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Abstract
Differential privacy has emerged as a popular privacy framework for providing privacy preserving noisy query answers 
based on statistical properties of databases. It guarantees that the distribution of noisy query answers changes very 
little with the addition or deletion of any tuple. Differential enjoys popular reputation that providing privacy without 
building any assumptions about the data and protecting against attackers who know all but one record. Differential 
privacy is a relatively new field of research. Most users have a limited experience in managing differential privacy 
parameters and achieving a suitable level of privacy without affecting the quality of the analysis. A vast majority of users 
is still learning how to effectively apply differential privacy in practice. In this paper, we discussed: on the proposed 
augmented framework which enables the differential privacy data of any given query, the various differential privacy 
techniques, metrics for the privacy & utility tradeoff of the data and efficacy of the framework. Discussed state of the art 
of different differential privacy techniques defined in the framework Laplace, Laplace bounded, Randomized response 
and Exponential for different data types. The augmented framework consists of three parts one on privacy parameter 
inputs to control interactively and iteratively on the querying the data , the various differential privacy techniques, the 
metrics to measure privacy and utility threshold which allows the data analyst to evaluate the accuracy of the privacy 
safe data for selecting the privacy guaranteed data within the given privacy budget. The framework takes any dataset 
as input and, generates another dataset which is structurally and statistically very similar original dataset. The newly 
generated dataset has much stronger privacy guarantee on the selected sensitive and non-sensitive datatypes. We have 
also demonstrated analytical models developed using the privacy safe data from the framework as substitute to the 
models developed on the original datasets. We have demonstrated the framework and analytical model with sample data 
sets to present the similarity of original and differential privacy safe datasets.
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1. Introduction
1.1 Data Privacy
The volume of available data is increasing inexorably, robust, 
and forward-looking technology is much needed to protect this 
data from adversaries, who may be equipped with sophisticated 
attack methodologies and superior computing powers. Securing 
only the sensitive data fields is no longer adequate for ensuring 
data privacy. With enhanced computing power, even the non-
sensitive data fields can be used to obtain the background 
knowledge and make educated guesses about the sensitive or 
private information. On the other hand, there has been a growing 
adoption of analytics and data science for data driven decision 
making. While traditional privacy methods, like masking or 
anonymizing the sensitive and non-sensitive data fields have 
been useful, they also obstruct the data owner’s ability to get 
valuable insights from analytical models. 

Therefore, there is a demand for extracting useful insights from 
data and analytical models while still ensuring data privacy. 

This dual requirement of ensuring privacy and utility of data 
simultaneously has been presenting challenges at the existing 
data privacy techniques. The objective of privacy preserving 
data analysis is to release necessary information without 
compromising privacy of individuals. Differential Privacy (DP), 
which was introduced by Dwork is an emerging data privacy 
technique which provides utility data with guaranteed privacy 
[1]. DP aims to ensure that the output of the algorithm does not 
significantly depend on any individual’s data and guarantee 
that an adversary will not be able to confidently infer about 
any information for any individual in the database. The DP is 
getting much importance with an increasing need of privacy safe 
datasets to be utility focused. The data analysis performed on the 
DP enabled datasets provide useful information just like the real 
dataset. Also, the analytical models developed on these datasets 
can perform at levels almost similar to the models developed on 
real data. These privacy safe datasets help in sharing data within 
or outside business units for analytical model development and 
these models will have direct applicability as real data models. 
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The important fact about DP is that it creates privacy enabled 
data for complex statistical calculations, Machine Learning 
(ML) algorithms, Artificial Intelligence (AI) algorithms and 
can be applied to several different functions where the privacy 
dataset will have similar statistical properties of the original 
dataset. 

1.2 Differential Privacy
DP is not a method, but rather a property that an analysis (or 
algorithm) may have. Furthermore, DP is not a property of 
merely a particular output of an analysis, but of the information 
relationship the analysis creates between its input and its output. 
In contrast with other privacy approaches which use syntactic 
property, the DP treats semantic property of the relationship 
between analysis input and output distributions by restricting 
the observer to learn about the single contributor [2]. The DP 
guarantee is a worst-case guarantee as it does not depend on 
specific input or output, nor does it depend on the specifics of 
an attempted attack. Differential privacy has a parameter epsilon 
(ε) which represents the strength of the privacy guarantee. The 
parameter ‘ε’ is a non-negative numerical value and can be used 
as a means of quantifying privacy risks. The differential privacy 
framework provides tools for reasoning about how ‘ε’ changes 
because of multiple uses of differentially private analyses.

The formal definition of differential privacy, which intuitively 
will guarantee that a randomized algorithm behaves similarly on 
similar input databases. 

Definition 1.1: (Differential Privacy). A randomized algorithm 
M with domain N|X|   is (ε, δ)-differentially private if for all S ⊆ 
Range(M) and for all x,y ∈ N|X|  

If δ = 0, we say that M is ε-differentially private

The DP guarantee is achieved by adding uncertainty to the 
outcome of an analysis, often in the form of noise perturbation. 
The perturbation magnitude affects the level of privacy 
protection, in terms of how similar the outcome distributions are 
in the presence and absence of an individual’s data. As a rule of 
thumb, achieving a higher level of privacy (that is more similar 
outcomes in the presence or absence of any single individual’s 
data) requires adding a higher level of noise and hence results in 
lesser accuracy. The uncertainty needed for DP is less than other 
types of uncertainties like sampling errors and collection errors. 
DP techniques protect user privacy while allowing meaningful 
analysis over the dataset. By adding noise to individual data 
points, it protects the user’s privacy, but on aggregating these 
data points, the noise is averaged out, obtaining a result closer 
to the original one. 

There are various differential techniques like Laplace, Bounded 
Laplace, Randomized response technique and Exponential 
methods. These differential techniques can be controlled on 

the ‘ε’ and sensitivity (‘s’) parameter to achieve right tradeoff 
of privacy and utility of the data [3]. Even though there are 
different methods available for DP enabled data for synthetic 
data and for differential privacy data, there is a need for having 
a single framework where a data analyst can iteratively execute 
the query to get the privacy enabled data for different data types 
within the privacy budget [4]. To achieve this, the data analyst 
must use multiple queries, selecting different techniques and 
different metrics for measuring the utility and privacy trade off 
to arrive on the privacy enabled data. 

If the organization or data analyst get different types of data, it 
becomes difficult to decide the technique, parameter, and metrics 
that must be used to measure the privacy enabled data and the 
costs may overrun the privacy budget. The proposed augmented 
framework consists of different DP techniques, easy parameter 
selection and metrics to create the right data for a set of different 
data types in iterative and interactive process within the privacy 
budget. The augmented framework provides Laplace, Laplace 
bounded, Randomized response and Exponential techniques 
which can be used by the data analyst based on data properties. 
Any new differential privacy techniques or traditional techniques 
can also be easily integrated into the framework. The augmented 
framework and techniques are discussed in the next section.

1.3 Laplace Mechanism
The technique is the go-to function of differential privacy having 
widespread applications on numerical data. The strength of the 
technique lies in its computational and mathematical simplicity. 
The technique simply computes function (f) and perturbs each 
data point with noise drawn from the Laplace distribution. 
The scale of the noise will be controlled by using the privacy 
parameter ‘ε’.

The variance of this distribution is σ2  = 2b2. 

Definition 1.2 (The Laplace Mechanism). Given any function 
f∶ N|X|  → Rk , the Laplace mechanism is defined as: 

                            ML(x,f(•),ε)= f (x) + (Y1,...,Yk)  
         where Yi  are i.i.d.random variables drawn from Lap

Where i.i.d. stands for independent and identical distribution.[8]

1.4 Bounded Laplace
Laplace distribution is infinite, and it is common for the output 
of the Laplace mechanism to fall outside the range of the query. 
The bounded approach is to support the response mechanism, 
and then sample directly from the output domain (that is 
by inverse transform sampling). This can also be achieved 
through rejection sampling, by continually redrawing from the 
unbounded distribution until the output falls within the domain. 
This whole process is called bounding, as pure outputs of the 
mechanism are bounded by design [5].
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The variance of this distribution is          .  
Definition 1.2 (The Laplace Mechanism). Given any function      | |       , the Laplace 
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Where i.i.d. stands for independent and identical distribution.[8] 

 

Bounded Laplace: Laplace distribution is infinite, and it is common for the output of the Laplace 
mechanism to fall outside the range of the query. The bounded approach is to support the response 
mechanism, and then sample directly from the output domain (that is by inverse transform sampling). 
This can also be achieved through rejection sampling, by continually redrawing from the unbounded 
distribution until the output falls within the domain. This whole process is called bounding, as pure 
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Random Response: Definition 1.4: The standard notation is Random response is (     ) denotes a 
probability space.         *   + is then a random variable for each     , -, dependent on the 
truthful value     reference [11]. 

 We define the randomized response mechanism by  

 (       |       )        

Consider an activity X. Simulate the probability distribution space of X using the epsilon as bias. From the 
distribution space depending upon the truthful value the answer will be truthful or complementary of 
true response. 

Exponential Technique: This technique can be considered a natural building block for answering 
queries with arbitrary utilities (may be within the arbitrary non-numeric range) while still preserving 
differential privacy. This employs a utility function which maps the database/output pairs to their utility 
scores and when invoked, it tries to provide the best pair with highest utility score as the output 
depending on the epsilon. Formal definition of exponential mechanism is as follows: 
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 We define the randomized response mechanism by  

 (       |       )        

Consider an activity X. Simulate the probability distribution space of X using the epsilon as bias. From the 
distribution space depending upon the truthful value the answer will be truthful or complementary of 
true response. 

Exponential Technique: This technique can be considered a natural building block for answering 
queries with arbitrary utilities (may be within the arbitrary non-numeric range) while still preserving 
differential privacy. This employs a utility function which maps the database/output pairs to their utility 
scores and when invoked, it tries to provide the best pair with highest utility score as the output 
depending on the epsilon. Formal definition of exponential mechanism is as follows: 

Random Response: Definition 1.4: The standard notation is 
Random response is (Ω,F,P) denotes a probability space. Xi : Ω 
→ {0,1} is then a random variable for each i : [n], dependent on 
the truthful value xi. Reference [6].
We define the randomized response mechanism by 

                   P(Xi  = k | xi  = j) = pjk

Consider an activity X. Simulate the probability distribution 
space of X using the epsilon as bias. From the distribution space 
depending upon the truthful value the answer will be truthful or 
complementary of true response.

1.5 Exponential Technique 
This technique can be considered a natural building block for 
answering queries with arbitrary utilities (may be within the 
arbitrary non-numeric range) while still preserving differential 
privacy. This employs a utility function which maps the database/
output pairs to their utility scores and when invoked, it tries to 
provide the best pair with highest utility score as the output 
depending on the epsilon. Formal definition of exponential 
mechanism is as follows:
Utility function u: N |X| × R → R, which maps database/output 
pairs to utility scores

Definition 1.5 (The Exponential Mechanism): The exponential 
mechanism ME (x,u,R)selects and outputs an element r ∈ R with 
probability proportional to exp 

the privacy loss is approximately:

1.6 Sensitivity Parameter (s)
It is a function that reflects the amount of function’s output 
that will change when its input changes. The amount of noise 
necessary to ensure DP for a given query depends on the 
sensitivity of the query. The framework supports sensitivity 
parameter as ‘1’ and ‘min-max’ sensitivity. DP local means noise 
is added to individual data before it is centralized in a database. 
DP global means noise is added to raw data after it is collected 
from several individuals. In this framework, we have applied 
global DP where noise is added to original data items when 
querying the database.

1.7 Privacy Budget
The parameter is denoted as epsilon (ε). ‘ε’ controls how much 
noise or randomness is added to the raw dataset. The differential 
privacy algorithms are based on the parameter ‘ε’, which 
controls the trade-off between privacy and utility of data. A high 
value of ‘ε’ means more accurate but less private data. It is the 
maximum distance between a query on database (x) and the 
same query on database (y). It is also called metric of privacy 
loss at a differential change in data (that is adding or removing 
1 entry). Privacy budget is a cumulative sum of epsilon (ε) for 
each database query. Privacy budget within control means the 
number of queries executed on database are minimum so that 
there will be no exposure of the data.

2. The Augmented Framework
Currently, there are several ways to implement DP with various 
methods and parameters. The proposed framework will follow 
augmented model architecture where a data analyst can use the 
system iteratively and interactively to create privacy data for a 
given query by using different DP techniques (Laplace, Bounded 
Laplace, Randomized Response and Exponential) with privacy 
and utility guarantee. We have various DP techniques like 
Laplace, Bounded Laplace for numerical data, Random response 
for binary and Exponential technique for binary/categorical 
data which are essential in protecting the privacy of sensitive 
and non-sensitive data. The framework also consists of some 
traditional masking techniques particularly for text data which 
is not part of the discussion. 

The proposed framework aims to facilitate any given user 
scenario, based on the DP techniques, sensitivity(‘s’), ‘ε’ value 
and data type of variables, to provide privacy safe data with the 
defined metrics and measure the utility and privacy tradeoff. 
The architecture allows implementing iterative and interactive 
selection of DP safe data within utility and privacy tradeoff based 
on the metrics. The framework consists different privacy metrics 
like privacy match, privacy DigiMatch and privacy error to 
demonstrate the strength of the privacy. Different utility metrics 
like mean, standard deviation, correlation charts, histograms, 
and kernel density graphs (KDE) have been used for illustrating 
data similarity.

In this framework, the data analyst submits queries iteratively 
in an interactive way, based on the observed metrics of the 
previous queries, and considering the privacy and utility of the 
data submits in the next iteration. This framework addresses 
issues of correct technique selection, parameters, and metrics for 
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utility and privacy trade off criteria of the privacy enabled data 
and controls the privacy budget.

Algorithm: Iterative query 
1.	 Start
2.	 Profile the data to know the data types
3.	 Input Privacy budget, Initial ‘ε’, sensitivity (s)=1
4.	 Select DP techniques for the data types and build the query
5.	 Execute the Query on the data Q(Di)

6.	 Measure privacy, Utility Metrics 
7.	 If Privacy and Utility Metrics within Tolerance level then 

Go to Step 11
8.	 Else Privacy budget ← Privacy budget – epsilon (‘ε’)
9.	 If Privacy budget is exhausted, then Go to Step 12
10.	 Else change the epsilon (‘ε’) and go to Step 4
11.	 Stop, consider the data for Privacy
12.	 Stop

The Augmented framework Architecture:

correlation charts, histograms, and kernel density graphs (KDE) have been used for illustrating data 
similarity. 

In this framework, the data analyst submits queries iteratively in an interactive way, based on the 
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Privacy & Utility Metrics : The framework consists of different types of metrics for measuring privacy 
and utility tradeoff of the data. Three types of privacy measures are defined to enable privacy guarantee 
for the data. The techniques offer more diligent understanding of the privacy enablement of the data. 
The techniques are Privacy Match, Privacy DigiMatch and Privacy Error. The framework supports utility 
metrics like average, and standard deviation. It also supports visualization graphs like Histogram, KDE, 
Violin plot, Box plot and Pie charts to check the statistical properties of original data and privacy safe 
data.    

2.1 Privacy & Utility Metrics
The framework consists of different types of metrics for 
measuring privacy and utility tradeoff of the data. Three types 
of privacy measures are defined to enable privacy guarantee for 
the data. The techniques offer more diligent understanding of 
the privacy enablement of the data. The techniques are Privacy 
Match, Privacy DigiMatch and Privacy Error. The framework 
supports utility metrics like average, and standard deviation. It 
also supports visualization graphs like Histogram, KDE, Violin 
plot, Box plot and Pie charts to check the statistical properties of 
original data and privacy safe data. 

2.2 Privacy Match
It is the privacy percentage based on number of matches, the 
metric count number of matches of original column and DP 
columns. If ‘m’ is the number of matches and column count is 
‘n’ then privacy percentage is (1-(m/n))*100. If the percentage 
is higher, then it means that there is more variation in the private 
column data.

2.3 Privacy DigiMatch
Privacy percentage based on number of digits mismatch. It will 
consider the pattern of the digits and find the percentage of 
difference. The metrics consider original value and DP column 
value, whichever digits are small it compares with other number 
each digit position. It takes ‘k’ as number of digits does not 
match and calculate percentage as (k*100/m) for all the values 
for all the ‘m’ digits. The overall privacy percentage is average 
percentage of numbers of rows. If the privacy percentage is high, 
then it means the digit patterns of the columns variate largely.

2.4 Privacy Error
It is the privacy percentage based on distance difference 
between original column and DP column. The data elements of 

the columns are subtracted and divided by the original element. 
This indicates how much the private data elements differ from 
the original data elements. If the privacy percentage is high, then 
it means that difference exists between original and DP column.

3. Results & Discussion
The proposed augmented framework was applied on two 
dissimilar data sets with different selection of differential privacy 
techniques and parameters. Table 1.1 shows original dataset of 
some insurance business data and table-1.2 is the DP safe data 
queried from the framework on the original data. The analytical 
model logistic regression was applied on the dataset1 for original 
and DP safe data. The model derived from the original data 
and privacy safe data had similar performance. The Bounded 
Laplace technique was applied on numerical datatype variables 
‘Annual_Premium’, ‘Age’ and ‘Sum_Assured’ and Exponential 
technique was applied for categorical data variables ‘purchase_
reason’ and ‘employment’. Table-1.3 shows the privacy metrics 
of the data of different queries for privacy parameter ‘ε’=0.75, 
‘ε’=0.25, ‘ε’=0.05 and ‘ε’=0.005. The metrics for ‘ε’=0.005 
show a strong agreement between privacy and utility tradeoff 
of the original and DP safe data within privacy budget of 1.5. 
Fig.2, fig.3 and fig. 4 provide the density curves for ‘Annual_
Premium’, ‘Sum_Assured and violin curve for ‘Age’ variables 
which demonstrates that a strong statistical similarity exists 
between the datasets. Fig. 6 which shows correlation charts 
of original and privacy datasets, also demonstrates statistical 
similarity between datasets. The logistic regression model is 
trained on the DP data applied on original data to test the DP 
model accuracy. Table 1.4 shows the accuracy of the logistic 
regression on original data model, privacy safe data model and 
privacy data model tested on the original data. The accuracy 
of the original data model and privacy data models was very 
similar. The performance of the privacy data model which was 
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tested on original data is of same accuracy of the original data 
model. The gain charts of the models in Fig. 5 demonstrate 
the same on the accuracy of the models. This demonstrated 
that the model built on DP safe data using this framework can 
be successfully used as a model on the original data. Dataset 
2 is from banking domain to test how privacy safe clustering 
data model will perform compared with the model on original 
data. The query constituted of hybrid techniques like Laplace, 
Exponential and traditional masking. Traditional masking was 
applied on variable ‘city-name’ because the DP techniques 
cannot hide the text data and masking is very important for 
non-disclosure of text variables. Tables 2.1 and 2.2 provide 
the original dataset and respective DP safe dataset. The queries 
using different parameters of ‘ε’=0.25, ‘ε’=0.05 with sensitivity 
‘s’=1 applied on the dataset. Fig. 7 shows that the similarity of 
variable ‘Income’ for ‘ε’=0.05 is approximately same as the 
original column data. The clustering model was applied on the 
original and privacy safe data for three cluster solutions. Fig. 
8 demonstrates that models based on original data and privacy 
safe data provided similar cluster solution and table 2.3 shows 
that even cluster percentages are more or less same for both the 
datasets. This demonstrates that proposed augmented hybrid 
framework enabled for easy selection of DP data within the 
privacy budget and the models developed on privacy safe data 
can substitute the model on the original data. In both the cases 
of datasets the augmented framework demonstrated that the 
optimum privacy and utility tradeoff DP safe data can be queried 
within the privacy budget. The analytical model developed on 
privacy safe data can be used as proxy for the original model. 
The augmented framework will help in providing privacy 
guaranteed data for model development as an alternative to 
original data models within the privacy budgets.

4. Conclusion
Differential Privacy may become the de facto standard to ensure 
privacy, as it is fast becoming the most trending research topic 
in privacy-enhancing computation and used in a wide range of 
analytical applications. 
The Augmented framework presented in this paper consists of 
three parts:
· The first part focuses on the Differential Privacy techniques - 
Laplace, Bounded Laplace, Random Response, and Exponential 
Technique. 
· The second part describes usage of parameters viz. privacy 
parameter ‘ε’, sensitivity (‘s’) and privacy budget. 
·    The third part discusses the iterative and interactive processing 
of queries and the metrics for optimum privacy & utility tradeoff 
enabling the selection of differential privacy data.   
 
The experiment, results, and the discussion thereafter of using 
the Augmented framework demonstrates that it is easy to select 
and test queries to get the right privacy safe data using the 
suggested privacy metrics within the budget. The comparison of 
analytical models developed using DP safe data and the original 
datasets  affirms that the Augmented framework helps the data 
analyst to a) select the right privacy and utility tradeoff data 
and, b) the DP data models that will be the right replacement 
for the original models. The proposed Augmented framework 
can be seamlessly configured for any new DP techniques and 
new parameters. In the last two years, new techniques are 
emerging in numerical, text based Differential Privacy. Research 
is underway in Differential Privacy inclusive of AI models that 
may lead to better privacy safe data analytics.
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Gender Product_
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Product_
Type

Decision Purchase
_Reason

Age_at_P
OS

Manual_
Decision

Employment Sum_Ass
ured

Annual_P
remium

Evidence

1 BP F Life JL AST MP 55 Y Employed 65038 600 Y
2 IFA F Life SL AST BP 37 Y Employed 300000 442.8 Y
3 IFA M Life SL AST FP 42 N Employed 200000 210 N
4 IFA M Life JL AST FP 32 Y Employed 130000 180.36 Y
5 BP M Life SL AST MP 43 N Employed 157500 217.92 N
6 IFA F CIC JL AST MP 36 N Employed 80000 360 Y
7 BP M Life JL AST MP 31 N Employed 127995 196.44 N
8 IFA M CIC SL AST MP 24 N Employed 90000 269.16 N
9 IFA M Life SL AST FP 39 N Employed 45000 56.16 N

10 BP M Life SL AST MP 47 N Employed 124365 703.08 N

sl_no
_d

Sales_Ch
annel_d

Gender_d Product_
Group_d

Product_
Type_d

Decision_d Purchase_
Reason_d

Age_at_P
OS_d

Manual_D
ecision_d

Employment_d Sum_Ass
ured_d

Annual_Pr
emium_d

Evidence_d
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4 BP F CIC SL AST FP 29 Y Employed 130485 128 Y
5 IFA M Life SL AST FP 49 Y Contractworker 157376 208 N
6 IFA F CIC JL ANST MP 49 N Employed 80654 548 N
7 BP F Life JL AST MP 27 N Unemployed 127910 435 N
8 IFA M CIC SL ANST BP 74 N Employed 90117 47 Y
9 BP M Life SL AST FP 64 N Unemployed 44974 93 N

10 IFA M Life JL AST MP 60 N Retired 124338 462 N

purchase_reason employment
epsilon pure_match

(%)
privacy-digit 

(%)
privacy_error 

(%)
mean pure_match 

(%)
privacy-digit 

(%)
privacy_error 

(%)
mean pure_match 

(%)
privacy-digit 

(%)
privacy_error 

(%)
mean

0.075 99.98 99 6.58 373 95.48 95 27.55 44 96.35 95 0.01 140770 67.8 82.87
0.05 100 99 9.59 374 96.99 96 36.01 45 97.45 96 0.02 140770 67.12 85.61

0.025 100 99 18.74 377 97.86 97 46.87 45 98.86 97 0.05 140769 66.4 81.5
0.005 100 99 83.4 450 98.43 98 53.09 46 99.76 98 0.25 140769 68.49 85.23

mismatch%

Categorical _Exponential Data type- Numerical -Laplace 
Var. Annual_Premium original data mean =373 Var. Age original data mean = 43 Var. Sum_Assured Original data mean
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Table 1.1 Original Dataset1

Table1.2 Differential Privacy data
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Table1.4: 

 Model metrics & accuracy of test data1 of 
table2 

  Precision Recall Accuracy 
Original 
Data 

0 0.80 0.83 0.78 

 1 0.77 0.73  
DP Data 
model 

0 0.72 0.72 0.69 

 1 0.66 0.65  
DP model 
on original 
data 

0 0.81 0.82 0.78 

 1 0.76 0.75  

 

Table 2.1: Banking Loan dataset2 
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Original data 
  Differential Privacy data 

Age L_Mon A_Bal L_Amt 

 

Age_D
P 

L_Mon_
DP 

A_Bal_D
P 

L_Amt_
DP 

52 40 607.081 65020 
 

32 330 691.466 65247 
31 20 415.038 300005 

 
25 83 550.603 301232 

74 25 181.76 199999 
 

23 173 461.594 199904 
32 11 128.355 130013 

 
62 24 306.318 129742 

62 41 195.669 157528 
 

22 148 171.131 157436 
47 20 398.273 80005 

 
43 182 112.395 80131 

40 18 145.129 127988 
 

52 308 90.358 128246 
23 9 264.45 90034 

 
65 54 182.133 90043 

24 7 44.791 45018 
 

74 96 175.041 45121 

75 12 718.057 124380 
 

41 86 
1003.92

4 125029 
48 10 79.084 37992 

 
42 130 175.492 37978 

67 24 119.634 57255 
 

58 145 176.766 56733 
50 56 754.611 187986 

 
30 95 346.145 187919 

L_Mon ->  Tenure of loan pending   L_Amt -> Loan Amount 
 

Figure 2.2: DP Privacy Dataset2 

Sl.No Loan_ID Income Lterm City_name  lati  long
0 LP001002 5842 155 Delhi 28.66 77.23
1 LP001003 4583 266 Mahārāshtra 18.9667 72.8333
2 LP001005 3019 98 West Bengal 22.5411 88.3378
3 LP001006 2604 152 Karnātaka 12.9699 77.598
4 LP001008 5982 179 Tamil Nādu 13.0825 80.275
5 LP001011 5364 334 Telangana 17.3667 78.4667
6 LP001013 2311 86 Mahārāshtra 18.5196 73.8553
7 LP001014 3002 146 Gujarāt 23.03 72.58
8 LP001018 4000 200 Gujarāt 21.17 72.83
9 LP001020 12853 111 Uttar Pradesh 26.847 80.947

10 LP001024 3186 29 Rājasthān 26.9167 75.8667
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Table 2.3: Cluster Results 

Sl Loan_ID DP-IncomeDP-Ltermcity_name_m DP-lati DP-long
0 LP001002 5859 360 SCCYVXXAD 25.153 76.726
1 LP001003 4586 180 UHPZVUGUI 12.154 92.909
2 LP001005 2986 240 QXFTWQUXL 23.213 93.236
3 LP001006 2575 60 OTDQKDOFD 13.556 93.451
4 LP001008 6014 360 HPXPYZKIF 8.294 90.598
5 LP001011 5402 360 GHRDGYGST 12.868 81.22
6 LP001013 2340 360 FOSTTGDIP 18.773 73.278
7 LP001014 3032 12 OIRRQWQPE 22.656 77.521
8 LP001018 3996 360 INAPNBERB 29.219 82.567
9 LP001020 12856 360 JIIYLGVEI 27.831 77.359

10 LP001024 3201 240 FUJQJVJJJ 17.869 93.689 

 

 

F 

 

Table 2.3: Cluster Results 

Sl Loan_ID DP-IncomeDP-Ltermcity_name_m DP-lati DP-long
0 LP001002 5859 360 SCCYVXXAD 25.153 76.726
1 LP001003 4586 180 UHPZVUGUI 12.154 92.909
2 LP001005 2986 240 QXFTWQUXL 23.213 93.236
3 LP001006 2575 60 OTDQKDOFD 13.556 93.451
4 LP001008 6014 360 HPXPYZKIF 8.294 90.598
5 LP001011 5402 360 GHRDGYGST 12.868 81.22
6 LP001013 2340 360 FOSTTGDIP 18.773 73.278
7 LP001014 3032 12 OIRRQWQPE 22.656 77.521
8 LP001018 3996 360 INAPNBERB 29.219 82.567
9 LP001020 12856 360 JIIYLGVEI 27.831 77.359
10 LP001024 3201 240 FUJQJVJJJ 17.869 93.689

Figure 2.2: DP Privacy Dataset2

 

 

References. 

[1] Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and 
consistency too: a holistic solution to contingency table release. In: Proceedings of the twenty-sixth ACM 
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM (2007) 273–282 

[2] Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially private histograms 
through consistency. Proc. VLDB Endow. 3(1-2) (September 2010) 1021–1032 

[3] A. Bhaskara, D. Dadush, R. Krishnaswamy, and K. Talwar. Unconditional differentially private 
mechanisms for linear queries. In H. J. Karloff and T. Pitassi, editors, Proceedings of the Symposium on 
Theory of Computing Conference, Symposium on Theory of Computing, New York, NY, USA, May 19–22, 
2012, pages 1269–1284. 2012. 

[4] Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winsle�, M.: Functional mechanism: Regression analysis under 
differential privacy. Proc. VLDB Endow. 5(11) (July 2012) 1364–1375 

[5] K. Nissim, C. Orlandi, and R. Smorodinsky. Privacy-aware mechanism design. In Association for 
Computing Machinery Conference on Electronic Commerce, pages 774–789. 2012 

[6] Vaidya, J., Shafiq, B., Basu, A., Hong, Y.: Differentially private Naive Bayes classification. In: 
Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and 
Intelligent Agent Technologies (IAT) - Volume 01. WI-IAT ’13, IEEE Computer Society (2013) 571–576 

[7] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and statistical minimax rates,” in 
Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 
429–438, Berkeley, CA, USA, October 2013 

[8] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy, Foundations and 
Trends”, Theoretical Computer Science Vol. 9, Nos. 3–4 (2014) 211–407 c 2014 DOI: 
10.1561/0400000042 

[9] Holohan, N., Leith, D.J., Mason, O.: Differential privacy in metric spaces: Numerical, categorical and 
functional data under the one roof. Information Sciences 305, (2015) 256–268 

[10] Liu, F.: Statistical properties of sanitized results from differentially private Laplace mechanisms with 
noninformative bounding. ArXiv e-prints 1607.08554 [stat.ME] (July 2016) 

[11] Naoise Holohan, Douglas J. Leith, Oliver Mason , “Optimal Differentially Private Mechanisms for 
Randomised Response” , arXiv:1612.05568v1 [cs.CR] 16 Dec 2016. 

Cluster 
Number

Original Data 
Count

DP Data 
Count

0 430 (70%) 435 (71%)
1 144 (23%) 135 (2%) 
2 40 (6%) 44 (7%)

Table 2.3: Cluster Results



Volume 3 | Issue 1 | 9J Math Techniques Comput Math, 2024

Copyright: ©2024 P. H. Anantha Desik, et al. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.

https://opastpublishers.com

References
1.	 Dwork, C., & Roth, A. (2014). The algorithmic foundations 

of differential privacy. Foundations and Trends® in 
Theoretical Computer Science, 9(3–4), 211-407.

2.	 Dr. Hector Page, Privitar Charlie Cabot, Privitar Professor 
Kobbi Nissim, Differential privacy: an introduction 
for statistical agencies, , Georgetown University, 
December2018.

3.	 Alvim, M., Chatzikokolakis, K., Palamidessi, C., & Pazii, 
A. (2018, July). Local differential privacy on metric spaces: 
optimizing the trade-off with utility. In 2018 IEEE 31st 
Computer Security Foundations Symposium (CSF) (pp. 
262-267). IEEE.

4.	 Ping, H., Stoyanovich, J., & Howe, B. (2017, June). 
Datasynthesizer: Privacy-preserving synthetic datasets. 
In Proceedings of the 29th International Conference on 
Scientific and Statistical Database Management (pp. 1-5).

5.	 Holohan, N., Antonatos, S., Braghin, S., & Mac Aonghusa, 
P. (2018). The bounded laplace mechanism in differential 
privacy. arXiv preprint arXiv:1808.10410.

6.	 Holohan, N., Leith, D. J., & Mason, O. (2017). Optimal 
differentially private mechanisms for randomised response. 
IEEE Transactions on Information Forensics and Security, 
12(11), 2726-2735.

7.	 Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, 
F., & Talwar, K. (2007, June). Privacy, accuracy, and 
consistency too: a holistic solution to contingency table 
release. In Proceedings of the twenty-sixth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database 
systems (pp. 273-282).

8.	 Hay, M., Rastogi, V., Miklau, G., & Suciu, D. (2009). 
Boosting the accuracy of differentially-private histograms 
through consistency. arXiv preprint arXiv:0904.0942.

9.	 Bhaskara, A., Dadush, D., Krishnaswamy, R., & Talwar, 
K. (2012, May). Unconditional differentially private 
mechanisms for linear queries. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing 
(pp. 1269-1284).

10.	 Zhang, J., Zhang, Z., Xiao, X., Yang, Y., & Winslett, M. 
(2012). Functional mechanism: Regression analysis under 
differential privacy. arXiv preprint arXiv:1208.0219.

11.	 Nissim, K., Orlandi, C., & Smorodinsky, R. (2012, June). 
Privacy-aware mechanism design. In Proceedings of the 
13th ACM conference on electronic commerce (pp. 774-

789).
12.	 Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, 

November). Differentially private naive bayes classification. 
In 2013 IEEE/WIC/ACM International Joint Conferences on 
Web Intelligence (WI) and Intelligent Agent Technologies 
(IAT) (Vol. 1, pp. 571-576). IEEE.

13.	 Duchi, J. C., Jordan, M. I., & Wainwright, M. J. (2013, 
October). Local privacy and statistical minimax rates. In 
2013 IEEE 54th Annual Symposium on Foundations of 
Computer Science (pp. 429-438). IEEE.

14.	 Holohan, N., Leith, D. J., & Mason, O. (2015). Differential 
privacy in metric spaces: Numerical, categorical and 
functional data under the one roof. Information Sciences, 
305, 256-268.

15.	 Liu, F. (2016). Statistical properties of sanitized results from 
differentially private laplace mechanism with univariate 
bounding constraints. arXiv preprint arXiv:1607.08554.

16.	 Smith, A., Thakurta, A., & Upadhyay, J. (2017, May). Is 
interaction necessary for distributed private learning?. In 
2017 IEEE Symposium on Security and Privacy (SP) (pp. 
58-77). IEEE.

17.	 Liu, B., Zhou, W., Zhu, T., Gao, L., & Xiang, Y. (2018). 
Location privacy and its applications: A systematic study. 
IEEE access, 6, 17606-17624.

18.	 Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., & 
Wang, T. (2018, May). Privacy at scale: Local differential 
privacy in practice. In Proceedings of the 2018 International 
Conference on Management of Data (pp. 1655-1658).

19.	 Kalantari, K., Sankar, L., & Sarwate, A. D. (2018). Robust 
privacy-utility tradeoffs under differential privacy and 
hamming distortion. IEEE Transactions on Information 
Forensics and Security, 13(11), 2816-2830.

20.	 Wagner, I., & Eckhoff, D. (2018). Technical privacy metrics: 
a systematic survey. ACM Computing Surveys (CSUR), 
51(3), 1-38.

21.	 Duchi, J. C., Jordan, M. I., & Wainwright, M. J. (2018). 
Minimax optimal procedures for locally private estimation. 
Journal of the American Statistical Association, 113(521), 
182-201.

22.	 Yang, X., Gao, L., Zheng, J., & Wei, W. (2020). Location 
privacy preservation mechanism for location-based service 
with incomplete location data. IEEE Access, 8, 95843-
95854.

https://www.nowpublishers.com/article/Details/TCS-042
https://www.nowpublishers.com/article/Details/TCS-042
https://www.nowpublishers.com/article/Details/TCS-042
https://ieeexplore.ieee.org/abstract/document/8429310/
https://ieeexplore.ieee.org/abstract/document/8429310/
https://ieeexplore.ieee.org/abstract/document/8429310/
https://ieeexplore.ieee.org/abstract/document/8429310/
https://ieeexplore.ieee.org/abstract/document/8429310/
https://dl.acm.org/doi/abs/10.1145/3085504.3091117
https://dl.acm.org/doi/abs/10.1145/3085504.3091117
https://dl.acm.org/doi/abs/10.1145/3085504.3091117
https://dl.acm.org/doi/abs/10.1145/3085504.3091117
https://arxiv.org/abs/1808.10410
https://arxiv.org/abs/1808.10410
https://arxiv.org/abs/1808.10410
https://ieeexplore.ieee.org/abstract/document/7967624/
https://ieeexplore.ieee.org/abstract/document/7967624/
https://ieeexplore.ieee.org/abstract/document/7967624/
https://ieeexplore.ieee.org/abstract/document/7967624/
https://dl.acm.org/doi/abs/10.1145/1265530.1265569
https://dl.acm.org/doi/abs/10.1145/1265530.1265569
https://dl.acm.org/doi/abs/10.1145/1265530.1265569
https://dl.acm.org/doi/abs/10.1145/1265530.1265569
https://dl.acm.org/doi/abs/10.1145/1265530.1265569
https://dl.acm.org/doi/abs/10.1145/1265530.1265569
https://arxiv.org/abs/0904.0942
https://arxiv.org/abs/0904.0942
https://arxiv.org/abs/0904.0942
https://dl.acm.org/doi/abs/10.1145/2213977.2214089
https://dl.acm.org/doi/abs/10.1145/2213977.2214089
https://dl.acm.org/doi/abs/10.1145/2213977.2214089
https://dl.acm.org/doi/abs/10.1145/2213977.2214089
https://dl.acm.org/doi/abs/10.1145/2213977.2214089
https://arxiv.org/abs/1208.0219
https://arxiv.org/abs/1208.0219
https://arxiv.org/abs/1208.0219
https://dl.acm.org/doi/abs/10.1145/2229012.2229073
https://dl.acm.org/doi/abs/10.1145/2229012.2229073
https://dl.acm.org/doi/abs/10.1145/2229012.2229073
https://dl.acm.org/doi/abs/10.1145/2229012.2229073
https://ieeexplore.ieee.org/abstract/document/6690067/https://ieeexplore.ieee.org/abstract/document/6686179/http://Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, November). Differentially private naive bayes cl
https://ieeexplore.ieee.org/abstract/document/6690067/https://ieeexplore.ieee.org/abstract/document/6686179/http://Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, November). Differentially private naive bayes cl
https://ieeexplore.ieee.org/abstract/document/6690067/https://ieeexplore.ieee.org/abstract/document/6686179/http://Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, November). Differentially private naive bayes cl
https://ieeexplore.ieee.org/abstract/document/6690067/https://ieeexplore.ieee.org/abstract/document/6686179/http://Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, November). Differentially private naive bayes cl
https://ieeexplore.ieee.org/abstract/document/6690067/https://ieeexplore.ieee.org/abstract/document/6686179/http://Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, November). Differentially private naive bayes cl
https://ieeexplore.ieee.org/abstract/document/6686179/
https://ieeexplore.ieee.org/abstract/document/6686179/
https://ieeexplore.ieee.org/abstract/document/6686179/
https://ieeexplore.ieee.org/abstract/document/6686179/
https://www.sciencedirect.com/science/article/pii/S0020025515000596
https://www.sciencedirect.com/science/article/pii/S0020025515000596
https://www.sciencedirect.com/science/article/pii/S0020025515000596
https://www.sciencedirect.com/science/article/pii/S0020025515000596
https://arxiv.org/abs/1607.08554
https://arxiv.org/abs/1607.08554
https://arxiv.org/abs/1607.08554
https://ieeexplore.ieee.org/abstract/document/7958571/
https://ieeexplore.ieee.org/abstract/document/7958571/
https://ieeexplore.ieee.org/abstract/document/7958571/
https://ieeexplore.ieee.org/abstract/document/7958571/
https://ieeexplore.ieee.org/abstract/document/8329504/
https://ieeexplore.ieee.org/abstract/document/8329504/
https://ieeexplore.ieee.org/abstract/document/8329504/
https://dl.acm.org/doi/abs/10.1145/3183713.3197390
https://dl.acm.org/doi/abs/10.1145/3183713.3197390
https://dl.acm.org/doi/abs/10.1145/3183713.3197390
https://dl.acm.org/doi/abs/10.1145/3183713.3197390
https://ieeexplore.ieee.org/abstract/document/8352632/
https://ieeexplore.ieee.org/abstract/document/8352632/
https://ieeexplore.ieee.org/abstract/document/8352632/
https://ieeexplore.ieee.org/abstract/document/8352632/
https://dl.acm.org/doi/abs/10.1145/3168389
https://dl.acm.org/doi/abs/10.1145/3168389
https://dl.acm.org/doi/abs/10.1145/3168389
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1389735
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1389735
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1389735
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1389735
https://ieeexplore.ieee.org/abstract/document/9095402/
https://ieeexplore.ieee.org/abstract/document/9095402/
https://ieeexplore.ieee.org/abstract/document/9095402/
https://ieeexplore.ieee.org/abstract/document/9095402/

