
     Volume 6 | Issue 1 | 01

Application of Nano Technology in the Self-Cleaning Finishing of Textiles: A 
Review

Research Article

1Chemistry department, college of sciences, university of 
Diyala, IRAQ

2Young Researchers and Elite Club, Gachsaran Branch, 
Islamic Azad University, Gachsaran, Iran

Zaid H. Mahmoud1 and Ehsan Kianfar2*

*Corresponding author
Ehsan Kianfar, Young Researchers and Elite Club, Gachsaran Branch, 
Islamic Azad University, Gachsaran, Iran.

Submitted: 2024,   Aug  27; Accepted: 2024,   Oct 10; Published:2024,   Oct 15

Journal of Textile Engineering and Fashion Technology

J Textile Eng & Fash Tech, 2024

Abstract
Production of self-cleaning surfaces is possible with two methods of super hydrophobicity and photocatalytic 
decomposition of pollution. The basis of photocatalytic self-cleaning is the chemical decomposition of polluting 
substances using the photo-oxidation/reduction reaction due to incident radiation. Titanium dioxide or Titania is 
one of the most widely used materials in this field. The photocatalytic effect can lead to the destruction of organic 
compounds in the cell wall of bacteria and molecules of odor-causing compounds. Therefore, as a result of 
finishing with photocatalysts, in addition to the self-cleaning property, properties such as antimicrobial and anti-
odor properties are also created in the surfaces. If the surfaces completed with titanium dioxide are exposed to 
light radiation, yellowing due to light and optical decomposition of the surface will also be prevented. In recent 
years, a lot of research has been done on self-cleaning textiles. This property, inspired by the characteristics 
of some plants and animals, has provided a new field in the production of high-performance textiles. There are 
two main approaches for the production of these textiles, in this session, the creation of surface roughness is 
discussed to create super-water-repellent and self-cleaning textiles.
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1. Introduction
In recent years, researchers have turned to producing textiles 
with new properties [1-3]. Some of these properties are in-
spired by nature, among which we can mention the creation of 
self-cleaning properties on different surfaces, including textiles 
[4-7]. There are two different approaches to this type of comple-
tion. In the first approach, the self-cleaning fabric is a super-hy-
drophobic surface [8-11]. In the second approach, nanoparticles 
such as titanium dioxide are used as a nanometer coating on 
the textiles, and these nanoparticles, in the presence of water, 
oxygen and sunlight, cause the stains created on the textile to 
break down [12-17]. The set of operations and steps performed 
on fabric in order to increase its quality is called "textile fin-
ishing"[18-20]. In the production of textile products, finishing 
refers to all the steps that yarn, fabric and textiles go through to 
have a better appearance and higher performance [21-24]. The 
finishing operation is applied after the production of the textile 
product [25-28]. Finishing the surfaces with the aim of creat-
ing self-cleaning properties can be implemented with the fol-
lowing two approaches [29-32]: In the first approach, the textile 
becomes super-hydrophobic to create self-cleaning properties. 
In the second approach, nanoparticles such as titanium dioxide 
(in anatase phase) are used as a nanometer coating on textiles 
[33-36]. In the presence of water, oxygen and sunlight, these 

nanoparticles cause the stains created on the fabric to disappear.

2. Self-Cleaning and Super Waterproof
This property is obtained by chemical and geometric modifica-
tion of the textile surface. The creation of Nano and micrometer 
roughness by using a hydrophobic coating causes the contami-
nation of the textile surface to easily slip and separate from the 
hydrophobic textile in the presence of water, and in this way the 
surface of the textile remains clean [37-40]. The idea of creating 
such a product was inspired by the natural structure of the lotus 
leaf, and then various surfaces of nanoscale scales were created 
and evaluated by humans [41-43].

2.1. Measuring the Wettability of Surfaces
Usually, the level of surface wettability is evaluated by measur-
ing the static contact angle of a drop of water in contact with 
the surface. As seen in Figure 1, the angle between the surface 
and the curvature of the droplet that is in contact with the sur-
face is considered as the contact angle (CA). A contact angle of 
more than 90 degrees indicates that the surface is hydrophobic, 
a contact angle of less than 30 degrees indicates that it is hydro-
philic, and an angle of more than 150 degrees indicates that the 
surface is superhydrophobic [44-46]. It is worth mentioning that 
although the use of materials such as fluorocarbon compounds 
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in the finishing of textiles creates a contact angle of about 120 
degrees and these surfaces are water-repellent and easy to clean, 

they are not classified in the group of self-cleaning surfaces [47-
50].
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Figure 1. Measurement of stable contact angle in hydrophilic, hydrophobic and 

superhydrophobic surfaces [2-3]. 

2.2. Natural superhydrophobic surfaces 

At present, more than 200 types of natural hydrophobic surfaces have been identified, which 

always remain clean due to the chemical compounds on the surface or their specific morphology 

Figure 1: Measurement of stable contact angle in hydrophilic, hydrophobic and superhydrophobic surfaces [2-3].

2.2. Natural Superhydrophobic Surfaces
At present, more than 200 types of natural hydrophobic surfac-
es have been identified, which always remain clean due to the 
chemical compounds on the surface or their specific morpholo-
gy [51-53]. The concept of self-cleaning is inspired by the lotus 
leaf. It is said that despite growing in the swamp, it never gets 
dirty. As shown in Figure 2, the presence of micrometer ridges 
in the structure of this leaf causes large amounts of air to be 
trapped between these ridges when in contact with water. On 
the other hand, the presence of natural wax on this leaf causes 
the super-hydrophobic properties of this surface [54-57]. Among 
other examples of natural super-hydrophobic surfaces, we can 

mention rice plant leaves. This leaf has a structure similar to a 
lotus, with the difference that in the lotus, the surface hairs are 
uniformly distributed on the surface; However, in rice leaves, 
these hairs are arranged only parallel to the edge of the leaf [58-
61]. Due to the special arrangement of the villi, the water drop 
slips easily in the direction of the villi with a contact angle of 
4 degrees, but in the direction perpendicular to the villi, it slips 
with difficulty and at an angle of 120 degrees, and that is why 
this leaf It has the same directional or non-directional super-wa-
ter repellency(figure3). Among other cases of superhydrophobic 
surfaces in nature, we can mention the leaves of Goshfil and the 
leaves of Indian star.
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Figure 2. Hydrophobic structure of lotus leaf (a), electron microscope image of nano and 

microstructure protrusions in lotus leaf (b)[4]. 

 

Figure 2: Hydrophobic structure of lotus leaf (a), electron microscope image of nano and microstructure protrusions in lotus leaf 
(b)[4].
 

 

 

 

Figure 3. pollutants are removed from different surfaces by a drop of water [4]. 

 

3. Finishing the waterproofing of textiles 

Although the concept of super-hydrophobicity is relatively new and dates back to the late 90s, 

concepts such as water repellency of textiles in the textile industry are more than 50 years old 

[62-66]. Most of the superhydrophobic finishing in textile engineering is done by hydrogels, 

mineral nanocomposites and colloidal solutions and by various methods such as padding, 

spraying, electrospinning, plasma, etc. on textiles (figure 4 and table 1). The surface of textiles is 

different from other solid materials such as metal sheets or glass surfaces in terms of flexibility 

and micrometric structural unevenness caused by fibers and fabric structure. The mentioned 

cases enable the ability of textiles to be super-waterproof by creating secondary nanometer 

roughness. Researchers propose two methods to produce superhydrophobic surfaces [67-70]: 

• Making the surface rough by using materials with low surface energy. 

• Modifying the surface of an uneven field using materials with low surface energy [5]. 

Figure 3: pollutants are removed from different surfaces by a drop of water [4].
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3. Finishing the Waterproofing of Textiles
Although the concept of super-hydrophobicity is relatively new 
and dates back to the late 90s, concepts such as water repellency 
of textiles in the textile industry are more than 50 years old [62-
66]. Most of the superhydrophobic finishing in textile engineer-
ing is done by hydrogels, mineral nanocomposites and colloidal 
solutions and by various methods such as padding, spraying, 
electrospinning, plasma, etc. on textiles (figure 4 and table 1). 
The surface of textiles is different from other solid materials 
such as metal sheets or glass surfaces in terms of flexibility and 
micrometric structural unevenness caused by fibers and fabric 
structure. The mentioned cases enable the ability of textiles to be 
super-waterproof by creating secondary nanometer roughness. 
Researchers propose two methods to produce superhydrophobic 
surfaces [67-70]:

• Making the surface rough by using materials with low surface 
energy.
• Modifying the surface of an uneven field using materials with 

low surface energy [5].

From simple methods such as padding and surface coating to 
more complex methods such as self-assembled layering of com-
posite layers, nanometer coating of textiles is used [6]. In these 
methods, nanoparticles, nanorods or holes, carbon nanotubes, 
silica particles, zinc oxide nanorods and silver nanoparticles are 
used. Although it is not so difficult to create super water repel-
lency in self-cleaning textiles; But the most important challenge 
is maintaining these characteristics during consumption. New 
preparation methods such as laser and plasma are very effective 
in increasing the stability of this feature in textiles [71-75]. In 
order to produce super-hydrophobic cotton fabric, metal salts, 
finishing with silanes, gas coating and layering are used. The use 
of metal salts such as silver and zinc oxide will give the fibers 
other properties such as antibacterial and conductivity in addi-
tion to superhydrophobic properties. Table 1 lists some finishing 
methods to produce self-cleaning textiles.
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Figure 4. Microscopic image of cotton fibers and cotton supplemented with polymer 

nanoparticles to create surface roughness [7]. 

 

Figure 4: Microscopic image of cotton fibers and cotton supplemented with polymer nanoparticles to create surface roughness [7].
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Table 1. Different methods of producing self-cleaning super waterproof textile [5-7]. 

artificial fiber cotton 

Creating a silicone coating on the surface of polyester 

microfiber fabric 

 Using carbon nanotubes to create nanoscale 

roughness. 

 Finishing layer by layer using silica nanoparticles 

and fluoroalkyl silane. 

Covering synthetic fibers with electrospun mesh 

containing surface tension reducing materials 

 The use of coating of silica nanoparticles with 

amine groups. 

 Finishing layer by layer with polydimethyldiallyl 

ammonium chloride and negatively charged silica 

nanoparticles. 

 

Fluke coating of nylon 66 fibers on polyester fabric  Perfluorocarbon coating using plasma enhanced 

chemical vapor deposition (PECVD). 

 Making the surface uneven by metals and then 

coating with hydrophobic materials. 

 

4. Self-cleaning and decomposition of pollution agents 

Although creating self-cleaning properties was done by making surfaces superhydrophobic until 

years ago, further research showed that it is possible to use optical decomposition of organic 

compounds such as pollutants and microorganisms by semiconductor materials and convert them 

Table 1: Different methods of producing self-cleaning super waterproof textile [5-7].

4. Self-Cleaning and Decomposition of Pollution Agents
Although creating self-cleaning properties was done by making 
surfaces superhydrophobic until years ago, further research 
showed that it is possible to use optical decomposition of 
organic compounds such as pollutants and microorganisms by 
semiconductor materials and convert them into carbon dioxide 
and water [76-79]. Created with proper self-cleaning properties. 
In this case, there is no need to superhydrophobic the surface 
[80-82]. For example, in research conducted by a group of 
Japanese researchers, a thin film of titanium nanoparticles was 
placed at a temperature of 5000C, and as a result of this process, 
a superhydrophobic surface was created. Although this coating 
became more complete when exposed to water and oil, it still 
had good self-cleaning properties [83-85]. Titanium dioxide or 

titania is one of the most widely used materials in the field of 
finishing self-cleaning textiles. In addition to this substance, the 
properties of other nanoparticles such as bismuth vanadate and 
benzophenone are being investigated by researchers. The most 
important challenge in performing this type of finishing is the 
low surface energy of the textiles, which makes the adhesion 
between the nanometer coating and the textile background 
difficult [86-89]. To solve this challenge, it is suggested to use 
methods such as low temperature sol-gel and a new generation 
of polymeric binders. Due to the many properties of coating 
with TiO2, the use of this technology has attracted the attention 
of researchers of various sciences [90-93]. Figure 5 shows the 
photocatalytic activity of TiO2 particles.
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Figure 5: Photocatalytic activity of TiO2 particles in the presence of sunlight [7].

4.1. Photocatalytic Principles of Tio2
Photocatalyst is a light-sensitive substance that oxidizes strongly 
in the presence of light rays. The self-cleaning property can be 
created by coating the surface with the photocatalytic oxide of 
an intermediate metal. In addition to acceptable photocatalytic 
properties, titanium dioxide is considered one of the best 
materials for creating this property for various reasons, including 
relatively cheap price, chemical stability, non-toxicity, and 
good biocompatibility. Titanium dioxide leads to self-cleaning 
properties in materials in the following two ways [94-96]:
• Photocatalytic oxidation

• Superhydrophobic property

The basis of the photocatalytic property of this semiconductor 
is the need for moderate energy to transfer an electron from the 
valence circuit to the conduction circuit. The electrons of the 
photocatalyst material are in the unexcited and basic state in the 
valence circuit (VB)[97-100]. When the surface is exposed to 
light, the electrons absorb energy and move to the conduction 
circuit (CB) (see Figure 6). The potential required to create 
electron/hole pairs in this material is +2.53 V, which allows 
the oxidation of water molecules and absorbed hydroxide ions 
and can lead to the formation of hydroxyl radicals with high 
oxidizing ability ̇(OH)). The electron transfer potential from the 
conduction layer is -0.52 V, which is not enough to react with 

absorbed oxygen molecules to create highly reactive superoxide 
radical ions (O-2). The radicals created during the mentioned 
reactions are able to perform photoelectrochemical reactions 
to decompose organic compounds such as pollutants, stains, 
microbes and other compounds into carbon dioxide and water 
[36]. Another reason for the self-cleaning property of titanium 
dioxide, which was discovered by accident in 1995, is the 
superhydrophobic property of this material. If this material is 
combined with a certain percentage of silicon dioxide, it leads 
to the creation of superhydrophobic properties when exposed to 
light [101-103]. In this case, the electrons cause the reduction 
of the Ti (IV) cation to (Ti (III) and the holes oxidize the O-2 
anions. As a result of this phenomenon, some oxygen atoms are 
removed from the surface. And oxygen-free sites are created on 
the surface of the particles. Since water molecules can be placed in 
these vacancies, the surface of the particles becomes hydrophilic 
[37]. covers it with a continuous film and causes the surface to 
be washed away and this effect remains for several days after 
irradiation and gradually returns to the original state Figure 7 
shows how photocatalytic self-cleaning surfaces work. The most 
important advantage of TiO2 is the occurrence of photocatalytic 
and superhydrophobic effects on the surface at the same time. 
The self-cleaning property due to superhydrophilicity is often 
Self-cleaning and anti-fog mirrors are used in automobiles, but 
they have not been used in the field of textiles. Figure 8 shows 
the application of TiO2 particles in automobile mirrors.
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Figure 6. Schematic of the photocatalytic phenomenon of titanium dioxide[7]. 

 

Figure 7. photocatalytic self-cleaning textiles work[7]. 
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Figure 7: photocatalytic self-cleaning textiles work [7].

 

Figure 8. Application of TiO2 in self-cleaning and anti-fog glass (a) and mirror (b)[7]. 

 

4.2.1. Factors affecting the photocatalytic properties of TiO2 

Several factors influence the photocatalytic activity of titanium dioxide, some of the most 

important of which are shown in Figure 9. These factors include the size of the particles, the 

shape of the crystals, the specific surface area, the type and percentage of porosity, and the 

general structure of the particles (layered or core-shell or composite structure). Titanium dioxide 

crystal exists in three phases: anatase, rutile and brookite [104-106]. Meanwhile, brookite phase 

is less known as a photocatalyst and anatase phase has the most photocatalytic properties. 

Researchers have considered the combination of anatase and rutile to have the most 

photocatalytic properties. The photocatalytic property of anatase TiO2 strongly depends on the 

morphology of the particles. If these particles are used in nanometer dimensions, the 

photocatalytic property will increase due to the spread of electron/holes before recombination 

(electron-hole recombination) and the increase of the specific surface area per unit of mass and 

volume[107]. Research has shown that titanium dioxide particles in the anatase phase with a size 

of 10 nm have the highest photocatalytic activity due to the best balance between surface charge 

and particle size [38]. 

 

Figure 8: Application of TiO2 in self-cleaning and anti-fog glass (a) and mirror (b)[7].

4.2. Factors Affecting the Photocatalytic Properties of Tio2
Several factors influence the photocatalytic activity of titanium 
dioxide, some of the most important of which are shown in Fig-
ure 9. These factors include the size of the particles, the shape 
of the crystals, the specific surface area, the type and percentage 

of porosity, and the general structure of the particles (layered 
or core-shell or composite structure). Titanium dioxide crystal 
exists in three phases: anatase, rutile and brookite [104-106]. 
Meanwhile, brookite phase is less known as a photocatalyst 
and anatase phase has the most photocatalytic properties. Re-
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searchers have considered the combination of anatase and rutile 
to have the most photocatalytic properties. The photocatalytic 
property of anatase TiO2 strongly depends on the morphology 
of the particles. If these particles are used in nanometer dimen-
sions, the photocatalytic property will increase due to the spread 
of electron/holes before recombination (electron-hole recombi-

nation) and the increase of the specific surface area per unit of 
mass and volume [107]. Research has shown that titanium diox-
ide particles in the anatase phase with a size of 10 nm have the 
highest photocatalytic activity due to the best balance between 
surface charge and particle size [38].

 

Figure 9. Factors affecting the photocatalytic properties of titanium dioxide [4]. 

 

4.2.2. TiO2 coating applications 

Finishing textiles with TiO2 nanoparticles, in addition to creating self-cleaning properties, by 

breaking down odor-causing organic molecules and breaking down microorganisms, will create 

features such as anti-odor and antimicrobial properties. Protection against ultraviolet rays is one 

of the properties created in textile coated with titanium dioxide [39]. 

4.2.3. Self-cleaning finishing of textiles using TiO2 

Self-cleaning fabrics are used in many cases, including work clothes and military uniforms, 

household and urban furniture, carpets, curtains, tents, agricultural textiles, filters, etc. An 

example of these fabrics is shown in Figure 10. To improve the stability and adhesion between 

the base material and the photocatalyst coating, physical methods such as plasma irradiation or 

UV radiation under vacuum are used to functionalize the surface. But in chemical methods, 

polycarboxylic acid-based cross linkers are used [40]. 

Figure 9: Factors affecting the photocatalytic properties of titanium dioxide [4].

4.3. Tio2 Coating Applications
Finishing textiles with TiO2 nanoparticles, in addition to creating 
self-cleaning properties, by breaking down odor-causing 
organic molecules and breaking down microorganisms, will 
create features such as anti-odor and antimicrobial properties. 
Protection against ultraviolet rays is one of the properties created 
in textile coated with titanium dioxide [39].

4.4. Self-Cleaning Finishing of Textiles Using Tio2
Self-cleaning fabrics are used in many cases, including work 
clothes and military uniforms, household and urban furniture, 
carpets, curtains, tents, agricultural textiles, filters, etc. An 
example of these fabrics is shown in Figure 10. To improve 
the stability and adhesion between the base material and 
the photocatalyst coating, physical methods such as plasma 
irradiation or UV radiation under vacuum are used to functionalize 
the surface. But in chemical methods, polycarboxylic acid-based 
cross linkers are used [40].

 

Figure10. An example of a self-cleaning garment with Nanotechnology textiles[6]. 

 

4.3. Cotton textile finish 

Cotton textiles have a weak bond with TiO2 particles. Various methods have been developed to 

finish cotton textiles using titanium dioxide, the most important of which are the following [4-

11]. 

4.3.1. Sol-gel method 

The sol-gel method is suitable for textiles and polymers with low thermal resistance. In this 

method, most TiO2 and SiO2 particles are used simultaneously to take advantage of their 

synergistic effect in creating self-cleaning properties [12]. 

4.3.2. Surface preparation method with radiation 

In this method, plasma with ultraviolet rays is used to create negative functional groups 

(including carboxylic, percarboxylic, epoxide and peroxide) on the surface of textiles. The 

purpose of this work is to deposit Ti4+ positive ions present in TiO2 particles on the surface of 

Figure10: An example of a self-cleaning garment with Nanotechnology textiles [6].
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4.5. Cotton Textile Finish
Cotton textiles have a weak bond with TiO2 particles. Various 
methods have been developed to finish cotton textiles using 
titanium dioxide, the most important of which are the following 
[4-11].

4.6. Sol-Gel Method
The sol-gel method is suitable for textiles and polymers with low 
thermal resistance. In this method, most TiO2 and SiO2 particles 
are used simultaneously to take advantage of their synergistic 
effect in creating self-cleaning properties [12].

4.7. Surface Preparation Method with Radiation
In this method, plasma with ultraviolet rays is used to create 
negative functional groups (including carboxylic, percarboxylic, 
epoxide and peroxide) on the surface of textiles. The purpose 
of this work is to deposit Ti4+ positive ions present in TiO2 
particles on the surface of textiles with negative surface charge 
and create a strong ionic bond between positive particles and 
negative textile [13].

4.8. Method of Mixing Tio2 with Metals
In this method, TiO2 particles are coated with metals such as 
silver and gold. One of the most important advantages of this 
mixture is to increase the photocatalytic property of titanium 
dioxide, to create self-cleaning property in visible light due to 
strengthening the absorption of ultraviolet rays, and to improve 
the stabilization of TiO2 particles during the washing of textiles 
[14].

4.9. Creating Chemical Cross-Links
In this method, polycarboxylic acids are used to create chemical 
cross-links between cotton and TiO2 particles, but there are 
also limitations, the most important of which is the creation of 
a transparent and non-uniform layer on cotton fabric with the 
property of self-cleaning in visible light and the possibility of 
yellowing in the fabric. In case of baking at temperatures higher 
than 210 0C [15].

4.10. Woolen Textile Finish
The use of titanium dioxide in the finishing of woolen textiles, 
in addition to creating self-cleaning properties, improves 
properties such as hydrophilicity, antimicrobial and anti-
yellowing due to light radiation. The use of ultraviolet radiation 
and uniform coating of wool with titanium dioxide/silicon 
dioxide nanocomposite are among the methods of increasing 
hydrophilicity and creating self-cleaning properties in these 
fibers. The presence of titanium dioxide crystals as an absorber 
of ultraviolet rays can also reduce the amount of yellowing 
of wool fibers due to light radiation. On the other hand, using 
the combination of silica and silver nanoparticles increases 
the hydrophilicity and antimicrobial properties of wool fibers. 
Since the thermal and chemical resistance of protein fibers is 
low, some special operations are required to complete these 
fibers with titanium dioxide. Chemical preparation methods of 
wool fibers are used for better adhesion of TiO2. For example, 
we can mention the acylation of the wool surface using succinic 
anhydride. Oxidation of the wool surface with potassium 
permanganate and the use of butane tetracarboxylic acid (BTCA) 

as a binder can increase the stability of nanoparticles and their 
absorption by wool fibers [12-13].

4.11. Finishing Polyester Textiles
The use of argon or oxygen plasma with radio frequency (RF) is 
one of the methods of functionalizing the polyester surface before 
finishing with colloidal TiO2 nanoparticles. Textiles completed 
with this method have antibacterial properties against E.Coli 
bacteria, are anti-ultraviolet rays, and stain decomposition. 
Similar results regarding the effect of textile preparation by 
plasma method have been reported for wool/nylon and polyester 
fabrics. TiO2 suspension and colloid is poured on the mentioned 
textiles at a temperature of 1000C. In this method, colloidal TiO2 
as the initial layer is covered with another layer of TiO2 with 
larger particle size. This provides the best color removal effect. 
The deposition of colloidal TiO2 particles on textiles provides 
suitable areas for placing the larger crystals of the second layer. 
This method stabilizes the completion of nanoparticles and 
maintains the expected properties after photochemical dyeing of 
stains on textiles [14].

5. Comparing the Self-Cleaning Properties of Textiles with 
Superhydrophobic Methods and Tio2 Particles
The effect of photocatalytic self-cleaning with TiO2 has several 
major advantages over self-cleaning with the superhydrophobic 
method [15-19]:
• The ease of using TiO2 compared to superhydrophobic surfaces.
• More durability and strength of surfaces completed with TiO2.
• Multipurpose finishing using TiO2 (self-cleaning, anti-bacterial, 
anti-odor and UV absorber).
• The stability of washing, abrasion and a more suitable 
environment of textiles completed with TiO2.

6. Challenges of Developing Superhydrophobic Surfaces
Despite the great efforts and research in the field of manufacturing 
superhydrophobic fibers with self-cleaning properties, this field 
often has challenges related to wear and lack of stability of 
properties. The nanoscale fluffy structure of the fibers is fragile 
and can be easily damaged by pressure or light abrasion. For 
this reason, it seems necessary to create structures that are more 
stable against the acting forces. Another problem with these 
surfaces is their tendency to absorb pollutants such as oily 
substances. Harmful substances penetrate the fiber structure and 
are difficult to remove. The above-mentioned drawbacks make it 
difficult to use these fabrics for a long time.

7. Conclusion
• In this article, the topic of self-cleaning using super 
hydrophobicity was mentioned. Creating nanometer roughness 
is a good way to create hydrophobic surfaces. In the case of 
textiles, one of the main challenges in the development of this 
method is the use and instability of nanometer roughness.
• The development of self-cleaning surfaces is an active field 
in research. The concept of self-cleaning is directly related to 
concepts such as surface wettability, surface chemistry and 
physics, nanotechnology and mechanics. Although several 
methods have been proposed to produce self-cleaning textiles and 
create nanometer roughness in the surfaces, there is still a need 
to provide simpler methods that require fewer operating steps 
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and lower temperatures. Many physical and chemical methods 
are often used to increase the adhesion of TiO2 particles to the 
fabric. One of the most important of these methods is surface 
functionalization with chemicals or ultraviolet rays or plasma, 
and creating chemical cross-links on the fabric.
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