selecting the most 
relevant documents. 

This approach is designed to produce accurate, low-hallucination, 
source-annotated responses specifically relevant to neurosurgery.

Four sLLMs were included in the evaluation:
1.	 GPT-3.5: Developed by OpenAI, GPT-3.5 is a sLLM trained 

on a diverse corpus of text data up to its knowledge cutoff. 
While not the most recent model in the GPT series, it remains 
widely used and serves as an important benchmark for 
comparison.

2.	 Gemini: Developed by Google, Gemini represents one of the 
most advanced sLLMs available at the time of the study. It is 
designed to excel across a wide range of tasks and domains.

3.	 Claude 3.5 Sonnet: Developed by Anthropic, Claude 3.5 
Sonnet is an advanced sLLM known for its natural language 
understanding capabilities. 

4.	 Mistral: Developed by Mistral AI, the Mistral model 
represents another state-of-the-art sLLM designed for 
versatile applications across domains.

All sLLMs were accessed through their respective official APIs 
using their default configuration settings without any domain-
specific modifications or fine-tuning.

6.  Dataset
The dataset consisted of 150 text-only, surrogate neurosurgical 
written board-style MCQs. These questions were extracted from 
two primary sources:
1.	 The Neurosurgery Self-Assessment Questions and Answers 

[16].
2.	 The Neurosurgery Primary Board Review [17].

Both sources are widely acknowledged as reputable resources 
for neurosurgical board preparation and feature updated question 
banks specifically designed to prepare residents for the SANS 
written examination. The dataset encompassed various components 
of the neurosurgery board examination, including neuroanatomy, 
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neuroimaging, clinical neurology, and neurosurgery. All questions 
were text-only, multiple-choice format with a single correct 
answer option. Questions containing images, diagrams, or other 
non-textual elements were excluded from the dataset to ensure 
compatibility with all evaluated models. The 150 MCQs were 
selected from the two aforementioned sources and reviewed by an 
independent board-certified neurosurgeon for difficulty, accuracy, 
completeness, and relevance. This was important to ensure that 
the benchmark validity of AI models reflects contemporary 
neurosurgical knowledge expectations and supports the validity of 
the AI model comparisons presented.

6.1 Data Collection Procedure
The evaluation process followed a standardized procedure for each 
question: 
1.	 Each MCQ was individually input into the five language 

models (AtlasGPT, GPT-3.5, Gemini, Claude Sonnet, and 
Mistral).

2.	 The output produced by each language model was recorded as 
the "model answer."

3.	 Each model answer was compared to the correct answer 
obtained from the source question bank.

4.	 A binary scoring system was applied: score of 1 when the 
model's output matched the correct answer, and score of 0 
otherwise.

5.	 Each model’s score was tabulated for analysis.

To ensure consistency and minimize potential variability, all 
model interactions were conducted within a 48-hour period in 
January 2025, using the most recent stable versions of each model 
available at that time. The exact same question text was provided 
to each model, with no additional context or prompting beyond 
the question itself (i.e., zero-shot prompting). An independent 
board-certified neurosurgeon reviewer assessed all responses for 

accuracy based on current evidence-based guidelines.

6.1.1 Statistical and Error Analysis
Statistical analyses were conducted using Microsoft Excel to 
assess differences in performance between the five language 
models as follows:
1.	 Descriptive Statistics: Calculation of mean accuracy, standard 

deviation, and 95% confidence intervals for each language 
model.

2.	 One-way Analysis of Variance (ANOVA) conducted with 
a 95% confidence interval was performed to determine 
whether there were statistically significant differences in 
mean accuracy between the five models. The null hypothesis 
was that all models would perform equally well on the 
neurosurgical MCQs.

3.	 Post-hoc Bonferroni Analysis: Since ANOVA indicates only 
whether there is a significant difference in at least one group 
mean compared to others but does not specify which particular 
group means differ, Bonferroni post-hoc analysis was 
conducted. This analysis adjusted for multiple comparisons 
and identified specific pairs of models with statistically 
significant performance differences. The significance 
threshold for the Bonferroni analysis was set at α < 0.01.

4.	 Neurosurgery Knowledge Subspecialties Error Distribution: 
We conducted a detailed analysis examining the distribution of 
errors across neurosurgical knowledge subspecialties to assess 
whether errors were randomly distributed or concentrated 
within specific knowledge categories.

5.	 Hallucination Error Analysis: We applied additional scrutiny 
to the models by evaluating hallucinations across multiple AI 
models (Gemini, Claude, AtlasGPT) when responding to a 
subset of AI responses to identify, explain, and describe key 
error categories and their potential implications for clinical 
decision-making using the taxonomy in Table 1. 
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Table 1. Taxonomy of AI Hallucinations in Medical Contexts 

Error Category Description Clinical Impact 
Factual Hallucination Generation of incorrect or 

fabricated information presented 
as fact 

High - May directly lead to  
improper diagnosis or treatment 

Knowledge Retrieval 
Failure 

Inability to access or properly 
weight relevant medical 
information 

Moderate to High - Results in  
inaccurate clinical reasoning 

Flawed Reasoning/Logic Construction of seemingly 
coherent but fundamentally 
incorrect diagnostic 
approaches 

High - May lead to improper  
clinical management 

Intrinsic Contradiction Presence of mutually 
contradictory statements within 
the same response 

Moderate - Creates confusion 
 and undermines trust 

Inappropriate 
Confidence 

Presenting incorrect information 
with authoritative phrasing and 
structure 

High - May lead users to trust  
erroneous information 

 
 

6. Model Reasoning Quality: This study extends 
beyond binary correctness assessment to evaluate 
the quality of reasoning demonstrated by selected 
AI models through the examination of a duplex of 
clinical scenarios requiring complex neurological 
assessment and management decisions. The two 
scenarios were designed to assess not only factual 

knowledge but appropriate management decision-
making across several categories: 
 Details in Reasoning: Depth and 

comprehensiveness of explanation. 
 Logical Structure: Organization and coherence of 

reasoning process 
 Clinical Relevance: Adherence to standard clinical 

Table 1: Taxonomy of AI Hallucinations in Medical Contexts
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6. Model Reasoning Quality: This study extends beyond binary 
correctness assessment to evaluate the quality of reasoning 
demonstrated by selected AI models through the examination 
of a duplex of clinical scenarios requiring complex neurological 
assessment and management decisions. The two scenarios were 
designed to assess not only factual knowledge but appropriate 
management decision-making across several categories:
•	 Details in Reasoning: Depth and comprehensiveness of 

explanation.
•	 Logical Structure: Organization and coherence of reasoning 

process
•	 Clinical Relevance: Adherence to standard clinical assessment 

paradigms.
•	 Guideline Adherence: Reference to and correct application of 

clinical guidelines.
•	 Mechanism Explanation: Inclusion of pathophysiological 

explanations
•	 Hallucination Detection: Presence of factually incorrect 

statements.
•	 Human Assessment of Model output: evaluated independently 

by a board-certified neurosurgeon ensuring the validity of 
answers based on current evidence-based guidelines.

7. Results
Overall Accuracy
The accuracy results for each of the five language models on the 
150 neurosurgical board-style MCQs are presented in Table 2. 
AtlasGPT demonstrated the highest accuracy at 96.7%, followed 
by Claude 3.5 Sonnet (94.7%), Gemini (92.0%), Mistral (88.7%), 
and GPT-3.5 (74.7%). The performance gap between the highest-
performing model (AtlasGPT) and the lowest-performing model 
(GPT-3.5) was 22 %

7.1 ANOVA Results 
The results of the ANOVA are presented in Table 3. The ANOVA 
results revealed a highly significant difference between the models 

(F(4,745) = 1127.5, p < 0.00001), indicating that at least one model 
performed significantly differently from the others. The F value 
far exceeded the critical value of 2.37, confirming the statistical 
significance of the observed differences.

7.1 Post-hoc Bonferroni Analysis Results
To identify specific pairs of models with statistically significant 
performance differences, post-hoc Bonferroni correction analysis 
was performed. The results of this analysis are presented in 
Table 3. The post-hoc Bonferroni analysis revealed that the most 
statistically significant difference was between GPT-3.5 and 
AtlasGPT (p = 0.000000028), followed by comparisons between 
GPT-3.5 and Claude (p = 0.000001), GPT-3.5 and Gemini (p = 
0.000048), Mistral and GPT-3.5 (p = 0.0017), and Mistral and 
AtlasGPT (p = 0.0078). The differences between AtlasGPT and 
Gemini, AtlasGPT and Claude, Claude and Mistral, Claude and 
Gemini, and Gemini and Mistral were not statistically significant 
at the p < 0.01.

7.2 Subspecialties Error Distribution Results 
To provide deeper insights into model performance, we conducted a 
detailed analysis examining the distribution of hallucination errors 
across neurosurgical knowledge subspecialties to assess whether 
they were randomly distributed or concentrated within specific 
knowledge categories. Table 5 and Figure 1 present the error 
distribution across eight neurosurgical knowledge subspecialties 
for each model and by AI model, respectively. A cross-model 
analysis shows a clear performance gradient is observed from 
sLLMs (GPT-3.5, Mistral, Gemini, Claude) to the specialized 
neurosurgical model (AtlasGPT), with error rates decreasing 
accordingly. Neurosurgery knowledge subspecialty strengths were 
evident with AtlasGPT showing expertise in neurophysiology, 
neuropathology, and core competencies. Persistent challenge areas 
included neuroanatomy, neurology, and neurosurgical procedures 
with the lowest error rates being skewed to AtlasGPT over all 
sLLMs.

6 
 

assessment paradigms.. 
 Guideline Adherence: Reference to and correct 

application of clinical guidelines. 
 Mechanism Explanation: Inclusion of 

pathophysiological explanations 
 Hallucination Detection: Presence of factually 

incorrect statements. 
 Human Assessment of Model output: evaluated 

independently by a board-certified neurosurgeon 
ensuring the validity of answers based on current 
evidence-based guidelines. 
 

Results 
 
Overall Accuracy 
 
The accuracy results for each of the five language 
models on the 150 neurosurgical board-style MCQs are 
presented in Table 2. AtlasGPT demonstrated the 
highest accuracy at 96.7%, followed by Claude 3.5 
Sonnet (94.7%), Gemini (92.0%), Mistral (88.7%), and 
GPT-3.5 (74.7%). The performance gap between the 
highest-performing model (AtlasGPT) and the lowest-
performing model (GPT-3.5) was 22 % 
 
ANOVA Results  
 
The results of the ANOVA are presented in Table 3. 
The ANOVA results revealed a highly significant 
difference between the models (F(4,745) = 1127.5, p < 
0.00001), indicating that at least one model performed 
significantly differently from the others. The F value 
far exceeded the critical value of 2.37, confirming the 
statistical significance of the observed differences. 
 
Post-hoc Bonferroni Analysis Results 
 
To identify specific pairs of models with statistically 

significant performance differences, post-hoc 
Bonferroni correction analysis was performed. The 
results of this analysis are presented in Table 3. The 
post-hoc Bonferroni analysis revealed that the most 
statistically significant difference was between GPT-
3.5 and AtlasGPT (p = 0.000000028), followed by 
comparisons between GPT-3.5 and Claude (p = 
0.000001), GPT-3.5 and Gemini (p = 0.000048), 
Mistral and GPT-3.5 (p = 0.0017), and Mistral and 
AtlasGPT (p = 0.0078). The differences between 
AtlasGPT and Gemini, AtlasGPT and Claude, Claude 
and Mistral, Claude and Gemini, and Gemini and 
Mistral were not statistically significant at the p < 0.01. 
 
Subspecialties Error Distribution Results  
 
To provide deeper insights into model performance, 
we conducted a detailed analysis examining the 
distribution of hallucination errors across 
neurosurgical knowledge subspecialties to assess 
whether they were randomly distributed or 
concentrated within specific knowledge categories. 
Table 5 and Figure 1 present the error distribution 
across eight neurosurgical knowledge subspecialties 
for each model and by AI model, respectively. A 
cross-model analysis shows a clear performance 
gradient is observed from sLLMs (GPT-3.5, Mistral, 
Gemini, Claude) to the specialized neurosurgical 
model (AtlasGPT), with error rates decreasing 
accordingly. Neurosurgery knowledge subspecialty 
strengths were evident with AtlasGPT showing 
expertise in neurophysiology, neuropathology, and 
core competencies. Persistent challenge areas included 
neuroanatomy, neurology, and neurosurgical 
procedures with the lowest error rates being skewed 
to AtlasGPT over all sLLMs. 
  

 
                                            Table 2: Accuracy Results for Large Language Models on Neurosurgical MCQs 

Model Correct Answers Total Questions Accuracy (%) Standard Deviation (%) 95% CI (%) 

AtlasGPT 145 150 96.7 1.8 96.4 - 97.0 
Claude 3.5 Sonnet 142 150 94.7 2.2 94.3 - 95.1 
Gemini 138 150 92.0 2.7 91.5 - 92.5 
Mistral 133 150 88.7 3.1 88.1 - 89.3 
GPT-3.5 112 150 74.7 4.3 73.9 - 75.5 

 
Table 3: ANOVA Results for Model Accuracy Comparison 

Source of Variation Sum of Squares df Mean Square F p-value F critical 

Between Groups 47235.6 4 11808.9 1127.5 < 0.00001 2.37 
Within Groups 7736.4 745 10.4    
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core competencies. Persistent challenge areas included 
neuroanatomy, neurology, and neurosurgical 
procedures with the lowest error rates being skewed 
to AtlasGPT over all sLLMs. 
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Model Correct Answers Total Questions Accuracy (%) Standard Deviation (%) 95% CI (%) 

AtlasGPT 145 150 96.7 1.8 96.4 - 97.0 
Claude 3.5 Sonnet 142 150 94.7 2.2 94.3 - 95.1 
Gemini 138 150 92.0 2.7 91.5 - 92.5 
Mistral 133 150 88.7 3.1 88.1 - 89.3 
GPT-3.5 112 150 74.7 4.3 73.9 - 75.5 

 
Table 3: ANOVA Results for Model Accuracy Comparison 

Source of Variation Sum of Squares df Mean Square F p-value F critical 

Between Groups 47235.6 4 11808.9 1127.5 < 0.00001 2.37 
Within Groups 7736.4 745 10.4    
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Table 3: Post-hoc Bonferroni Analysis Results 
 

Model Comparison Mean Difference p-value Significance 

Claude vs GPT-3.5 20.0 0.0000001 Significant 
Gemini vs. GPT-3.5 17.3 0.000048 Significant 
Mistral vs. GPT-3.5 14.0 0.0017 Significant 
AtlasGPT vs. Mistral 8.0 0.0078 Significant 
AtlasGPT vs. GPT-3.5 22 0.000000028 Significant 
AtlasGPT vs. Gemini 4.7 0.0326 Not significant 
AtlasGPT vs. Claude 2.0 0.4518 Not significant 
Claude vs. Mistral 6.0 0.0223 Not significant 
Claude vs. Gemini 2.7 0.3127 Not significant 
Gemini vs. Mistral 3.3 0.1973 Not significant 
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Neuroimaging 1 0 0 0 1 
Neurology 2 2 3 1 7 
Neurosurgery 2 2 1 2 15 
Critical Care 2 1 0 1 3 
Core Competencies 1 1 1 0 1 
Total 17 12 8 5 38 
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7.3 Hallucination Error Analysis Results
Our analysis of hallucination errors particularly across Gemini, 
Claude, and AtlasGPT revealed consequential patterns when 
these models addressed three specialized clinical scenarios. 
In the first case involving spinal muscular atrophy diagnosis, 
Gemini exhibited serious knowledge retrieval failures and factual 
hallucinations. When presented with classic symptoms of spinal 
muscular atrophy (SMA), the model incorrectly recommended 
nerve conduction studies rather than the gold standard SMN gene 
testing. More troublingly, it fabricated an entirely false claim that 
SMN gene testing was "more specific for amyotrophic lateral 
sclerosis (ALS) in adults," contradicting established medical 
knowledge. Such hallucinations in diagnostic recommendations 
could lead clinicians astray in time-sensitive pediatric cases.

The second case evaluation revealed fabricated reasoning in 
Claude when assessing vertebral artery injury risks. The model 
produced a factual hallucination, incorrectly identifying "C1-C2 
transarticular screws" as the highest risk procedure with ponticulus 
posticus, when "C1 lateral mass screw placement" represents the 
correct answer. Particularly problematic was Claude's construction 
of detailed but entirely fabricated reasoning to support its incorrect 
conclusion—demonstrating how hallucinations can appear 
convincingly authoritative despite being entirely unfounded.
AtlasGPT, despite its domain specialization, also demonstrated 
a hallucination. In a case regarding decompressive craniectomy 
outcomes, the model exhibited self-contradiction by selecting an 
answer choice ("Surgery will improve ICP and outcome") while 
simultaneously citing contradictory evidence from the DECRA 
trial. This logical inconsistency reveals how hallucinations can 
manifest as reasoning failures even when factual knowledge is 
present.

These findings highlight the importance of hallucinations forms 
even in dLLMs. The varied error types—from factual fabrications 
to manufactured reasoning and strategic avoidance—suggest that 
current models remain prone to generating misinformation that 
could compromise patient care if implemented without careful 
oversight. While identifying these specific hallucination patterns 
provides direction for future development, the current limitations 
underscore the necessity for rigorous evaluation and human 
supervision when considering these technologies for clinical 
applications.

7.4 Model Reasoning Quality Results
This comparative assessment of clinical reasoning capabilities 
across five large language models (LLMs): GPT-3.5, Mistral, 
Gemini 2.0, Claude 3.5, and AtlasGPT, through detailed evaluation 
of their performance on two complex neurosurgical case scenarios. 
We analyzed multiple dimensions of reasoning quality, including 
explanation depth, logical structure, clinical relevance, guideline 
adherence, and mechanism explanation.

Case 1: Traumatic Head Injury with Neurological Symptoms
In the first scenario involving a 14-year-old boy with traumatic 
head injury presenting with bilateral upper extremity sensory 

symptoms and lower extremity weakness despite negative cervical 
CT findings, noteworthy variations in reasoning approach were 
observed across models.

GPT-3.5 demonstrated extensive explanation depth (247 words), 
providing a comprehensive rationale for MRI selection that 
incorporated clinical presentation and differential diagnoses. The 
model's reasoning followed a systematic structure, addressing each 
potential option methodically, though it did not prioritize clinically 
significant findings in its organizational approach.

Mistral employed a more concise approach (104 words), 
immediately identifying the key concern as potential spinal cord 
injury. While this direct approach aligns with emergency triage 
principles, it lacked the comprehensive differential consideration 
exhibited by other models, potentially limiting its clinical utility in 
complex cases.

Gemini 2.0 presented moderate detail (136 words) with primary 
focus on immediate clinical decision-making rather than extensive 
pathophysiological elaboration. The model organized its response 
around the clinical question without clearly structuring the 
underlying reasoning process, representing a more pragmatic but 
less academically rigorous approach. 

Claude 3.5 exhibited the most clinically authentic structure (213 
words), beginning with systematic symptom analysis before 
proceeding to diagnosis and management considerations. The 
explanation was both comprehensive and organized according to 
established clinical reasoning frameworks, mirroring the approach 
taught in medical education. Additionally, the model referenced 
relevant guidelines from the American Association of Neurological 
Surgeons and the Eastern Association for the Surgery of Trauma.
AtlasGPT provided precise clinical assessment (189 words) 
with specific focus on SCIWORA (Spinal Cord Injury Without 
Radiographic Abnormality), demonstrating specialist-level 
reasoning. The model included detailed explanation of CT 
limitations in detecting spinal cord pathology and elaborated on 
specific mechanisms (spinal cord edema, contusion, hematomyelia) 
that necessitate MRI evaluation, reflecting advanced domain 
expertise.

Case 2: Post-Carotid Endarterectomy Complication
The second scenario, involving a patient with recurrent amaurosis 
fugax following carotid endarterectomy, revealed similar patterns 
in reasoning quality across models.

GPT-3.5 provided a comprehensive explanation of potential 
postoperative complications and detailed rationale for CT 
angiogram selection. However, the model included overly 
detailed management plans beyond what was warranted by the 
question, though without clear factual errors. This approach 
demonstrated strong knowledge but potential inefficiency in 
clinical communication. Mistral exhibited a significant reasoning 
error, incorrectly focusing on malignant hyperthermia rather 
than vascular etiology. This critical failure in clinical reasoning 
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highlights the substantial risks associated with sLLMs when 
applied to specialized medical scenarios without neurosurgery 
knowledge subspecialty adaptation.

Gemini 2.0 maintained factual accuracy with concise but limited 
elaboration, correctly identifying CT angiogram as the appropriate 
next step. However, the limited detail could be perceived 
as underdeveloped reasoning that might not inspire clinical 
confidence in complex decision-making contexts.
Claude 3.5 employed a systematic approach, analyzing key 
symptoms before considering differential diagnoses and determining 
the appropriate imaging modality. The model demonstrated strong 
clinical reasoning with minimal hallucination, with explanations 
closely aligned with established clinical knowledge.

AtlasGPT provided precise clinical reasoning with specific 
focus on potential vascular complications following carotid 
endarterectomy, demonstrating domain expertise. Similar to 
Claude 3.5, the model exhibited a low rate of hallucination, with 
explanations adhering closely to established clinical standards 
and guidelines. This comparative analysis reveals significant 
differences in clinical reasoning approaches across LLMs. Models 
demonstrated varying capabilities in explanation depth, logical 
structure, clinical relevance, and adherence to medical guidelines. 
The dLLM AtlasGPT consistently demonstrated superior 
performance in precise clinical terminology and mechanism 
explanation, suggesting meaningful advantages from medical 
domain adaptation. The reasoning structures exhibited by Claude 
3.5 and AtlasGPT most closely aligned with clinical practice—
beginning with systematic symptom analysis, proceeding 
through differential diagnosis consideration, and concluding 
with evidence-based management decisions. This mirrors the 
structured approach valued in medical education and practice. 
Notably, sLLMs demonstrated vulnerability to clinical reasoning 
errors, as evidenced by Mistral's critical failure in the post-carotid 
endarterectomy case. This finding highlights the potential risks of 
deploying non-specialized AI systems in medical contexts without 
appropriate domain adaptation and rigorous evaluation.

These observations suggest that while sLLMs can produce 
superficially impressive medical explanations, models specifically 
adapted to clinical neurosurgery knowledge subspecialties may 
better emulate the reasoning processes valued in medical practice. 
The substantial variation in reasoning quality underscores the 
continued necessity for careful human oversight of AI systems in 
clinical contexts, particularly when complex decision-making is 
required. As model development continues to advance, increased 
attention to improving clinical reasoning quality through 
neurosurgery knowledge subspecialty specialization, guideline 
integration, and structured reasoning approaches may yield AI 
systems that can more meaningfully support the sophisticated 
decision-making processes central to neurosurgical practice and 
other medical specialties.

8. Discussion
8.1 Model Accuracy Discussion
The results of this study demonstrate that AtlasGPT, a dLLM 
focused on neurosurgery, significantly outperformed the sLLMs 
in answering neurosurgical board-style MCQs. With an overall 
accuracy of 96.7%, AtlasGPT surpassed Claude (94.7%), Gemini 
(92.0%), Mistral (88.7%), and GPT-3.5 (74.7%) The superior 
performance of AtlasGPT can be attributed to its specialized design, 
which combines fine-tuning of the GPT-4 framework with RAG 
techniques. This approach allows AtlasGPT to leverage a dedicated 
external database of neurological literature, enhancing its ability to 
provide accurate responses to specialized neurosurgical queries. 
The RAG process enables AtlasGPT to systematically identify and 
retrieve relevant information from this database, leading to more 
precise and contextually appropriate answers.

The significant performance gap between AtlasGPT and GPT-3.5 
(p = 0.000000028) underscores the limitations of older sLLM 
in specialized medical domains. GPT-3.5's relatively lower 
performance (74.7% accuracy) likely reflects its age, having been 
trained on a dataset that is both less comprehensive and more 
outdated than those of newer models. In this research, we chose 
to evaluate GPT-3.5 rather than GPT-4, given that AtlasGPT 
has already incorporated GPT-4 with fine-tuning and RAG. 
Additionally, we aimed to align our results with the substantial 
existing literature assessing GPT-3.5 within the neurosurgery 
domain. Ultimately, we also intended to explore the predecessor of 
GPT-4, which offers a more economical option with faster response 
times. However, even a more recent sLLM (Mistral) did not match 
AtlasGPT's performance, highlighting the advantages of domain-
specific approaches in specialized fields like neurosurgery.

8.2 Cross Subspecialty Error Distribution Discussion
The cross-subspecialty error distribution showed that all models 
demonstrated fewer errors in core competencies and critical care 
categories, while consistently experiencing more challenges with 
questions pertaining to neuroanatomy, neurology, and neurosurgery 
with the lowest error rates being skewed to AtlasGPT over all 
sLLMs and are detailed as follows:

8.3 Neuroanatomy 
Error distribution analysis revealed significant variations in 
neuroanatomical knowledge: Mistral (4 errors), Gemini (2), 
Claude (2), AtlasGPT (1), and GPT-3.5 (6). The notably higher 
error rates in GPT-3.5 and Mistral suggest potential deficiencies in 
spatial reasoning regarding neural structures. As neuroanatomical 
accuracy forms the foundation of surgical planning and execution, 
these errors would translate directly to increased surgical risk 
if such systems were employed for preoperative planning or 
intraoperative consultation. Precise neuroanatomical knowledge is 
particularly critical for approaches involving eloquent structures, 
skull base surgery, and vascular interventions.

8.4 Neurophysiology
In the subspecialty of neurophysiology, error distribution followed 
a similar pattern: Mistral (4), Gemini (2), Claude (1), AtlasGPT 
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(0), and GPT-3.5 (3). AtlasGPT demonstrated complete accuracy, 
suggesting effective specialized training in neurophysiological 
principles. Errors in physiological understanding could lead to 
misinterpretation of intraoperative neurophysiological monitoring, 
potentially compromising functional outcomes. The superior 
performance of AtlasGPT indicates it may be more reliable for 
questions regarding neural circuitry, neurotransmission, and 
physiological responses to surgical manipulation.

8.5 Neuropathology
Neuropathology knowledge assessment revealed the following 
error distribution: Mistral (1), Gemini (2), Claude (0), AtlasGPT (0), 
and GPT-3.5 (2). Two models (Claude and AtlasGPT) demonstrated 
perfect accuracy in pathological knowledge. Gemini's higher error 
rate is notable given its relative strength in other neurosurgery 
knowledge subspecialties. Accurate pathological knowledge 
directly influences surgical decision-making regarding extent of 
resection, tissue specimen handling, and planning for adjuvant 
therapies. The high accuracy across multiple models suggests 
pathological concepts may be more consistently represented in 
medical training datasets than neuroanatomical relationships.

8.6 Neuroimaging
Neuroimaging interpretation showed near-universal accuracy 
across most models: Mistral (1), Gemini (0), Claude (0), AtlasGPT 
(0), and GPT-3.5 (1). This exceptional performance suggests 
imaging principles may be more explicitly codified in medical 
literature and therefore better captured in AI training data. Imaging 
interpretation is crucial for preoperative planning, intraoperative 
navigation, and postoperative assessment. The high accuracy 
across models indicate AI systems may be particularly valuable 
for supplementing imaging interpretation, though not replacing 
radiological expertise.

8.7 Neurology
Neurological knowledge assessment revealed more variable 
performance: Mistral (2), Gemini (2), Claude (3), AtlasGPT (1), 
and GPT-3.5 (7). AtlasGPT displayed the lowest error rate, while 
Claude's relatively high error rate in this category despite strong 
performance elsewhere suggests potential gaps in neurological 
syndrome recognition. Neurological assessment drives surgical 
indications and outcome evaluation. The consistent errors across 
models highlight the complexity of neurological diagnosis and 
syndrome recognition, representing a critical area for improvement, 
as misinterpretation of neurological symptoms could lead to 
inappropriate surgical intervention.

8.8 Neurosurgery
Direct neurosurgical knowledge showed particularly variable 
performance: Mistral (2), Gemini (2), Claude (1), AtlasGPT (2), 
and GPT-3.5 (15). The moderate error rates across most models 
except the exceptionally high rate in GPT-3.5 suggest procedural 
knowledge has reached similar levels of development in current-
generation models. Even specialized models like AtlasGPT 
showed weaknesses in this neurosurgery knowledge subspecialty. 
Direct surgical knowledge gaps pose significant risks if AI systems 

are consulted for procedural guidance. These errors likely reflect 
the nuanced nature of surgical decision-making that incorporates 
multiple factors beyond textbook guidelines. The surgical domain 
would benefit from more case-based training approaches that 
contextualize decisions within complex patient scenarios.

8.9 Critical Care
Critical care knowledge assessment revealed: Mistral (2), 
Gemini (1), Claude (0), AtlasGPT (1), and GPT-3.5 (3). Claude 
demonstrated perfect accuracy in critical care knowledge. The 
higher error rates in Mistral and GPT-3.5 suggest potential 
weaknesses in understanding emergency management principles. 
Critical care knowledge impacts immediate postoperative 
management and handling of intraoperative complications. 
Claude's error-free performance suggests it may be more reliable 
for questions about perioperative management of neurosurgical 
patients. Given the time-sensitive nature of critical care decisions, 
AI reliability in this neurosurgery knowledge subspecialty is 
especially important for potential clinical applications.

8.10 Core Competencies
Core competencies assessment showed relatively consistent 
performance across models: Mistral (1), Gemini (1), Claude (1), 
AtlasGPT (0), and GPT-3.5 (1). This suggests similar capabilities 
in understanding fundamental principles across most models, with 
only AtlasGPT achieving perfect accuracy. Core competencies 
encompass foundational skills that impact all aspects of 
neurosurgical practice.

As model development continues to advance, increased 
attention to improving clinical reasoning quality through domain 
specialization, guideline integration, and structured reasoning 
approaches may yield AI systems that can more meaningfully 
support the sophisticated decision-making processes central to 
neurosurgical practice and other medical specialties.

9. Cross-Model Distribution Performance 
A clear performance gradient is observed from sLLMs (Mistral, 
Gemini) to specialized neurosurgical models (AtlasGPT), with 
error rates decreasing accordingly. Neurosurgery knowledge 
subspecialty-specific strengths were evident: Claude demonstrated 
particular strength in neuropathology and critical care (0 
errors), and AtlasGPT showed expertise in neurophysiology, 
neuropathology, and core competencies. Persistent challenge areas 
included neurology, which remained difficult across all models, 
and procedural neurosurgical knowledge, which showed moderate 
error rates even in specialized models.

10. Error Analysis of Hallucination Cases Discussion
Our analysis of Gemini, Claude, and AtlasGPT models in 
clinical neurosurgical scenarios reveals valuable insights into 
current AI capabilities and opportunities for advancement. First, 
while AI systems demonstrate impressive medical knowledge 
breadth, specific cases like Gemini's error recommendation for 
SMA diagnostics highlight opportunities to enhance precision 
in specialized neurosurgery knowledge subspecialties. Also, 
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AtlasGPT's incorrect handling of the decompressive craniectomy 
case shows how models can accurately retrieve clinical trial 
data while revealing promising areas to strengthen reasoning 
connections between evidence and conclusions. Finally, Claude's 
detailed but incorrect reasoning about vertebral artery injury 
reflects sophisticated medical language capabilities that, with 
improved factual grounding, could provide valuable clinical 
decision support. The sophisticated medical reasoning capabilities 
demonstrated across different models showcase how far AI 
technology has advanced, even as specific error patterns indicate 
areas for continued refinement. With thoughtful implementation 
and ongoing vigilance, AI systems have tremendous potential to 
enhance medical practice while supporting—never replacing—
clinical judgment. These findings don't diminish AI's promise in 
healthcare but rather illuminate the path toward more reliable, 
helpful clinical AI tools that can meaningfully support delivering 
optimal care.

11. Model Reasoning Quality Comparisons Discussion
The comparative assessment of clinical reasoning capabilities 
across five models: GPT-3.5, Mistral, Gemini 2.0, Claude 3.5, and 
AtlasGPT was performed through analysis of their performance 
on two neurosurgical case scenarios, over multiple dimensions 
of reasoning quality, including explanation depth, adherence to 
clinical guidelines, logical coherence, and hallucination rates. 
Our investigation revealed significant variations in reasoning 
approaches and quality across the examined models. The dLLM, 
AtlasGPT, demonstrated superior performance in structured 
clinical reasoning compared to sLLM alternatives. This suggests 
meaningful advantages derived from medical domain adaptation 
and specialization.

A notable finding was the presence of a depth versus precision 
trade-off in model responses. While some models like GPT-3.5 
provided extensive explanations, these often lacked the clinical 
focus and precision exhibited by more specialized models. 
Conversely, dLLMs generally demonstrated greater efficiency 
in delivering clinically relevant information without superfluous 
content.

Regarding reasoning structure, Claude 3.5 and AtlasGPT exhibited 
patterns most closely aligned with clinical practice standards. 
Their approaches typically began with systematic symptom 
analysis, proceeded through differential diagnosis consideration, 
and concluded with evidence-based management decisions—
mirroring the methodical reasoning process valued in medical 
practice.

The dLLM AtlasGPT consistently excelled in clinical terminology 
precision and mechanism explanation compared to the sLLMs 
alternatives. This observation highlights the tangible benefits of 
domain adaptation in medical AI applications, where specialized 
knowledge and reasoning patterns are critical for clinical utility.

Our analysis also revealed concerning vulnerabilities to 
hallucinations across several models. Particularly, Mistral 

demonstrated susceptibility to significant clinical reasoning errors. 
This observation underscores the potential risks associated with 
deploying non-specialized AI systems in medical contexts where 
reasoning failures could have serious consequences.  These 
findings illuminate meaningful differences in how various models 
approach clinical reasoning tasks. While sLLMs can produce 
superficially impressive explanations, those specifically adapted to 
clinical domains (i.e., dLLMs) appear better equipped to emulate 
the reasoning processes valued in medical practice. This study 
emphasizes the importance of evaluating not merely the factual 
accuracy of model outputs but also the quality of their underlying 
reasoning processes when considering potential healthcare 
applications.

The substantial variation in reasoning quality—particularly the 
potential for significant reasoning failures even when reaching 
correct conclusions—underscores the continued necessity for 
careful human oversight of AI systems in clinical contexts. As 
model development advances, increased focus on improving 
clinical reasoning quality through domain specialization, guideline 
integration, and structured reasoning approaches may yield AI 
systems that can more meaningfully support the complex decision-
making processes central to medical practice.

12. Clinical Implications
The specialized AtlasGPT (96.7% accuracy) demonstrated superior 
performance in neurosurgical board-style MCQs compared to 
sLLMs like Claude (94.7%), Gemini (92.0%), Mistral (88.7%), 
and GPT-3.5 (74.7%). This hierarchy suggests that dLLMs may 
provide more reliable clinical decision support in specialized 
fields. Additionally, since all models showed stronger performance 
in core competencies and critical care, with more challenges in 
neuroanatomy, neurology, and neurosurgical procedures, these 
variations highlight the importance of selecting appropriate AI 
tools for specific clinical tasks. Moreover, the hallucination error 
analysis revealed potential risks, including incorrect diagnostic 
recommendations, factual errors, and fabricated reasoning even 
in high-performing models demonstrated errors in procedural 
neurosurgical knowledge, suggesting human oversight remains 
essential for patient safety.

12.1 Educational Implications
High-performing models show potential as educational resources 
for medical trainees, particularly for case-based learning. Different 
models' strengths across Neurosurgery knowledge subspecialties 
suggest opportunities for targeted educational applications (e.g., 
using Claude for critical care concepts). Analysis of reasoning 
quality reveals models with clinical reasoning structures most 
aligned with medical practice (Claude 3.5 and AtlasGPT). 
These patterns can inform the development of educational tools 
that mirror proper clinical reasoning processes. With thoughtful 
implementation and ongoing vigilance, these AI systems have 
significant potential to enhance both clinical practice and medical 
education while supporting—never replacing—clinical expertise 
and judgment.
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12.2 Implications for AI Development: 
The success of the RAG approach in AtlasGPT highlights the 
importance of combining general language capabilities with 
specialized knowledge sources. This hybrid approach represents 
a promising direction for AI development, particularly in 
neurosurgery knowledge subspecialties requiring deep expertise 
and access to specialized information.

13. Comparison with Previous Research
The results of this study align with and extend previous research on 
the application of large language models in medical education and 
neurosurgery specifically. Prior studies by Ali et al. [4], Hopkins et 
al. [5], and Guerra et al. [6] demonstrated promising performance 
of sLLMs like GPT- 4 on neurosurgical board examinations. 
Our findings confirm the capabilities of advanced sLLMs while 
also highlighting the enhanced performance achievable through 
domain-specific approaches (AtlasGPT).

The accuracy rates observed for sLLMs in our study are generally 
consistent with those reported in previous evaluations, though 
direct comparisons are challenging due to variations in question 
sets and evaluation methodologies. The performance advantage 
of AtlasGPT over LLMs supports the preliminary findings 
reported by Hopkins et al. [10] , Ali et al. [11], and Basaran et 
al. [13] regarding the potential benefits of neurosurgery-specific 
language models. Our results also align with the broader literature 
on RAG, such as the work by Ram et al.[8] and Zakka et al. [9], 
which demonstrated improvements in model performance through 
the integration of external knowledge sources. The success of 
AtlasGPT provides further evidence for the effectiveness of this 
approach in specialized domains.

14. Limitations
Several limitations must be acknowledged in our current analysis:
14.1 Limited Case Diversity: While our selected cases represent 
complex clinical scenarios, a broader range of clinical presentations 
across multiple specialties would provide more generalizable 
insights.
14.2 Evaluation Subjectivity: Despite using standardized rubrics, 
assessment of reasoning quality contains inherent subjectivity that 
could be addressed through larger evaluation panels.
14.3 Static Evaluation: Our analysis evaluates single-turn 
responses rather than interactive clinical reasoning, which may not 
fully capture the iterative nature of clinical decision-making. 
14.4 Given that AtlasGPT is built on GPT-4: a direct comparison 
with GPT-4 would better isolate the impact of domain-specific 
fine-tuning and RAG. Moreover, comparison with more state-of-
the-art models would be good as well.
14.5 Text-Only Questions: The evaluation was limited to text-
only MCQs, excluding image-based questions that constitute an 
important component of neurosurgical assessment and practice. 
The ability to interpret and reason from medical images represents 
a distinct skill set that was not evaluated in this study.
14.5 MCQ Format Limitations: Multiple-choice questions, 
while standardized and quantifiable, may not fully capture the 
complexity of medical reasoning and decision-making. The binary 

correct/incorrect scoring system does not account for nuances in 
understanding or reasoning processes.
14.6 Absence of Real-World Clinical Scenarios: The board-
style questions used in this evaluation, while designed to assess 
neurosurgical knowledge, differ from the complexity and ambiguity 
of real-world clinical scenarios. Performance on these questions 
may not directly translate to performance in clinical practice.
14.7 Temporal Limitations: The evaluation was conducted at a 
specific point in time with specific versions of each model. Given 
the rapid pace of development in AI, the relative performance of 
these models may change as they are updated and improved.
14.8 Limited Information about Model Specifics: Detailed 
information about the training data, architectural specifications, and 
fine-tuning processes of some models, particularly the proprietary 
ones, was not fully available. This limits our ability to analyze the 
specific factors contributing to performance differences.
14.9 Single Domain Focus: The study focused exclusively on 
neurosurgery, and findings may not generalize to other medical 
specialties.

15. Future Research Directions
Based on the findings and limitations of this study, several 
promising directions for future research emerge:
15.1 Multimodal Evaluation: Future studies should incorporate 
image-based questions and other multimodal content to provide a 
more comprehensive assessment of model capabilities relevant to 
medical practice.
15.2 Real-World Clinical Applications: Evaluating model 
performance on real-world clinical scenarios, including complex 
cases with ambiguity and incomplete information, would provide 
insights into their potential utility in clinical practice.
15.3 Longitudinal Assessment: Tracking model performance 
over time as new versions are released would help understand 
the trajectory of improvement and identify areas of persistent 
challenge.
15.4 User Experience Studies: Investigating how medical students, 
residents, and practicing clinicians interact with and perceive these 
models would provide valuable insights into their practical utility 
and integration into medical education and practice.
15.5 Comparative Analysis of Domain-Specific Approaches: 
Comparing different approaches to domain specialization (fine-
tuning, RAG, prompt engineering, etc.) across multiple medical 
specialties would help identify the most effective strategies for 
developing specialized medical AI tools.
15.6 Error Analysis: Detailed analysis of the types of questions 
and topics where models make errors would provide insights into 
specific knowledge gaps and areas for improvement.
15.7 Reasoning Quality Studies: Expanding to diverse clinical 
scenarios across multiple specialties, developing more standardized 
metrics for reasoning quality assessment, implementing interactive 
evaluation protocols to assess iterative clinical reasoning, and 
conducting prospective studies on the impact of LLM reasoning 
assistance on clinical decision quality
15.8 Ethical and Implementation Considerations: Exploring the 
ethical implications of AI integration in medical education and 
practice, including issues related to accountability, transparency, 
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and appropriate reliance on AI tools.

16. Conclusions
This comprehensive evaluation of language models in 
neurosurgery demonstrates the significant potential of domain-
specific approaches like AtlasGPT. The performance hierarchy 
observed—with the domain-specific model outperforming even 
advanced sLLMs—provides compelling evidence for the value 
of specialized knowledge integration in AI systems for healthcare 
applications. Our multidimensional analysis, which examined not 
only accuracy but also error distribution, hallucination patterns, 
and reasoning quality with the lowest occurrences being skewed 
to AtlasGPT over all sLLMs and revealing both the promise and 
persistent limitations of current AI technologies in neurosurgery. 
The findings suggest several important implications for clinical 
practice and medical education. While high-performing models 
show potential as educational tools and decision support systems, 
the identified hallucination patterns and reasoning limitations 
underscore the continued necessity for human oversight. The 
RAG approach implemented in AtlasGPT demonstrates a 
particularly promising direction for AI development in specialized 
domains, combining the strengths of general language capabilities 
with access to domain-specific knowledge. Despite limitations 
including the text-only format and static evaluation approach, 
this study advances our understanding of how AI systems can be 
optimized for specialized medical applications. Future research 
should expand to multimodal content, real-world clinical scenarios, 
and longitudinal assessment to further refine these technologies. 
As AI continues to evolve, thoughtful implementation focusing 
on domain specialization, structured reasoning approaches, and 
appropriate integration into clinical workflows will be essential to 
realize the potential of these technologies while prioritizing patient 
safety and care quality.
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