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Abstract 
Shallow water equations are extensively considered in the domains of oceans, atmospheric modeling, and engineering re-
search, which play significant roles in floods and tsunami governance [1]. Nonetheless, the accurate prediction of shallow 
water behaviors is regarded as an arduous undertaking, particularly when confronted with multi-dimensional data and 
potential errors within the model. To address these challenges and improve the accuracy of forecasts, this study employs 
an integrated approach, involving dimensionality reduction methods, deep learning architectures, and data assimilation 
techniques. Indeed, Reduced-order modeling facilitates the conversions of high-dimensional data, extracting important 
features and attenuating the complexity of problems [2]. Subsequently, three different predictive models are utilized to 
prognosticate shallow water data in the reduced latent space, followed by comparisons of their prediction performance. 
Moreover, Bach and Ghil propose that through the amalgamation of model forecasts with observational metrics, the data 
assimilation algorithm can rectify their discrepancies, thereby enhancing the model's predictive prowess [3]. Finally, the 
experimental results demonstrate that prediction values are congruent with actual observations, which accentuates the 
resilience and effectiveness of this comprehensive methodology. Its potential to accurately forecast shallow water data 
holds the applicability and referential significance in preventing storm swell and other meteorological events.
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1. Introduction
Dellar and Salmon describe shallow water equations (SWE) as the 
simulations of incompressible fluid subjacent to the hydrostatic-
balanced pressure surface [4]. Their importance stems from the 
broad relevance and profound impact on handling water-related 
phenomena. In oceanography, SWE contributes to the prediction 
of tidal fluctuations, storm surges, and wave propagation among 
coastal processes [5]. Concurrently, SWE is instrumental in 
probing atmospheric currents, including the synergistic interactions 
between air and water bodies. For instance, Cavaleri and Rizzoli 
refer to the deployment of wind-wave forecasting models in the 
Northern Adriatic Sea to predict storms, with errors of effective 
wave height ranging from 10% to 20% [6]. Moreover, there 
exists a Shallow Water Axisymmetric Intensity Model, tailored 
for anticipating cyclonic phenomena characterized by transient 
intensity [7]. Such prognostications enable scientists to make 
informed suggestions for disaster preparedness and sustainable 
development.

However, accurate SWE forecasts encounter several challenges. 
Firstly, an abundance of high-dimensional data should be 
processed, which involves diverse features, covering a broad 
temporal and spatial range. As posited by Han et al., increasing 
data dimensionality leads to a sparsity within the high-dimensional 

space, rendering the distance and similarity calculation arduous 
[8]. Furthermore, equidistant samples exacerbate the difficulty 
of precisely distinguishing different categories, which hinders 
effective feature extraction [9]. This "dimensional curse" induces 
a substantial rise in computational complexity and storage 
requirements, affecting the accuracy and efficiency of the 
anticipations [10]. On the other hand, Ding et al. consider that 
excessive parameters in dealing with high-dimensional data could 
engender issues of overfitting, while insufficient samples may 
introduce some noise, attenuating the predictive generalization 
capability [11]. Secondly, SWE comprises intricate physical and 
dynamic processes with nonlinear characteristics, such as the 
nonlinear propagation of wave height and topographical influences 
on water flow. Meanwhile, Pinto-Ledezma and Cavender-Bares 
point out the specific data like sea temperature, wind speed, and 
topographic height, which are of diverse scales and distributions 
in SWE, presenting a rigorous test to the model's adaptability [12]. 
Then, data uncertainty also constitutes some difficult obstacles in 
SWE predictions. There are certain measurement errors caused by 
environmental factors, impacting the accuracy of forecasts. For 
instance, rising sea levels and frequent extreme meteorological 
events under the auspices of climate change put forward higher 
requirements for prognostications (IPCC, 2019) [13]. Moreover, 
the observation data is usually constricted by climate variation, 
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geological structures, and human intervention, leading to data 
deficiencies, outliers, and noise. Scheinost et al. explain their 
negative effect that the reliance on limited data may culminate in 
unstable anticipations [14]. Simultaneously, according to Tripathi 
et al., the robustness of a model to noise and outliers may be 
compromised [15]. Therefore, the continual refinement of accurate 
prognostic models can be regarded as an ongoing endeavor and 
meticulous attention to these difficulties is imperative to obtain 
precise forecasts.

Indeed, employing appropriate methods can effectively overcome 
the challenges. Currently, Reduced-order Modelling (ROM) 
emerges as a potent dimensionality reduction technology, 
especially suited for dealing with high-dimensional data and 
complex nonlinear relationships [16]. Moreover, Gong et al. 
indicate ROM helps decrease computational costs while upholding 
certain precision [17]. As elucidated by Karasözen et al., ROM 
preserves SWE’s quadratic structure through proper orthogonal 
decomposition and implicit methods for the temporal integration of 
partial differential equations [18]. The primary objective of ROM 
is to transform high-dimensional data into latent variables that 
encapsulate the important patterns of SWE, effectively reducing 
parameters and dimensions to simplify the forecasting model [19]. 
In addition, Hernandez et al. supplement that, within this latent 
space, each dimension corresponds to a significant feature, while 
the remaining dimensions tend to contain less information and 
noise [20]. From this, ROM facilitates that the prediction model 
can focus on handling the most representative features, curtailing 
the redundancy of information in data, and augmenting the 
predictive accuracy.

Furthermore, data assimilation (DA) serves as a feasible approach 
to enhance anticipated performances, combining the forecasts 
with actual observed data [21]. Moye and Diekman contend 
DA can maximize the utility of data information, adjusting the 
model parameters and states, which is beneficial for alleviating 
errors and uncertainty of parameter estimation [22]. Meanwhile, 
DA progressively optimizes model capability in long-term 
prognosticating and circumvents the accumulation of prediction 
errors [23]. For example, a seismic simulation applying ensemble 
DA foresees 70% of 21 large-scale quasi-periodic events, 
substantially outperforming periodic recursive models while 
Cheng et al. depend on latent DA techniques to improve the 
anticipated accuracy of wildfire with a reduction of 50% root-
means-square-errors [24,25]. Overall, the predictive model with 
DA adapts more expertly to real-world scenarios, diminishes some 
forecasting disparity, and attains more reliable outcomes.

This research adopts two different ROM methods, Principal 
Component Analysis (PCA), and Convolutional Autoencoder 
(CAE). PCA retains representative features with substantial 
variance, reflecting the principal axes of data variation [26]. 
In contrast, CAE autonomously extracts features through 
convolutional and deconvolutional layers for the reconstructions. 

Subsequently, Long Short-Term Memory (LSTM), Random Forest 
(RF), and Polynomial Regression (PR) are employed to anticipate 
SWE behaviors within the latent space. LSTM is proficient in 
capturing long-term dependencies within SWE time series to 
predict temporally correlated phenomena like tides and flood 
levels [27]. Moreover, Khalaf et al. explicate that RF is employed 
for regression problems like water velocity and flood extent, while 
PR leverages polynomial features to fit complex relationships, 
suitable for nonlinear prediction [28]. Finally, from a Bayesian 
perspective, combining machine learning with DA strengthens 
the models’ explainability and robustness [29]. Thus, the Kalman 
Filter (KF) is deployed to update the estimations of model state 
accurately and timely with copious observational data.

This study’s innovation is manifested in its pioneering application 
of latent DA in the field of computational fluid dynamics for the 
first time. In summary, it is articulated into three segments.

The first part is the application of CAE and PCA to map SWE data 
into latent space and compare their data reconstruction capabilities. 
After extracting 5000 data points from the SWE simulations, 
CAE and PCA models are constructed to achieve data dimension 
reduction and reconstruction. Their performance is then evaluated 
through metrics such as Mean Squared Error and R-squared 
values, along with reconstructed images to discern differences in 
feature extraction.

Next, three distinct predictive models, namely LSTM, RF, and PR, 
are utilized to forecast SWE behaviors in the latent space. Using 
PCA-processed "u" data from SWE as a specific object, the entire 
test set is input into these models for prediction without employing 
rollout. The comparison of predictive results with actual values 
in both latent and full spaces reveals the accuracy and stability of 
these three models in SWE data anticipations.

At last, we employ KF to ameliorate the prediction outcomes of 
three models. Based on the actual "u" data, KF can effectively 
rectify the prognosticated biases. Similarly, MSE and R- R-squared 
values as well as predictive curves, are displayed to facilitate the 
comparative result analysis after the implementation of KF.

2. Methodology
This section aims to elucidate the rationale behind the mentioned 
approaches in this study. With fundamental comprehension 
of these methods, we can enhance our grasp of their inherent 
characteristics and application scenarios, which are important for 
making effective strategies to address the current problem.

2.1 Convolutional Autoencoder (CAE)
Pintelas, E. and Pintelas, P. conduct that CAE is an unsupervised 
learning model based on convolutional neural networks for feature 
extraction and dimensional reduction [30]. Its architecture consists 
of three fundamental components: Encoder, Decoder, and loss 
function. Represented as 𝑧 = 𝐸(𝑥), the primary function of the 
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Encoder involves compressing data 𝑥, which contains information 
from SWE images, into the latent space to obtain low-dimensional 
features. Subsequently, the Decoder takes charge of mapping 𝑧 
back to the origin space, generating the reconstructed SWE images 
𝑥! = 𝐷(𝑧). Moreover, network parameters are adjusted by the 
backpropagation concerned with the loss function minimization, 
which is the                                             in this study

There are typically multiple convolution layers and pooling layers 
in the Encoder. The former applies a filter that performs element-
wise multiplication and traverses the entire data. This repetitive 
convolutional process facilitates the capture of patterns from the 
input SWE data. The calculation is shown, where 𝑀, 𝑁 are the 
sizes of the filter 𝐾.
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Meanwhile, the purpose of pooling layers is to aggregate related information into single values and 

reduce the extracted features dimension. We specifically apply the Maximum pooling layer, which 

selects the largest feature value within non-overlapping regions 𝑊𝑊 as aggregate values, to 

effectively preserve essential features of SWE data [31]. 

 

 
Furthermore, the Decoder module is composed of deconvolution layers and upsampling layers. 

Restoring the dimension of compacted features through padding is the responsibility of 

deconvolution layers while upsampling layers adopt bilinear interpolation to replicate 

information and allocate it to intended locations in the feature map. 

 
As for the model construction, we stack five layers in both Encoder and Decoder, which aids this 

CAE in extracting features layer by layer and learning the higher-level feature representation. 

 

2.2 Principal Component Analysis (PCA) 

 

The conceptual origin of PCA can be traced back to the seminal works of Pearson and  Hotelling, 

which are widely employed for analyzing extensive datasets characterized by numerous features 

[32,33]. The principal objective is to reduce the dimensionality of multivariate data while 

maximizing the retention of pertinent information. 𝐶𝐶  
 

This process begins by computing the mean of the SWE dataset across all dimensions, resulting 

in an averaged center denoted as 𝐶𝐶. Secondly, as described by Kurita, an optimal regression line 

passing through 𝐶𝐶 is determined while minimizing the sum of the squares of projection costs in 

Euclidean space [34]. Considering the distances between 𝐶𝐶 and points in the SWE training set 𝑥𝑥$ 

as fixed, the minimization is achieved by maxing the squares of the scores sum. Consequently, 

the first principal component 𝑤𝑤(1) is obtained by the following, where 𝑤𝑤 is the weight vector. 
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repetitive module chain of neural networks with subtle linear communications [36]. This special 

architecture contributes to the propagation and retention of information within networks. 

 

Three gates play crucial roles in regulating the cell to selectively retain or discard information in 

LSTM. They are processed by fully connected layers with sigmoid activation functions, denoted 

as 𝜎𝜎. 

 

Specifically, the Forget gate 𝑓𝑓𝑡𝑡 determines the extent to which previous information should be 

forgotten based on the current input 𝑥𝑥𝑡𝑡 and the hidden state ℎ𝑡𝑡(1 from the previous time step, 

which is mathematically expressed as , where 𝑊𝑊 and 𝑏𝑏 are 

respectively the weight and bias parameters. Furthermore, the Input gate 𝑖𝑖𝑡𝑡 relies on the 

- 8 -  

 
 

Recursively, the remaining successive principal components are derived similarly but  

constrained to be orthogonal to all preceding components. These eigenvectors are sorted in  

descending order based on their corresponding eigenvalues. 

 
Finally, the reduced-dimensional data is obtained by projecting the original SWE data onto the new 

coordinate system formed by required eigenvectors. 

 

 

2.3 Long Short-term Memory (LSTM) 

 

As a distinctive recurrent neural network, LSTM is designed to capture the long-term 

dependencies in time series data, which mitigates issues like gradient explosion [35]. Hochreiter 

and Schmidhuber propose that the central principle of LSTM is its cell, which operates along a 

repetitive module chain of neural networks with subtle linear communications [36]. This special 

architecture contributes to the propagation and retention of information within networks. 

 

Three gates play crucial roles in regulating the cell to selectively retain or discard information in 

LSTM. They are processed by fully connected layers with sigmoid activation functions, denoted 

as 𝜎𝜎. 

 

Specifically, the Forget gate 𝑓𝑓𝑡𝑡 determines the extent to which previous information should be 

forgotten based on the current input 𝑥𝑥𝑡𝑡 and the hidden state ℎ𝑡𝑡(1 from the previous time step, 

which is mathematically expressed as , where 𝑊𝑊 and 𝑏𝑏 are 

respectively the weight and bias parameters. Furthermore, the Input gate 𝑖𝑖𝑡𝑡 relies on the 

Recursively, the remaining successive principal components are derived similarly but constrained to be orthogonal to all preceding com-
ponents. These eigenvectors are sorted in  descending order based on their corresponding eigenvalues.



  Volume 1 | Issue 1 | 4Env Sci Climate Res, 2023

Finally, the reduced-dimensional data is obtained by projecting 
the original SWE data onto the new coordinate system formed by 
required eigenvectors.

2.3 Long Short-term Memory (LSTM)
As a distinctive recurrent neural network, LSTM is designed to 
capture the long-term dependencies in time series data, which 
mitigates issues like gradient explosion [35]. Hochreiter and 
Schmidhuber propose that the central principle of LSTM is its cell, 
which operates along a repetitive module chain of neural networks 
with subtle linear communications [36]. This special architecture 
contributes to the propagation and retention of information within 
networks.

Three gates play crucial roles in regulating the cell to selectively 
retain or discard information in LSTM. They are processed by fully 
connected layers with sigmoid activation functions, denoted as 𝜎.

Specifically, the Forget gate 𝑓𝑡 determines the extent to which 
previous information should be forgotten based on the current input 
𝑥𝑡 and the hidden state ℎ𝑡(1 from the previous time step, which is 
mathematically expressed as                                                          where 
𝑊 and 𝑏 are respectively the weight and bias parameters. 
Furthermore, the Input gate 𝑖𝑡 relies on the calculation,  
                                                            to assess incorporated information 
to the cell state.

A candidate cell 𝐶R𝑡 is introduced to hold the updated information, 
which is computed with the hyperbolic tangent activation as 𝐶~

𝑡 
= tanh( 𝑊𝑥𝑐𝑥𝑡 + 𝑊h𝑐ℎ𝑡(1 + 𝑏𝑐). Next, the cell state is iterated by:         
𝐶𝑡 = 𝑓𝑡𝐶𝑡(1 + 𝑖𝑡𝐶R

𝑡

Finally, information is determined to flow out by the Output gate, 
𝑜𝑡 = 𝜎( 𝑊𝑥𝑜𝑥𝑡 + 𝑊9𝑜ℎ𝑡(1 +𝑏𝑜) and the current hidden status ℎ𝑡 = 
𝑜𝑡tanh (𝐶𝑡) is prepared for the next update.

The whole “u” testing dataset is utilized as input for making 
forecasts. Predicting the entire dataset collectively improves the 
computational efficiency compared to rollout steps, providing 
precise representations of the overall LSTM performance.

2.4 Random Forest (RF)
Initially proposed by Breiman, RF represents an ensemble learning 

technique used for classification, regression, and other relevant 
tasks [37]. This method involves constructing multiple decision 
trees during the training phase. According to Chutia et al., RF 
is characterized as a classifier comprising a collection of tree-
structured classifiers,

{ℎ(𝑥, 𝛩𝑘 ), 𝑘 = 1, .  . . }

where 𝛩𝑘 denotes the independent identically distributed random 
vectors, and each tree assigns a unit vote to the most prevalent 
class for a given input 𝑥 [38].
RF proceeds “u” data through the following stages. Firstly, a 
bootstrapped sample is generated by randomly drawing from the 
"u" training dataset with replacement. This process facilitates the 
creation of numerous decision trees, constructed from distinct 
bootstrapped training samples, with some trees possibly absent 
from specific sets.

Subsequently, at each decision split within a tree, a random subset 
of 𝑚 predictors is selected from the complete set of 𝑝 predictors to 
serve as candidates for the split. Only one of these 𝑚 predictors is 
then utilized for the actual split.

Moreover, the choice of a fresh subset of 𝑚 predictors takes place 
at each split, with 𝑚 typically chosen to be approximately equal 
to the square root of 𝑝 (i.e., 𝑚 ≈ √𝑝). During the prediction phase, 
each tree in the forest generates a target value prediction for a 
given input. In the case of this regression task on "u" predictions, 
results are derived from averaging the outputs of all the trees.

2.5 Polynomial Regression (PR)
PR constitutes a regression analysis that utilizes basis functions to 
model the relationship between two variables, aiming to minimize 
the variance of unbiased estimators.

After the data pre-processing on SWE "u", the least squares method, 
whose foundational principles are elucidated by Ostertagová, is 
employed to determine the regression coefficients 𝑏< associated 
with each polynomial term 𝜀$, ensuring an optimal fit for the 
regression curve [39]. Mathematically, for each prediction 𝑦$ and 
the corresponding true data 𝑦$!
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predictors is then utilized for the actual split. 

 

Moreover, the choice of a fresh subset of 𝑚𝑚 predictors takes place at each split, with 𝑚𝑚 typically 

chosen to be approximately equal to the square root of 𝑝𝑝 (i.e., 𝑚𝑚 ≈ √𝑝𝑝). During the prediction 

phase, each tree in the forest generates a target value prediction for a given input. In the case of 

this regression task on "u" predictions, results are derived from averaging the outputs of all the 

trees. 

 

2.5 Polynomial Regression (PR) 

 

PR constitutes a regression analysis that utilizes basis functions to model the relationship 

between two variables, aiming to minimize the variance of unbiased estimators. 

 

After the data pre-processing on SWE "u", the least squares method, whose foundational 

principles are elucidated by Ostertagová, is employed to determine the regression coefficients 𝑏𝑏< 

associated with each polynomial term 𝜀𝜀$, ensuring an optimal fit for the regression curve [39]. 

Mathematically, for each prediction 𝑦𝑦$ and the corresponding true data 𝑦𝑦$
! 

 

which is provided by minimizing  

 

In this study, the whole ―u‖ testing dataset is input into PR. Next, PR finds the best-fitting 

polynomial function by minimizing the residual sum of squares, which benefits making 

predictions approaching the actual ―u‖ value. 
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which is provided by minimizing

In this study, the whole “u” testing dataset is input into PR. Next, 
PR finds the best-fitting polynomial function by minimizing 
the residual sum of squares, which benefits making predictions 
approaching the actual “u” value.

2.6 Kalman Filter (KF)
KF is a recursive state estimation algorithm based on Bayesian 
filtering theory, which is broadly employed in linear dynamic 
systems with noisy measurements [40]. The optimal inference 
is found by combining the forecast information with actual 
observations to improve the accuracy of predictions.
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Indeed, we take the predicted results of “u” latent space as the 
prediction value of the current state 𝑥`𝑘

! in this study. With the 
covariance matrix 𝑃𝑘

! between the truth and forecasts, the Kalman 

gain 𝐾𝑘 is computed for the state update. The specific calculation, 
referring to Li et al., is shown as follows:
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the process and the observation, 𝐻𝐻 is marked as the observation matrix [41]. 

 

Then, the state is updated by the observed values 𝑧𝑧𝑘𝑘 and 𝐾𝐾𝑘𝑘 while the uncertainty of the state 

estimation is adjusted through the updated covariance matrix. 
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𝑃𝑃𝑘𝑘 = ( 𝐼𝐼 − 𝐾𝐾𝑘𝑘 𝐻𝐻 ) 𝑃𝑃𝑘𝑘! 

 

With these continuously updating steps, KF can gradually optimize the estimation of the state, 

which improves the prediction performances and reduces the influence of noise. 
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Then, the state is updated by the observed values 𝑧𝑘 and 𝐾𝑘 while the uncertainty of the state estimation is adjusted through the updated 
covariance matrix.

With these continuously updating steps, KF can gradually 
optimize the estimation of the state, which improves the prediction 
performances and reduces the influence of noise.

3. Results Analysis

This section demonstrates the numerical results, visualizations, and 
performance evaluations of the approaches previously introduced. 
Through the comparative analysis and interpretation of these 
results, we can choose the appropriate method for the SWE dataset 
to improve the accuracy and reliability of predictions.

3.1 PCA and CAE Comparisons
In the initial phase, we calculate the cumulative explained variance 

ratios (CEVR) of PCA with various dimensions to select the 
appropriate dimension of the latent space. This process involves 
striking a balance between CEVR and the number of dimensions 
to effectively retain essential features of SWE data. Generally, a 
suitable dimension level is chosen where the corresponding CEVR 
value surpasses 95%, following the approach outlined by Jolliffe 
and Cadima [42]. The result is presented afterward.

Figure 1 depicts that when the dimension of latent space reaches 16, 
its CEVR achieves 95.4%, which is larger than the predetermined 
threshold value of 95%. Consequently, the latent space of 16 
dimensions is considered a reasonable selection for SWE data in 
the implementations of both PCA and CAE.
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Then, we proceed to investigate the reconstructive capabilities 
of PCA and CAE methods concerning SWE data. Regarding the 
evaluation of data estimation accuracy, mean square error (MSE) 

stands as a common metric while the lower MSE indicates the 
reduced bias [43]. Specifically, we compute MSE values for both 
approaches and present the results in the subsequent table.

Methods U V H
PCA 0.0045302190431986336 0.004530219043198634 0.41981382340078816
CAE 0.28903577406580017 0.28789266287370324 0.41986656383045684

Table 1: MSE values of PCA, CAE of u, v, and h data in SWE

Table 1 delineates the statistical analysis in MSE values of the 
"u", "v" and "h" data after employing PCA and CAE methods on 
SWE. The comparison of the first two columns reveals a large 
discrepancy in MSE values of the “u” and “v” data between the two 
methods: PCA produces a value, which is approximately 0.00045 
while the result of CAE is about 0.29. This apparent contrast 
implies that PCA is more accurate than CAE in reconstructing the 
data, effectively preserving more essential features of the original 
“u” and “v” datasets. In terms of CAE, there may be certain 
fluctuations in the reconstruction process. One of the reasons is that 
the Maxpooling layers may overamplify the dominating features 
and ignore some subtle details during the feature extraction. 
Additionally, MSE values of the "h" data in the two methods 
have no significant difference, both are roughly 0.42. Therefore, 
based on these numerical results, it remains inconclusive as to 
which method performs better on the reconstruction of “h” data. 
In the following, we show the visualization of original SWE data 
and reconstruction results of two methods to make an intuitive 
comparison and explore further.

In Figure 2, the top row displays three reference graphs that 
represent the actual cases. With the observation of PCA and CAE 
results in the subsequent graphs, it is evident that PCA yields 
significantly closer approximations to the reference graphs from 
all perspectives. This finding suggests that PCA excels in the task 
of data reconstruction in SWE. Specifically, upon conducting a 
vertical comparison in the final column of Figure 2, the differences 
between PCA and CAE in the "h" data images become apparent. 
It is acknowledged that CAE-h image can capture the various in 
the height of the water surface or the depth, effectively reflecting 
the primary characteristics of the “h” data. Nevertheless, it suffers 
from substantial loss of details in the visual depiction and this 
deficiency is particularly noticeable in some local features. For 
example, PCA demonstrates superior accuracy in reconstructing 
subtle interactions of water waves while CAE exhibits suboptimal 
performances in these areas. Furthermore, compared with the 
PCA-h image, the visual articulation of CAEs is memorably 
inferior with displayed edges and textures appearing considerably 
more blurred.
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Figure 2: SWE reconstructions in CAE and PCA, where "u" and "v" represent the horizontal and 
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In summary, the results indicate that PCA outperforms CAE in the 
context of reconstructing SWE data. Therefore, further study and 
analysis will focus on the PCA results in the following research.

3.2 Three Predictive Models
Given the highly analogous structures observed between the 
"u", "v" and "h" data, our primary attention is focused on "u" as 
the target variable for subsequent SWE predictions. At first, we 
partition the “u” data into training and testing sets with a ratio of 
8:2 and apply PCA to reduce the feature dimensions. Next, the 
complete testing dataset is utilized as input for anticipating
 
behaviours of the "u" data in the latent space, employing three 

distinct forecasting models: Long Short-Term Memory (LSTM), 
Random Forest (RF), and Polynomial Regression (PR). The ensuing 
figure illustrates the comparisons between the prognosticated 
curve for each method with the corresponding actual value.

Figure 3 presents the subsets with time steps ranging from 30 to 
50 units of local predictions truncated from a total of 1000 testing 
results, which facilitates our comparative analysis. As for the 
original data trend, its values primarily fluctuate between -1 and 
0.5 units. However, at the 35-time step, the actual value of “u” 
in the latent space substantially increases to approximately 1.8 
units and is considered a relatively unstable point within this local 
interval, potentially posing challenges for forecasts.
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Figure 3: Contrast the actual values with the predicted values obtained through the utilization of 
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Upon applying LSTM, its forecast trend exhibits similarity to the origin data. Nevertheless, there 

are considerable discrepancies at time steps 35 and 39, with deviations of about 1 and 0.8 units, 

respectively, while the others are generally below 0.5 units. This indicates that LSTM may have 

poor performance in anticipating abrupt value changes. 

 

In contrast, RF yields a relatively stable predictive curve, which is closely aligned with the actual 

data, with only slight differences observed at specific points. For instance, at the time of step 45, 

the prognostication has a relatively significant increase, which may be attributed to the overfitting 

of RF in the process. 

Figure 3: Contrast the actual values with the predicted values obtained through the utilization of LSTM, RF, and PR techniques, respec-
tively.

Upon applying LSTM, its forecast trend exhibits similarity to the 
origin data. Nevertheless, there are considerable discrepancies at 
time steps 35 and 39, with deviations of about 1 and 0.8 units, 
respectively, while the others are generally below 0.5 units. This 
indicates that LSTM may have poor performance in anticipating 
abrupt value changes.

In contrast, RF yields a relatively stable predictive curve, which 
is closely aligned with the actual data, with only slight differences 
observed at specific points. For instance, at the time of step 45, the 
prognostication has a relatively significant increase, which may be 
attributed to the overfitting of RF in the process.

Finally, the red dashed line in Figure 3 comes closest to the original 
trend, signifying that PR is superior at forecasting latent behaviors 
of the “u” data.

Apart from the prediction graphs, comparing MSE and 𝑅& 
values of each method is also available for the evaluation of their 
anticipated capability. Schneider et al. set forth that 𝑅& measures 
the prognostication explanation on the overall variance and its 
value closer to 1 indicates better forecast performance. The table 
below describes the computed MSE and 𝑅& values of all three 
predictive models [44].

Methods LSTM Random Forest Polynomial Regression
MSE 0.4656647741794685 0.00015462584800998136 5.636266193412578e-29
R2 0.8057731106736332 0.9998672270557152 1.0

Table 2: MSE and R2 values of LSTM, RF, and PR methods
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Based on the numerical findings in Table 2, three models 
demonstrate varying accuracy and suitability in predicting "u" 
data within the latent space. Firstly, we examine values across 
three columns and find that a higher value of 𝑅2 corresponds 
to a relatively smaller MSE, which conforms to their negative 
correlation. Subsequently, a row-wise analysis of Table 2 facilitates 
the comparative assessment of forecast performances among the 
three models.

PR showcases strong predictive capabilities with its MSE 
approaching 0 and almost negligible, which implies the subtle 
discrepancies between the anticipations and true data. Meanwhile, 
the perfect 𝑅2 value of 1.0 suggests an exceptionally elevated level 
of forecast accuracy.

Similarly, RF also makes excellent prognostications on the “u” 
data, as evidenced by its MSE value of 0.00015 and 𝑅2 value 
of 0.9999. Nonetheless, in comparison to the above method, RF 
slightly lags in performance.

On the other hand, although LSTM shows its ability to capture 

the data trend, 0.466 MSE is larger than the other two values 
while 0.81 𝑅2 is considerably lower, indicating that predictions are 
significantly different from the origin data at specific time steps.

As a supplement, we project the anticipated latent data back into 
the full "u" space through the inverse transformation of PCA to 
generate the forecast "u" images. With the observation of details 
revealed in the images, it becomes plausible to compare the 
prediction accuracy of the three models intuitively and visually.

To evaluate image quality and compare their similarities, the 
Structural Similarity Index (SSIM) and Peak Signal-to-Noise 
Ratio (PSNR) are usual indicators [45].

Through a meticulous examination of four images in Figure 4, we 
notice a concurrence among predictive graphs of RF and PR with 
the actual "u" data. Their SSIM values are roughly 0.988, which 
suggests that the commonality between the first image and these 
two images lies in the remarkable structural and content similarity. 
Indeed, superior image quality is indicated in PR with a larger 
PSNR value of about 42.99 than RF’s 42.97 at around.
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their SSIM and PSNR values of three forecast images, compared to the first one. 

 

However, with smaller SSIM and PSNR values of 0.8461 and 33.24, LSTM presents a relatively 

ambiguous image, especially several details missing in the representation of some subtle 

features. Additionally, LSTM prioritizes capturing dominant features of the "u" data, with dark 

blocks appearing darker and light blocks appearing lighter in the second graph, which implies 

that LSTM tends to amplify extreme values when prognosticating the horizontal velocity of 

water flow. 
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Figure 4: The visualization of actual "u" and three predictive results in the full space, showing their SSIM and PSNR values of three 
forecast images, compared to the first one.

However, with smaller SSIM and PSNR values of 0.8461 and 
33.24, LSTM presents a relatively ambiguous image, especially 
several details missing in the representation of some subtle 
features. Additionally, LSTM prioritizes capturing dominant 
features of the "u" data, with dark blocks appearing darker and 
light blocks appearing lighter in the second graph, which implies 
that LSTM tends to amplify extreme values when prognosticating 
the horizontal velocity of water flow.

Conclusively, as for the SWE “u” data, PR has an optimal 
performance on the forecasts, along with robustness and efficiency. 
And predictions of RF closely approximate the actual "u" values, 
underscoring its anticipated capability. However, LSTM results 
fall short in comparison, which suggests the requirement for 
additional optimization and adjustments to improve its accuracy in 

forecasting finer details.

3.3 Data Assimilation
Within this part, we employ the Kalman filter (KF) as a 
data assimilation method to improve the accuracy of model 
prognostications, which is achieved by establishing a correlation 
between forecast outcomes and actual "u" values. Following the 
KF implementation, we re-evaluate the MSE and 𝑅& values of 
three predictive models. Then, a comparative analysis is conducted, 
comparing these new results with the previous ones, to assess the 
impact of the Kalman filter on the model anticipations.

By observing the last two columns of Table 3, it becomes evident 
that for both RF and PF, there are negligible differences between 
MSE and 𝑅2 values after applying KF and those obtained without. 
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This finding demonstrates that KF does not significantly contribute 
to improving the forecast accuracy of RF and PF. Indeed, it may 
even disrupt the prediction process for these models.

Methods LSTM
with KF

Random Forest
with KF

Polynomial Regression
with KF

MSE 0.0004695465584015516 0.0006581351248812933 0.0004695465584015541
R2 0.9996872284124825 0.9995399057528679 0.9996872284124825

Table 3: MSE and R2 values of LSTM, RF, and PR methods after the implementation of KF

However, when KF is employed in LSTM, a remarkable 
enhancement in the anticipation performance is observed. 
Specifically, the MSE and 𝑅& values of LSTM reach 0.00089 
and 0.9998, respectively, indicating a substantial improvement 
in predictive capabilities. These results establish LSTM with the 
implementation of KF as a competent and proficient model for 
accurate representation in this context.

Additionally, the extent of improvement in the accuracy of the 

LSTM model achieved through the integration of KF is elucidated 
in the following. To ensure a lucid comparison, we present the 
forecast curves and images, both with and without the application 
of KF.
 
In Figure 5, the yellow and blue areas reveal a high overlap, 
depicting that the prediction result of LSTM through KF is highly 
analogous to the true latent “u” data.
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prognostication after KF contains some lost details and its clarity is better, which also proves the 

improved accuracy of forecasts. Meanwhile, numerical comparisons show that with the 

implementation of KF on LSTM, its SSIM and PSNR values are approximately 0.99 and 42.99, 

correcting the noise and detail differences in the image and improving the similarity to the real 

image. 

 
Figure 6: The visualization of true "u" data, two predictive images of LSTM with and without 

KF, coupled with their SSIM and PSNR values compared to the true one. 

 

Figure 5: The actual "u" data in the latent space, prediction curves of LSTM and LSTM with the application of KF

At the same time, the comparison of the latter two figures in Figure 
6 illustrates that the LSTM prognostication after KF contains some 
lost details and its clarity is better, which also proves the improved 
accuracy of forecasts. Meanwhile, numerical comparisons show 

that with the implementation of KF on LSTM, its SSIM and PSNR 
values are approximately 0.99 and 42.99, correcting the noise and 
detail differences in the image and improving the similarity to the 
real image.
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To conclude, the application of KF exhibits notable advantages 
in enhancing LSTM predictive capabilities for the "u" data in the 
latent space. Nevertheless, KF seems to have no influence on the 
prediction accuracy of RF and PR approaches based on this dataset.

4. Conclusions and Discussions
In summary, a comprehensive methodology is proposed to make 
accurate forecasts of SWE data. The study employs three distinct 
predictive models and evaluates their performances in anticipating 
the SWE potential behaviors, with the incorporation of ROM and 
DA techniques. Initially, SWE data undergoes dimensionality 
reduction via CAE and PCA, projected into the latent space. 
Comparative analysis of MSE values and image visualizations 

indicates that PCA effectively captures more essential features in the 
SWE reconstruction, highlighting its superior accuracy compared 
to CAE. Then, LSTM, RF, and PR models are utilized to forecast 
the latent spatial SWE data, assessed by numerical metrics, and 
restored data visualizations in the full space. Results suggest that 
PR exhibits the best performance, RF is the second while LSTM 
demonstrates relatively lower accuracy in predictions, especially 
concerning nuanced features. Nevertheless, KF is implemented to 
substantially enhance the accuracy of LSTM, and its impact on RF 
and PR remains negligible in the context of SWE data. Ultimately, 
the culmination of these efforts is reflected in Figure 7, where three 
methods collectively achieve precise forecasts.
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This investigation combines abundant techniques to improve 
the prognostications accuracy of SWE, which holds significant 
implications for the application in anticipating storms and tsunamis 
in natural disaster management. However, Tort et al. propose that 
given the near-spherical morphology of the Earth, the shallow water 
phenomenon on the surface has a pronounced spatial correlation 
on a global scale [46]. Concurrently, the planetary rotation and 
axial tilt engender diurnal and seasonal variations across the 
spatial distribution of SWE, constituting additional challenges in 
the forecasts. Indeed, the discontinuous Galerkin method with wet/

dry transitions can establish a harmonious balance on the spherical 
SWE, which is suitable for predicting large-scale tsunami events 
[47]. Furthermore, Lanser et al. leverage Osher's finite-volume 
scheme to resolve the spatial discretization of SWE within the 
spherical space [48]. With these complexities, a more profound 
exploration of numerical simulations in SWE predictions stands 
as a promising avenue for future research endeavors. Based on 
the variability of terrain and other environmental impacts, the 
forecasting model should be continuously improved to adapt to 
different and complex requirements [49].
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