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Abstract
In this article we shall ask what may cause the uniformly distributed, cosmic matter to form singular local mass concentra-
tions in a universe that has started, and according to the general belief never ended till now to expand since the event of the 
Big-Bang. Though the so-called Big-Bang till now is a physically rather nebulous cosmic event, all modern cosmology is 
centered around it and founded upon it. Our investigations here do show that in fact some forms of a cosmic Hubble expan-
sion do allow for gravitationally driven local matter contractions - even though the universe as a whole is expanding to ever 
and ever larger space volumes. For a universe undergoing an unaccelerated, "coasting" Hubble expansion we can show that 
the forces connected with the centrifugal Hubble drifts are overcompensated by the centripetal forces of cosmic matter inside 
critical local space volumes and thus do form mass concentrations up to Mega-solar masses as soon as the coasting phase of 
the expansion has started. To the contrast, in an universe with an accelerated Hubble expansion which is nowadays favoured 
by many astrophysicists structure formation is, however, stopped soon after the accelerated expansion has started. That may 
serve as a criterion what form of the Hubble expansion in fact predominates in this actual universe.

Why and when in an expanding universe do distributed cos-
mic masses collapse?
It was Fred Hoyle who coined for the first time the stigmatic 
concept of a "Big-Bang"- universe for the scientific community. 
This was during a BBC interview in the year 1949. The denota-
tion "Big-Bang" served furtheron as a paradigm for a universe 
which originates from a singularity with a gigantic explosion 
whose driver is unknown and it continues to expand since then. 
But not at all Hoyle did so, because he was convinced by this 
idea, rather to the opposite, because he wanted to blame his col-
leagues like Lémaître, de Sitter, Friedman and others for push-
ing, in his view, such an absurd scientifc idea. According to his 
view the idea of a Big-Bang as origin of the universe was a sheer 
nonsense. Nevertheless, however, this concept since these days 
till now is indoctrinating the vision of the whole cosmologic sci-
ence community and its modern cosmic concepts.

The question coming up from such a BB-paradigm necessarily 
concerns the place where, if at all, this Big-Bang happened? And 
where were we and all the rest of the universe at this event? 
The answer is: We and everything else of this universe were 
exactly at the same place where the BB happened, namely at 
and within the same singularity. Somehow already the famous 
Nikolaus Kusanus, the later Bishop of Brixen, at 1400pC. did 
express it impressively with his visionary words: This world is 
a creation whose center is everywhere, whose border, however, 
is - nowhere! Though this perhaps is an intelligent paradigm for 
the true nature of the universe, it nevertheless provocates the 
fundamental question - if the universe started expanding with 

the event of the BB, - why? and when? then after that - did it 
stop to expand into larger and larger spaces – to instead locally 
create material structures like stars, planetary systems and galax-
ies? And only these latter things we infact do see when looking 
into the nearest and the farthest cosmic environments, while the 
BB we do not see. Somehow the BB, however, must have had a 
successor in form of the "BC", the "Big-Collapse" or at least the 
"LC", the "Local collapse" from where local cosmic structures 
originated.

What concerns the influence of the general Hubble expansion 
on more local structures like e.g. the solar system there exists 
already a long list of publications starting perhaps with the con-
sideration of the problem of the "Einstein-Strauss vacuole" (Ein-
stein and Strauss, 1945,1946) with the Einstein-Strauss radius as 
that distance where a smooth transition between the Schwartz-
schild geometry of the local gravitational field into the global 
Robertson-Walker geometry can be achieved. More recently this 
concept has been specifically applied to the case of our solar 
system and it has been shown there how the transition from the 
local to the global spacetime geometry can be probed by radio-
trackings of space probes like especially the NASA space probe 
PIONEER-10 manifesting the spectacular Pioneer-10 radio 
tracking anomaly ( Fahr and Siewert, 2007, 2008). But all these 
studies do take the solar system and the global Hubble expansion 
already as given facts, not asking how local mass structures can 
originate in a globally expanding universe. To study this latter 
point one rather has to pay attention to the following aspects:
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Contraction of distributed matter in expanding universes
If matter is at rest with respect to an inertial rest frame, then 
it must move with respect to that frame when a force is acting 
upon it. If now somehow the cosmic inertial rest frame in fact 
is a general-relativistic, dynamic rest frame - like the cosmic 
Hubble-Lemaître rest frame - then a decoupling from the cosmic 

expansion is only possible, if a counter-expansion force Kc is 
acting on the matter which is larger than the Hubble-Lemaître 
force KHL i.e. if |KHL| ≤ |Kc|. The force KHL is connected with the 
general, differential cosmic Hubble drift vHL = H • D in a distance 
D from the selected origin of the coordinate system and is given 
by:

On the other hand, the counter-expansion force Kc may be im-
maginable as due to the gravitational attraction force of a central 
mass Mc at the origin of the selected coordinate system. This 
mass Mc is thought to be due to the accumulated cosmic, orig-

inally homogeneously distributed masses inside a sphere with 
radius D. Hence one finds, with G denoting Newton‘s gravita-
tional constant and ρ(R) = ρ0 • (R0/R)3 denoting the actual aver-
age cosmic mass density at the cosmic scale R
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On the other hand, the counter-expansion force Kc may be immaginable as due to the
gravitational attraction force of a central mass Mc at the origin of the selected coordinate
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Hereby the replacement of Mc was made by DcR  R  Mc/4/3R0
3o1/3, i.e. the

quantity D  o  R and R are strictly proportional to eachother. In order then to have the
Hubble expansion reversed into a local contraction one needs to have |Kc |  KHL, i.e.
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Figure 1: Schematic illustration of structure formation in a cosmic Hubble frame

To further study and analyse the meaning of this above relation, one needs to have a
look into the Hubble dynamics which determines the quantities R and R as functions of
R. These relations are multiform and have a large variety of possible solutions under
general cosmic conditions as recently again analysed in Fahr (2022). There it is shown
that the Hubble parameter H  HR is variable with the scale R of the universe in very
many different forms dependend on the relative contributions b , d, ,  of densities
of baryonic mass, dark matter mass, photons, and vacuum energy to the cosmic
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To further study and analyse the meaning of this above relation, 
one needs to have a look into the Hubble dynamics which de-
termines the quantities   and   as functions of R. These relations 
are multiform and have a large variety of possible solutions un-
der general cosmic conditions as recently again analysed in Fahr 
(2022). There it is shown that the Hubble parameter H = H(R) is 
variable with the scale R of the universe in very many different 
forms dependend on the relative contributions ρb, ρd, ρv, ρΛ of 
densities of baryonic mass, dark matter mass, photons, and vac-
uum energy to the cosmic energy-momentum tensor.

Here in this article we do not play with all these possible op-
tions, instead we concentrate on one option mainly, namely the 
one leading to a so-called "coasting" Hubble expansion with R ̈ 
= 0, describing the unaccelerated universe. This particular case 
in fact always prevails, if vacuum energy density ρΛ dominates 
over all the other contributions ρb, ρd, ρv at later phases of the 
cosmic expansion, since as shown in Fahr and Heyl (2021) and 
Fahr (2022) ρΛ varies with the scale R like R-2. Under these pre-
requisites the Hubble parameter H(R) can be written in the form 
(Fahr and Heyl, 2021):
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in which case one finds the above derived requirement given by the relation
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and using now the proportionality between D and R given by
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That, interestingly enough, means for a coasting universe that this above requirement
is always fulfilled, as soon and as long as the coasting expansion prevails, meaning that
at all those times masses of all sizes Mc on the basis of the collapse of uniformly
distributed cosmic matter density 0 can be generated.
In contrast to the above, according to Einstein‘s introduction of the vacuum energy in

the form of the constant vacuum energy density  (Einstein‘s famous cosmologic
"constant"!) one obtains for the later phases of the cosmic expansion, derived from the
two Friedmann equations (see Goenner, 1996):
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Figure 1: Schematic illustration of structure formation in a cosmic Hubble frame

To further study and analyse the meaning of this above relation, one needs to have a
look into the Hubble dynamics which determines the quantities R and R as functions of
R. These relations are multiform and have a large variety of possible solutions under
general cosmic conditions as recently again analysed in Fahr (2022). There it is shown
that the Hubble parameter H  HR is variable with the scale R of the universe in very
many different forms dependend on the relative contributions b , d, ,  of densities
of baryonic mass, dark matter mass, photons, and vacuum energy to the cosmic
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energy-momentum tensor.
Here in this article we do not play with all these possible options, instead we

concentrate on one option mainly, namely the one leading to a so-called "coasting"
Hubble expansion with R  0, describing the unaccelerated universe. This particular
case in fact always prevails, if vacuum energy density  dominates over all the other
contributions b, d,  at later phases of the cosmic expansion, since as shown in Fahr
and Heyl (2021) and Fahr (2022)  varies with the scale R like R2. Under these
prerequisites the Hubble parameter HR can be written in the form (Fahr and Heyl,
2021):

H2R  R 2/R2  8G
3   8G

3 ,0  R0/R2

which allows to conclude that in this case one finds R 2  8G
3 ,0  R02  const, i.e.

the so-called "coasting expansion".with R  0! and

HR  8G
3 ,0  R0/R  H0  R0/R

in which case one finds the above derived requirement given by the relation
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R  D

or :

4
3 G0R0/R3  H0
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D

and using now the proportionality between D and R given by
DcR  R  Mc/4/3R0

3o1/3 one finds:
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R  0 !

That, interestingly enough, means for a coasting universe that this above requirement
is always fulfilled, as soon and as long as the coasting expansion prevails, meaning that
at all those times masses of all sizes Mc on the basis of the collapse of uniformly
distributed cosmic matter density 0 can be generated.
In contrast to the above, according to Einstein‘s introduction of the vacuum energy in

the form of the constant vacuum energy density  (Einstein‘s famous cosmologic
"constant"!) one obtains for the later phases of the cosmic expansion, derived from the
two Friedmann equations (see Goenner, 1996):

HR  8G
3   const

which means H  0! and R  R 8G
3  . This in contrast to the above relation thus

then implies
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That, interestingly enough, means for a coasting universe that 
this above requirement is always fulfilled, as soon and as long as 
the coasting expansion prevails, meaning that at all those times 
masses of all sizes Mc on the basis of the collapse of uniformly 
distributed cosmic matter density ρ0 can be generated.

In contrast to the above, according to Einstein‘s introduction of 
the vacuum energy in the form of the constant vacuum energy 
density Λ (Einstein‘s famous cosmologic "constant"!) one ob-
tains for the later phases of the cosmic expansion, derived from 
the two Friedmann equations (see Goenner, 1996):
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That, interestingly enough, means for a coasting universe that this above requirement
is always fulfilled, as soon and as long as the coasting expansion prevails, meaning that
at all those times masses of all sizes Mc on the basis of the collapse of uniformly
distributed cosmic matter density 0 can be generated.
In contrast to the above, according to Einstein‘s introduction of the vacuum energy in

the form of the constant vacuum energy density  (Einstein‘s famous cosmologic
"constant"!) one obtains for the later phases of the cosmic expansion, derived from the
two Friedmann equations (see Goenner, 1996):

HR  8G
3   const

which means H  0! and R  R 8G
3  . This in contrast to the above relation thus
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which means H = 0! and R  =                    This in contrast to the above relation thus then implies

4
3 G0R0/R3  H0  R

R  H0
2

meaning that as soon as the cosmic density R~R3 during the expansion of the
universe has fallen off too much, no mass contractions can happen anymore during all
the time of the ongoing expansion of the universe.

Conclusions

It may appear for cosmologists as one of the biggest enigmas that in an initially
homogeneous universe under the ongoing Hubble expansion local mass structures like
stars, stellar systems and systems of galaxies could have been formed. As we have,
however, shown in this article here, structure formation is possible even under conditions
of an expanding universe, though the form of the underlying expansion of the universe
must, however, be specific for that purpose; it namely must be an "unaccelerated",
"coasting" expansion, while under famous astrophysicists of these decades the
accelerated expansion is strongly in favour. In order to explain the redshifts of galaxies
with the most distant SN-1a supernovae Perlmutter et al.(1998), Schmidt et al. (1998) or
Riess et al. (1998) have prefered an accelerated expansion of the universe, associated
with the action of a constant vacuum energy density  as initially proposed by Einstein
(1917). However, as we do show here, structure formation and build-up of solar systems
and galaxies is impeded as soon as the universe starts expanding in an accelerated
form, only as long as the expansion takes place in an unaccelerated, coasting form then
structure formation can continue to happen in the universe. And this is important, since
our solar system may live for about 108 years, but in a universe which is already about
8.7  109 years old, such systems must be reborn, in order to be visible at our time
period. Perhaps this can be used as a criterion which form of a Hubble expansion is
characteristic for our actual present universe.
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