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Abstract
Irinotecan (CPT-11) is a topoisomerase inhibitor anticancer drug effective against many human malignancies. Several 
mechanisms have been proposed for the antitumor effects of irinotecan, such as DNA synthesis inhibition, DNA 
crosslinking, inhibition of topoisomerase I, free radical generation and lipid peroxidation. Amifostine, is a cytoprotective 
adjuvant used in cancer chemotherapy, involving DNA-binding chemotherapeutic agents. The aim of this study was 
to explore whether amifostine protects against irinotecan-induced genotoxicity in HepG2 cells. For this purpose, we 
measured the DNA damage level with comet assay in HepG2 cells treated with irinotecan and amifostine in different 
condition. We also measured the intracellular ROS generation and GSH levels in cells treated with irinotecan and 
amifostine in pre-treatment condition. Our results showed that irinotecan induced a noticeable genotoxic effect in HepG2 
cells. Amifostine reduced the effects of irinotecan significantly (p<0.0001) by reduction of the level of DNA damage via 
blocking ROS generation, and enhancement of intracellular glutathione levels.
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Introduction
Irinotecan (CPT-11) is a semisynthetic, water-soluble derivative 
of camptothecinwith antineoplastic effect [1]. Irinotecan, as a 
topoisomerase I (TOP1) inhibitor, is used in the treatment of various 
types of cancers such asmetastatic colorectal and ovarian carcinoma [2]. 
Side effects of treatment include myelosuppression, neutropenia, nausea, 
vomiting and induction of secondary tumor [3-5]. Binding of irinotecan 
to topoisomerase II results in cleavable complexes that generate DNA 
strand breaks, inhibits DNA replication and RNA transcription in 
a cell cycle nonspecific manner [6,7]. Irinotecan cause apoptosis, 
mitochondrial dysfunction, and free radical generation in normal cells 
as well as tumorous cells [8-10]. The ability to induce DNA damage 
in normal cells and the induction of secondary malignancies may be 
considered as the most critical side effects of anticancer drugs [5,11]. 
The genotoxic effects of irinotecan have been proven by chromosomal 
aberration tests, micronucleus assay and Comet assay in various studies 
[11-13]. Thus, a thorough assessment aimed to its side effects, like 
genotoxicity which leads to secondary malignancy is required. 

Amifostine, is a cytoprotective agent used in cancer chemotherapy 
and radiotherapy involving DNA-binding chemotherapeutic agents 
[14]. Amifostine is an inactive prodrug that cannot protect cells until 
dephosphorylated to the active metabolite, WR-1065, by alkaline 
phosphatase in the plasma [15]. According to the different studies, 
inside the cell, amifostineʼs protective effects appear to be mediated 

by scavenging free radicals, hydrogen donation, induction of cellular 
hypoxia, the release of endogenous nonprotein sulfhydryl’s (mainly 
glutathione) from their bond with cell proteins and formation of 
mixed disulphides to protect normal cells [16]. Amifostine has shown 
significant radio- and chemoprotective effects in several in vitro and in 
vivo studies. It is presently accepted for clinical use as a protective agent 
against renal toxicity induced by cisplatin in patients being treated for 
ovarian cancer and against xerostomia induced by ionizing radiation 
in patients with head and neck cancer [17-20]. Preclinical studies have 
shown that administration of amifostine before irradiation protected 
against radiation clastogenesis, mutagenesis and carcinogenesis 
[21,22]. Amifostine is able to inactivate electrophilic substances and 
scavenge free radicals [23]. In addition numerous studies has been 
showed that amifostine attenuate cardiotoxicity, nephrotoxicity and 
genotoxicity result from chemotherapy agents [18,24-26].

Single cell gel electrophoresis (comet assay) is considered as some 
sensitive methods for analyzing genotoxic or genoprotective potential 
of compounds is normally used in genotoxicity testing. Applications 
of this test include genotoxicity testing, human biomonitoring and 
molecular epidemiology, ecogenotoxicology, as well as primary 
research in DNA damage and repair [27,28]. The purpose of 
present study was to explore the protective effect amifostine against 
irinotecan induced genotoxicity. For this purpose, we measured the 
DNA damage level with comet assay in HepG2 cells treated with 
irinotecan and amifostine in co and pre-treatment conditions. We 
also investigated the generation of ROS and intracellular glutathione 
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levels as possible genotoxic mechanisms.

Materials and Methods
Chemicals
irinotecan was purchased from Sigma-Aldrich, France. Amifostine, 
EDTA, H2O2, NaCl, NaOH, Na2CO3, NaH2PO4, Tris, and Triton 
X-100 were acquired from Merck Co. (Germany). Low melting 
point agarose (LMA), Na2HPO4, KCl and ethidium bromide were 
from Sigma Co. (USA). Normal melting point agarose (NMA) was 
supplied by Cinnagen Co (Germany). The RPMI 1640 medium, fetal 
bovine serum (FBS) and the antibiotic were purchased from biosera 
(France). DCFH-DA probe and mBCl were from sigma Aldrich 
(USA) And, HepG2 cells came from Pasture Institute (Iran). All 
other chemicals used were of analytical grade. 

Cell culture
Human hepatoma (HepG2) cells were obtained from Pasture Institute 
of Iran were grown as monolayer culture in RPMI 1640 medium 
supplemented with 10% FBS, 1% of mixture of penicillin (100 IU/
ml) and streptomycin (100µg/ml) incubated at 37◦C in an atmosphere 
of 5% CO2–95% air mixture. Amifostine was dissolved in the 
cell culture medium. We have chosen untreated cells as a control. 
Cells were seeded in 24-well culture plates at 25×10 4 cells/well, 
after overnight growth, cells treated with studied concentrations of 
amifostine (1,5 and 10 mg/ml) 24 h prior and Simultaneously to 
irinotecan treatment (100µM) for 1 h at 37 ◦C [28]. 

Single-cell gel electrophoresis (SCGE, the comet assay)
The comet assay procedure has been described in our previous studies 
[29-32]. Briefly, incubated cell suspensions (1 × 106 cells/ml) were 
mixed with 1% LMP agarose at 37ºC, were placed on the precoated 
slides (1% NMP agarose), and covered by cover glasses for 5 min at 
2-8 °C. The slides were incubated with lysis solution (pH=10.0) for 40 
min and rinsed with distilled water to remove the excess lysis solution. 
In the next step, slides were incubated with electrophoresis buffer 
(pH> 13.0) for 40 min. Electrophoresis was conducted for 40 min at 
25 V with an electricity current adjusted to 300 mA. After this stage, 
the slides were rinsed with distilled water to remove excess alkaline 
buffer and were placed in the neutralization solution (pH=7.5) for 10 
min. The slides were covered by sufficient dye solution (20 μg/ml 
ethidium bromide) for 5 min and washed with distilled water. Finally, 
comets were visualized under × 400 magnification using fluorescence 
microscope with an excitation filter of 510-560 nm and the barrier 
filter of 590 nm [23]. All stages of comet assay were performed in 
dark conditions and all solutions were prepared freshly and used cool.

Measurement of Oxidative Stress
Approximately 4 × 104 cells per well were cultured for 24 h in 

96-well plates (black-wall/clear-bottom). Thereafter, the medium 
was aspirated, and the cells were washed twice with HBSS. The 
cells were then treated with studied concentrations of amifostine 
(1, 5 and 10 mg/ml) 24 h prior irinotecan treatment (100µM) for 
1 h at 37 ◦C. After the treatment, cells were washed twice with 
HBSS and incubated in 2 ml of fresh culture medium without FBS. 
2_, 7_ Dichlorodihydrofluorescein diacetate was added at a final 
concentration of 10µM and incubated for 20 min. The cells were then 
washed twice with PBS and maintained in 1 ml of culture medium. 
Assess ROS by immediately analyzing cells by fluorescence plate 
reader using the 488 nm for excitation and detected at 535 nm. We 
have chosen untreated cells as a negative control and cells treated 
with 0.1 mM H2O2 as a positive control [28].

Measurement of intracellular GSH levels
HepG2 cells were plated in a 96-well plate at 50,000 cells/well. 
After overnight growth, they were treated with test vehicles and 
then incubated with monochlorobimane (mBCI, 40 μM) in a 
staining solution (5mMglucose, 1 mM CaCl2, 0.5mMMgSO4, 5 
mg/ml BSA) for 30 min at 37°C in the dark. Although mBCI is 
a nonfluorescent probe, it forms a stable fluorescent adduct with 
GSH in a reaction catalyzed by the GSH S-transferases. The mean 
fluorescent intensity of the fluorescent GSH-bimane adduct was 
measured using a Spectra fluorescent plate reader at λex=380 nm and 
λem=460 nm to detect GSH. The assay was performed for amifostine 
for studied concentration (1,5 and 10 mg/ml) and irinotecan (100µM) 
in pretreatment condition [28].

Statistical analysis
Tail moment (percentage of DNA in the tail ×tail length), tail 
length (the length of the comet tail), and percent of DNA in the tail 
(percentage of colored spots in tail) are the most frequently used 
factors in the evaluation of DNA damages in the comet assay method. 
We used these factors for statistical analysis in this investigation. 
One-way analysis of variance (ANOVA) followed by Tukey’s 
multiple comparison post hoc tests was used to compare the results 
of all assays. Value of p < 0.05 was considered to be significant.

Results
Study the effect of amifostine on irinotecan-induced DNA damage
The anti-genotoxic effect of amifostine was investigated through the 
alkaline comet assay. Results of the visual scoring and percentage 
of total DNA damage induced by irinotecan and prevented by 
amifostine were shown in Table 1. We observed that irinotecan 
treatment at 100µM induced a significant (p < 0.001) increase in 
DNA damage as compared to the control group. Amifostine in the 
different treatment conditions decreased significantly (p < 0.0001) 
the level of DNA fragmentation as compared to the control group.
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Treatment Tail length (Pixels) (Mean
±SEM)                                

%DNA in Tail 
 (Mean±SEM)

Tail moment 
 (Mean±SEM)

Pre-treatment

Control (CPT11 100µM) 143.1±2.673 7±2.750. 3±1.76
Amifostine (1mg/ml) 81.11±2.4 63.2±1.3 46.3±1.3
Amifostine (5mg/ml)   29.42±1.1 * 14.4±0.6* 12.1±1.6*
Amifostine (10mg/ml)  18.2±1.33*# 5.1±0.6* 1.2±.037*

Co-treatment

Control (CPT11 100µM) 143.1±2.673 7±2.750. 3±1.76
  Amifostine (1mg/ml)              90.5±1.266 37±1.1 41.45±1.2
Amifostine (5mg/ml) 31.6±1.6* 19±0.57* 7.2±1.2*
Amifostine (10mg/ml)              21.43±1.7*	 8.3±0.5 * 1.9±.02*
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Table 1: The genoprotective effect of Amifostine compared with 
control groups on tail length (pixels), percentage of DNA in tail, and 
tail moment (pixels) that are represented as mean± SEM. The sign (*) 
show significantly (p<0.0001) decreased compared to the irinotecan 
group. (one-way ANOVA followed by tukeys post hoc test).

Study the effect of amifostine on ROS generation in irinotecan-
treated cells
To investigate the role of oxidative stress in irinotecan -induced 
genotoxicity, we used DCFH-DA, a cell-permeable fluorescent dye, to 
examine the ROS generation in HepG2 cells in response to irinotecan 
stimulation. Incubation with irinotecan for 1 h showed a considerable 
increase in oxidant-induced 2_, 7_-dichlorofluorescein fluorescence 
in HepG2 cells (Fig. 1). H2O2-mediated DCF fluorescence occurred 
after 1h incubation with irinotecan (100µM) in HepG2 cells. This 
suggests that irinotecan, induce intracellular oxidative stress, involved 
in its genotoxicity. After that cells were treated with amifostine in 
pre-treatment condition and subsequently examined. Amifostine was 
significantly (p<0.0001) reduced ROS generation as compared to the 
irinotecan group. Untreated cells served as control.

Figure 1: Study the effect of amifostine on irinotecan-induced ROS 
generation. (****) show significantly increased results (respectively 
p<0.0001) as compared to the control group. The sign (#) show 
significantly (p<0.0001) decreased compared to the irinotecan group.

Study the effect of irinotecan on intracellular levels of GSH
We first examined the effect of irinotecan on the intracellular levels 
of GSH using mBCI which readily enters cells to form a fluorescent 
GSH-bimane adduct that can be measured fluorometrically. As 
shown in fig.2, within 1h after irinotecan (100µM) treatment, the 
intracellular levels of GSH were reduced (p<0.0001). This finding 
was subsequently confirmed by an enzymatic assay using glutathione 
reductase and 2-vinylpyridine. Next, we measured the intracellular 
levels of GSH in cells after treatment with amifostine and irinotecan 
in pre- treatment condition. As shown in fig.2 amifostine were 
significantly (p<0.0001) increased GSH levels as compared to the 
irinotecan group.

Figure 2:The effect of amifostine on the levels of intracellular 
GSH were determined. ANOVA analysis revealed that amifostine, 

significantly inhibited the effects of irinotecan on the levels of 
GSH. Sign (****) and (*) show significantly decreased results 
(respectively p<0.0001and p<0.05) as compared to the control 
group. Sign # show significantly (p<0.0001) increased as compared 
to the irinotecan group.

Discussion
In cancer treatment, irinotecan is a commonly used drug against 
several human malignancies such as colorectal and ovarian 
carcinoma [2]. Genotoxic drugs affect both normal and cancer 
cells, but the selectivity associated with sensitivity of rapidly 
dividing cells such as cancer cells [29]. The importance of cancer 
cell-specific mechanism intended agents such as inhibitors of DNA 
topoisomerases which are the major class of anticancer drugs is 
increasing.Topoisomerase inhibitors act by transiently trapping 
the enzymes in these intermediate complexes, often preventing the 
nicks from re-ligating and leading to DNA strand breaks [30,31]. 
Therefore, our study had three general aims. Firstly, we tried to assess 
the ability of irinotecan to damage DNA in human hepatoma cells. 
Secondly, we explored the protective effect of amifostine against 
DNA-damaging effects evoked by irinotecan. Thirdly, we attempted 
to evaluate the protective potential of amifostine against generation 
of ROS and depletion of intracellular glutathione levels as the 
probable genotoxic mechanism. Our experimental data indicate that 
irinotecan can generate damage to DNA in HepG2 cells (p<0.0001). 
It is likely, that the damage is caused by oxygen radicals generated 
by irinotecan; DNA methylation by the drug can also contribute to 
the damage.

Amifostine, is the most effective radio protector known and the 
only one accepted for clinical use in cancer radiotherapy [32]. This 
ant genotoxic effect was explained by assuming a high affinity of 
amifostine for DNA, thereby stabilizing the DNA molecule and 
facilitating the activity of DNA repair enzymes [33]. Previous studies 
using mammal cells have shown that amifostine enhances DNA 
repair and thus improves cell survival. Amifostine phosphorylated 
aminothiol, also is an antioxidant clinically prescribed to prevent 
the neutropenia-associated events in patients receiving alkylating 
agents [34]. In experimental animals, Yuhas and Storer showed 
that treatment with AMF effectively protects normal tissue from 
the toxicity of therapeutic radiation, without protecting tumor [35]. 
Nagy et al. subsequently showed that AMF showed the protective 
effect against the mutagenicity of cisplatin, evaluated by the mutation 
rate of HPRT in V79 Chinese hamster cells [36]. Other reports 
documented that amifostine protects normal tissue against radiation-
induced damage by increasing intracellular SOD2 activity. Once 
dephosphorylated by the membrane-bound alkaline phosphatase 
(ALP), AMF is activated to a free thiol form (WR-1065), which is 
preferentially up taken by normal cells, since ALP is more active 
and efficiently expressed in normal rather than neoplastic tissue 
[37]. Moreover, in another study found that WR1065, the active 
free thiol form of amifostine, induces antioxidative ability against 
radiation via SOD2 in vitro [38,39]. Other studies have been shown 
the role of SOD2 in amifostine-induced protective effects, SOD2 
mediated amifostine-induced antioxidative actions in PC12 cells 
exposed to glutamate. As SOD2 protein is mainly expressed in 
mitochondria which have been identified as a major source of ROS, 
we infer that high level of SOD2 protein may protect mitochondria 
by consuming ROS generated in oxidative injury. In addition, 
SOD2 mediated amifostine-induced effects on intracellular ROS, 
CAT, and GSH levels, indicating SOD2 may be the key target 
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of amifostine in maintaining the balance of intracellular oxidants 
and antioxidants in PC12 cells. In our investigation we quantified 
the DNA-damage level, to elucidate the possible anti-genotoxic 
mechanism of amifostine against irinotecan -induced toxicity in 
HepG2 cell line. Our results showed that irinotecan alone caused 
a significant increase in DNA fragmentation as compared to the 
untreated cells. However, treatment of HepG2 cells with amifostine 
24 h before irinotecan administration induced a noticeable decrease 
in DNA fragmentation as compared to the irinotecan -treated group. 
Measurement of ROS generation showed that irinotecan induced 
ROS generation. Amifostine is a potent cytoprotective agent that can 
inhibit oxidative stress by scavenging ROS and replenishing GSH. 

Conclusion
In conclusion, we have demonstrated that amifostine protected 
Hepg2 cells against irinotecan-induced DNA damage and oxidative 
injury. Furthermore, we showed that irinotecan increased intracellular 
ROS generation and decreased intracellular GSH levels. Amifostine 
ameliorated the balance of intracellular antioxidants and oxidants, 
decreased ROS generation and enhanced the intracellular level of 
GSH.
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