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Abstract
Free ribbon lemma that every free sphere-link in the 4-sphere is a ribbon sphere-link is shown in an earlier paper by the 
author. In this paper, another proof of this lemma is given.
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1. Introduction
A surface-link is a closed oriented (possibly, disconnected) surface L smoothly embedded in the 4-sphere S4. When L is connected, L 
is called a surface-knot. If L consists of 2-spheres Li (i = 1, 2, . . . , n), then L is called a sphere-link (or an S2-link) of n components. It 
is shown that a surface-link L is a trivial surface-link, i.e., bounds disjoint handlebodies in S4 if π1(S

4 \ L, x0) is a meridian-based free 
group [4-6]. A surface-link L is ribbon if L is obtained from a trivial S2-link O in S4 by surgery along smoothly embedded disjoint 
1-handles on O. A surface-link L in the 4-sphere S4 is free if the fundamental group π1(S

4 \ L, x0) is a (not necessarily meridian-based) 
free group. The free ribbon lemma is the following theorem.

Theorem
Every free S2-link is a ribbon S2-link.
This theorem is a basic result concerning Whitehead aspherical conjecture and classical Poincaré conjecture and the proof is done 
as an appendix [8-10].

At present, it appears unknown whether or not every free surface-link is a ribbon surface-link. In this paper, another proof of this 
theorem is given as follows.

Proof of Theorem
Let Li (i = 1, 2, . . . , n) be the components of a free S2-link L. Let xi (i = 1, 2, . . . , n) be a basis of the free fundamental group G = π1(S

4 
\ L, x0). Let yi be a meridian element of Li in G, so that yi (i = 1, 2, . . . , n) are a meridian system of G. By Nielsen transformations, yi 
is equal to xi modulo the commutator subgroup [G,G] of G. It is known that the group G is isomorphic to a group GP with Wirtinger 
presentation
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such that yi1 = yi (i = 1, 2, . . . , n) and the relators rij (j = 2, 3, . . . ,mi + si, i =
1, 2, . . . , n) are given by rij : yij = wijyi1w

−1
ij for j with 2 ≤ j ≤ mi, 1 ≤ i ≤ n, and

rij : yi1 = wijyi1w
−1
ij for j with mi + 1 ≤ j ≤ mi + si, 1 ≤ i ≤ n, where wij (j =

2, 3, . . . ,mi + si, i = 1, 2, . . . , n) are words in the letters yij (j = 1, 2, . . . ,mi, i =
1, 2, . . . , n). This result is obtained from Yajima [13] because G has a weight system
yi (i = 1, 2, . . . , n), H1(G;Z) ∼= Zn and H2(G;Z) = 0. It is observed that this result
can be also obtained by an alternative geometric method using a normal form of a
surface-link in R4 [11]. In fact, put the S2-link L in a normal form of in the 4-space
R4 with L[0] = L∩R3[0] a middle cross-sectional link and calculate the fundamental
groups π1(R

3[0,+∞)\L∩R3[0,+∞), x0) and π1(R
3(−∞, 0]\L∩R3(−∞, 0], x0) with

Wirtinger presentations starting from the fundamental group π1(R
3[0]\L[, 0], x0) with

a Wirtinger presentation to obtain the group G with a Wirtinger presentation by van
Kampen theorem. See [2, 3] for this construction and [1] for a generalization. By
fixing an isomorphism GP → G, regard the generators yij (j = 1, 2, . . . ,mi, i =
1, 2, . . . , n) of P as fixed words in the basis xi, (i = 1, 2, . . . , n) of G. Then the
relator yi1 = wijyi1w

−1
ij for every i and j with mi + 1 ≤ j ≤ mi + si can be written

as yi1 = a
u(i,j)
ij and wij = a

v(i,j)
ij for a deduced word aij in xi, (i = 1, 2, . . . , n) and

some integers u(i, j), v(i, j) by Dehn’s solution of the word problem of the free group
< x1, x2, . . . , xn >. The elements yi = yi1 (i = 1, 2, . . . , n) form the same abelian
basis as xi (i = 1, 2, . . . , n) in the free abelian group G/[G,G], so that u(i, j) = ±1

for every i and j. Thus, wij = y
u(i,j)v(i,j)
i1 for every i and j with mi + 1 ≤ j ≤ mi + si,

which means that the relators rij: yi1 = wijyi1w
−1
ij (mi + 1 ≤ j ≤ mi + si) are identity

relations in the free group < yij (1 ≤ j ≤ mi, 1 ≤ i ≤ n) >. Thus, the Wirtinger
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−1
ij (1 ≤ j ≤ mi, 1 ≤ i ≤ n). By Yajima’s construction [12] (see also

2

such that yi1 = yi (i = 1, 2, . . . , n) and the relators rij (j = 2, 3, . . . , mi + si, i = 1, 2, . . . , n) are given by rij : yij = wijyi1wij
−1 for j with 

2 ≤ j ≤ mi, 1 ≤ i ≤ n, and rij : yi1 = wijyi1wij
-1 for j with mi + 1 ≤ j ≤ mi + si, 1 ≤ i ≤ n, where wij (j =2, 3, . . . , mi + si, i = 1, 2, . . . , n) are 

words in the letters yij (j = 1, 2, . . . , mi, i = 1, 2, . . . , n). This result is obtained from Yajima [13] because G has a weight system yi (i 
= 1, 2, . . . , n), H1(G; Z) = Zn and H2(G; Z) = 0. It is observed that this result can be also obtained by an alternative geometric method 
using a normal form of a surface-link in R4 [11]. In fact, put the S2-link L in a normal form of in the 4-space R4 with L[0] = L ∩ R3[0] 
a middle cross-sectional link and calculate the fundamental groups π1(R
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and j with mi + 1 ≤ j ≤ mi + si can be written as yi1 = aij 
u(i,j) and wij = aij 

v(i,j)  for a word aij in xi (i = 1, 2, . . . , n) and some integers u(i, 
j), v (i, j) because any nontrivial abelian subgroup of a free group is an infinite cyclic group. The elements yi = yi1 (i = 1, 2, . . . , n) 
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ij (mi + 1 ≤ j ≤ mi + si) are identity
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with yi1 = yi (i = 1, 2, . . . , n) and the relators rij (2 ≤ j ≤ mi, 1 ≤ i ≤ n) given by
rij : yij = wijyi1w

−1
ij (1 ≤ j ≤ mi, 1 ≤ i ≤ n). By Yajima’s construction [12] (see also

2

with yi1 = yi (i = 1, 2, . . . , n) and the relators rij (2 ≤ j ≤ mi, 1 ≤ i ≤ n) given by rij : yij = wijyi1wij
−1 (2 ≤ j ≤ mi, 1 ≤ i ≤ n). By Yajima’s 

construction there is a ribbon S2-link LR with the fundamental group GR = π1(S
4 \ LR, x0) of the Wirtinger presentation  which is 

isomorphic to G by an isomorphism GR → G sending a meridian element yR
i of the ith component LR

i of LR to the meridian element 
yi of Li in G for every i (i = 1, 2, . . . , n) and a basis xR

i (i = 1, 2, . . . , n) of GR to the basis xi (i = 1, 2, . . . , n) of G [2,3,12]. Let Y R 
and Y be the 4D manifolds (both diffeomorphic to the n-fold connected sum of S1 × S3) obtained from S4 by surgeries along LR and 
L, respectively, and ℓR

i (i = 1, 2, . . . , n) and ℓi (i = 1, 2, . . . , n) the loop systems obtained from LR
i (i = 1, 2, . . . , n) and Li (i = 1, 2, 

. . . , n), respectively. By [8], there is an orientation-preserving diffeomorphism f : YR → Y sending the loop system ℓR
i (i = 1, 2, . . . , 

n) to the loop system ℓi (i = 1, 2, . . . , n). Note that this result is obtained from the smooth unknotting conjecture for S2-knots and the 
4D smooth Poincaré conjecture [4-7]. By the back surgeries from Y R to S4 along ℓR

i (i = 1, 2, . . . , n) and from Y to S4 along ℓi (i = 
1, 2, . . . , n), this diffeomorphism f induces an orientation-preserving diffeomorphism f′ : S4 → S4 sending LR to L. Thus, the S2-link 
L is a ribbon S2-link. This completes the proof of Theorem.

In the proof of Theorem, the ribbon S2-link LR is called a ribbon presentation of the free S2-link L. The following corollary is obtained 
from the proof of Theorem.

Corollary
Let L be a free S2-link in the 4-sphere S4 containing a free S2-link K as a sublink. For any ribbon presentation of KR of K, there is a 
ribbon presentation LR of L containing KR as a sublink.

Proof of Corollary
The ribbon presentation of KR of K is in a normal form. Thus, the result is obtained from the observation that a normal form of L is 
taken to contain KR as a sublink [11].
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