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Abstract
This work analyzes the simultaneous impacts of surface elasticity, initial stress, residual surface tension and 
nonlocality on the nonlinear vibration of single-walled carbon conveying nanotube resting on linear and 
nonlinear elastic foundation and operating in a thermo-magnetic environment. Equation of motion govern-
ing the vibration of the nanotube was derived using Erigen’s theory, Euler-Bernoulli’s theory and Hamilton’s 
principle. The partial differential equation was converted to ordinary differential equation using Galerkin’s 
decomposition method and the ordinary differential equation was solved with the aid of variation of parameter 
method. Through the parametric studies, it was revealed that the ratio of the nonlinear to linear frequencies 
increases with the negative value of the surface stress while it decreases with the positive value of the surface 
stress. At any given value of nonlocal parameters, the surface effect reduces for increasing in the length of 
the nanotube. ratio of the frequencies decreases with increase in the strength of the magnetic field, nonlocal 
parameter and the length of the nanotube. The natural frequency of the nanotube gradually approaches the 
nonlinear Euler–Bernoulli beam limit at high values of nonlocal parameter and nanotube length. nonlocal 
parameter reduces the surface effects on the ratio of the frequencies. Increase in temperature change at high 
temperature causes decrease in the frequency ratio. However, at room or low temperature, the frequency ratio 
of the hybrid nanostructure increases as the temperature change increases. Also, the ratio of the frequencies at 
low temperatures is lower than at high temperatures. The present work will assist in the control and design of 
carbon nanotubes operating in thermo-magnetic environment and resting on elastic foundations.
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1. Introduction 
Iijima [1] discovered nanostructures discovered which has 
led to production of carbon nanotubes that have been widely 
utilized for medical, industrial, electrical, thermal, electronic 
and mechanical applications [2-5]. Although, some studies have 
been put forward on the vibrations analysis of the structures 
[6-13], the effects of the surface energy and initial stress are 
neglected in the studies. Indisputably, the properties of the 
region of the solid surface are different properties from the 
bulk material. Also, for classical structures, surface energy-to-
bulk energy ratio is small. However, nanostructures have large 
surface energy-to-bulk energy ratio and high ratio of surface 
energies to volume, elastic modulus and mechanical strength. 
Consequently, the mechanical behaviours, bending deformation 
and elastic waves of the nanostructures are greatly influenced. 
Therefore, the surface energy effects cannot be neglected in the 
dynamic behaviour analysis of nanostructures. Such surface 

energy of nanostructures is composed of the surface tension and 
surface modulus exerted on the surface layer of nanostructures 
[13-20]. Using nonlocal elasticity theory, Wang [13] analyzed 
surface effects on the vibration behaviour of carbon nanotubes. 
Few years later, Zhang and Meguid [14] presented the impacts 
of surface energy on the dynamic behaviour and instability 
of nanobeams conveying fluids. Hosseini et al. [15] studied 
the influence of surface energy on the nonlocal instability of 
cantilever piezoelectric carbon nanotubes conveying fluid. The 
combined effects of surface energy and nonlocality on the flutter 
instability of cantilevered nanotubes conveying fluid under the 
influence of follower forces were explored by Bahaadini et al. 
[16]. Using nonlocal elasticity theory, Wang and Feng [17,18] 
investigated the effects of the surface stress on contact problems 
at nanoscale and proposed a theoretical model considering the 
joint effects of the elastic modulus of the surface and residual 
stress for vibration analysis on the basis of Euler-Bernoulli 
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beam model. Farshi [19] explored the surface effect on vibration 
behaviour of single-walled carbon nanotube while Lee and 
Chang [20, 21] confirmed the surface effect plays a significant 
role on vibration frequency of nano-beam through the Rayleigh-
Ritz method. Other researchers [22-28] also examined the 
significance of surface stress and energy on the dynamic 
response and instability of nanostructures. 

Carbon nanotubes often suffer from initial stresses due to residual 
stress, thermal effects, surface effects, mismatches between the 
material properties of CNTs and surrounding mediums, initial 
external loads and other physical issues. The effects of initial 
stress on the dynamic behaviour of nanotubes have been studied 
[29-37]. However, because of their significant in practically 
nano-apparatus applications, there is a need for a combined on 
the effects of surface behaviours, initial stress and nonlocality on 
the physical characteristics and mechanical behaviours of carbon 
nanotubes. Also, scanning through the past works and to the best 
of the authors’ knowledge, a study on simultaneous effects of 
surface energy and initial stress  on the vibration characteristics 
of nanotubes resting of Winkler and Pasternak foundations in a 
thermo-magnetic environment has not been carried out. 

In the past and recent studies, different numerical and 
analytical approximate methods have been adopted to analyze 
the nonlinearity in vibration problems. Such studies of using 
approximate analytical methods have been largely based on 
the applications homotopy analysis method (HAM), Adomain 
decomposition method (ADM), differential transformation 
method (DTM), variational iteration method (VIM), variation 
of parameter method (VPM), optimal homotopy asymptotic 
method (OHAM) etc. However, the determination of the 
included unknowns (that will satisfy the second boundary 
conditions) accompanying the approximate analytical solutions 
of these methods in analyzing the nonlinear problems increases 
the computational cost and time. Further, numerical schemes are 
used for the determination of the unknown included parameters. 
Practically, this attests that the methods (HAM, ADM, VIM, 
VPM, DTM, OHAM, DJM, and TAM) can be classified as 
semi-analytical methods rather than pure approximate analytical 
methods such as regular, singular and homotopy perturbation 
methods. Also, these methods (HAM, ADM, VIM, VPM, DTM, 
OHAM, DJM and TAM) traded off relative simplicity and 
low computational cost for high accuracy as compared to the 
perturbation methods. Indisputably, the use of relatively simple, 
low cost and accurate method is still required in analysing the 
process and nonlinear equations. 

Variation of parameter method (VPM) for solving linear and 
nonlinear differential equations has fast gained ground as it 
appeared in many engineering and scientific research papers. It 
is an approximate analytical method that could solve differential 
equations, difference equation, differential-difference equations, 

fractional differential equation, pantograph equation and 
integro-differential equation. It solves nonlinear integral and 
differential equations without linearization, discretization, 
closure, restrictive assumptions, perturbation, approximations, 
round-off error and discretization that could result in massive 
numerical computations. It reduces complexity of expansion 
of derivatives and the computational difficulties of the other 
traditional approximation analytical or perturbation methods. 
It provides excellent approximations to the solution of non-
linear equation with high accuracy. Moreover, the need for small 
perturbation parameter as required in traditional PMs, the rigour 
of the derivations of differential transformations or recursive 
relation as carried out in DTM, the difficulty in determining 
the Adomian polynomials as in ADM, the restrictions of HPM 
to weakly nonlinear problems as established in literatures, the 
lack of rigorous theories or proper guidance for choosing initial 
approximation, auxiliary linear operators, auxiliary functions, 
auxiliary parameters, and the requirements of conformity 
of the solution to the rule of coefficient ergodicity as done in 
HAM, the search Langrange multiplier as carried in VIM, 
and the challenges associated with proper construction of the 
approximating functions for arbitrary domains or geometry of 
interest as in Galerkin weighted residual method (GWRM), least 
square method (LSM) and collocation method (CM) are some 
of the difficulties that VPM overcomes. Additionally, the review 
of past works has shown that VPM has not been adopted to 
solve the nonlinear problem. Therefore, in this present study, the 
coupled impacts of surface effects, initial stress and nonlocality 
on the nonlinear dynamic behaviour of single-walled carbon 
nanotubes resting on Winkler (Spring) and Pasternak (Shear 
layer) foundations in a thermal-magnetic environment. Erigen’s 
nonlocal elasticity [38-39], Maxwell’s relations, Hamilton’s 
principle, surface effect and Euler-Bernoulli beam theories 
are adopted to develop the systems of nonlinear equations of 
the dynamics behaviour of the carbon nanotube. The partial 
differential equation was converted to ordinary differential 
equation using Galerkin’s decomposition method and the 
ordinary differential equation was solved with the aid of variation 
of parameter method.  Although, the study is majorly directed to 
analyze the impacts of surface, nonlocality and initial stress on 
the vibration of the nanostructures, it is known that magnetic 
field and temperature change/gradients can significantly change 
the vibration characteristics of nanotubes as they affect the 
homogeneous nanotubes. 

2. Model Development 
Consider a single-walled CNT of length L and inner and outer 
diameters Di and Do resting on Winkler (Spring) and Pasternak 
(Shear layer) foundations as illustrated in Fig. 1.  The SWCNTs 
conveying a hot fluid and resting on elastic foundation under 
external applied tension, initial stress, magnetic and temperature 
fields as shown in the figure. 
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Figure 1: Carbon nanotube conveying hot fluid resting on elastic foundation 

2.1 Nonlocal elasticity theory
Based on the nonlocal elasticity theory and given considerations 
to the nonlocal effects of higher-order strain gradients, the 
differential relations involving the stress resultants and the 
strains for the nanotube:

					     	 (1)
The strain–displacement relation,

						      (2)

In case of small deformation, the strain  strain–displacement 
relation

						      (3)

Therefore,
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Multiply Eq. (4) through by zdA
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On integrating both sides of Eq. (8), we have
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Recall that the bending moment and second moment of area of 
the nanotube are given as
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Therefore, Eq. (6) can be written as
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The above Eq. (9) shows the relationship between the flexural 
displacement w and the bending moment M of the nanotube can 
be obtained.

If Eq. (9) is differentiated twice, we have

						      (10)

Therefore,

						      (11)

If the effect of surface is considered, we have
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From the Euler beam theory,
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The axial force per unit length as a result fluid flow effect
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Fig. 2 shows the effect of flow in a channel. In the fluid-conveying 
carbon nanotube, the condition of slip is satisfied since in such 
flow, the ratio of the mean free path of the fluid molecules 
relative to a characteristic length of the flow geometry  which 
is the Knudsen number is larger than 10-2. Consequently, the 
velocity correction factor for the slip flow velocity is proposed 
as [40, 41]:

						      (23)

Where Kn is the Knudsen number, σv is tangential moment 
accommodation coefficient which is considered  to be 0.7 for 
most practical purposes [40, 41]

						      (24)

						      (25)

a1=4 and B = 0.04 and b is the general slip coefficient (b = −1).

From Eq. (23), 	
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The axial force per unit length due to initial stress  
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The axial force per unit length due to residual surface stress  
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The axial force per unit length due to axial tension/support
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The force per unit length due to the Winkler and Pasternak 
foundations is given as

						      (18)

The magnetic force per unit length as a result of Lorentz force.   
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The axial force per unit length as a result of the thermal effect  

						      (20)
	

Substituting Eqs. (14) – (20) into Eq. (13), we have
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On putting Eq. (20) into Eq. (12), we arrived at  
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Figure 2: Effect of slip boundary condition on velocity profile [40, 41].
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Where Kn is the Knudsen number, σv is tangential moment accommodation coefficient which 
is considered  to be 0.7 for most practical purposes [40, 41] 
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The symbol Hs is the parameter induced by the residual surface stress.τ is the residual surface tension, d and h are the nanotube 
internal diameter and thickness, respectively. It should be noted that the diameter of the nanotube can be derived from chirality 
indices (n, m) 
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where  		    .           ”a” represents the length of the carbon-carbon bond. d is the inner diameter of the nanotube.

3. Analytical Solutions of Nonlinear Model of Free Vibration of the Nanotube 
The nonlinear term in model in Eq. (27) makes it very difficult to provide closed-form solution to the problem. Therefore, recourse 
is made to homotopy perturbation to solve the nonlinear model. In order to develop analytical solutions for the developed nonlinear 
model, the partial differential equation is converted to ordinary differential equation using the Galerkin’s decomposition procedure 
to decompose the spatial and temporal parts of the lateral displacement functions as 
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where 

Galerkin’s decomposition procedure to decompose the spatial and temporal parts of the 
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The symbolic solution of Eq. (36) can be provided by assuming 
an initial approximation for zero-order deformation to be 
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The elimination of secular term is produced by making

					     (41)

Therefore, the zero-order nonlinear natural frequency becomes
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The ratio of the zero-order nonlinear natural frequency to the 
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Similarly, the first-order nonlinear natural frequency is given as
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The ratio of the first-order nonlinear natural frequency to the 
linear frequency
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5. The Procedure of Variation Parameter Method
The basic concept of VPM for solving differential equations is as 
follows: The general nonlinear equation is in the operator form
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The linear terms are decomposed into L + R, with L taken as the 
highest order derivative which is easily invertible and R as the 
remainder of the linear operator of order less than L. where g is 
the system input or the source term and u is the system output, 
Nu represents the nonlinear terms. 

The VPM provides the general iterative scheme for Eq. (17) as:
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where the initial approximation 	      is given by 
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m is the order of the given differential equation, ki s are the 
unknown constants that can be determined by initial/boundary 
conditions and	       is the multiplier that reduces the order of 
the integration and can be determined with the help of Wronskian 
technique.   
	

						      (49)

From the above, one can easily obtain the expressions of the 
multiplier for  Lf(η)= f n(η)
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3. The Procedure of Variation Parameter Method 
The basic concept of VPM for solving differential equations is as follows: The general 
nonlinear equation is in the operator form
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Consequently, an exact solution can be obtained when n approaches infinity.

Using the standard procedure of VPM as stated above, one can write the solution of  Eq. (36) as
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Expansion of Eq. (56) produces

                      

                                                                                                                                             				    (57)
Using trigonometric identities, we have

 
													             (58)
After integrating Eq. (58), one arrives at

													             (59)

Further simplification of Eq. (59) produces

						    
													             (60)

Therefore, Eq. (61) can be written as

													              (61)
Substitute Eqs. (33) and (61) into Eq. (29), one arrives at

													             (62)
where 

 

For the nonlinear free vibration of pipe conveying fluid resting on uniform foundations with damped system, we have 

											           (63)
where   	             but    and    have been previously defined. 

One arrives at 

											           (64)
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6. Results and Discussion
In this section, the developed approximate solutions are 
simulated and also, the impacts of various parameters of the 
vibration models are developed. While Fig. 3 presents the 
comparison of the results of the present study with results of 
numerical solution using finite difference method, the effects of 
various parameters of the model on the dynamic response of the 
single-walled carbon nanotube are also presented in the figures 
under various subsections in the section in Figs. 4-14.

Fig. 4 illustrates the importance of surface residual stress on 
the vibration behaviour of the nanotube. It is shown that the 
dynamic response of the nanotube different for negative and 
positive values of surface residual stress. This establishes that 
the dynamic behaviour of the fluid-conveying nanotube depends 
on the sign of the residual surface stress. Indisputably, as it is 
shown in the figure, at any given adimensional amplitude, there 
is an increase in the frequency ratio when the negative value of 
the surface stress increases while the frequency ratio decreases 
when the positive value of the surface stress increases. This is 
because, the negative values of surface stress decrease the linear 
stiffness of the nanostructure while the positive values of surface 
stress increase the linear stiffness of the carbon nanotube. 

Figure 3: Comparison between the obtained results and the 
numerical solution for the nonlinear vibration

Figure 4: Effect of surface residual stress per unit length on the 
frequency ratio of the nanotube

Also, considering the effect of surface stress, the positive 
surface elasticity produces softening effect in the nanotube, 
while negative surface elasticity gives stiffening influence in 
the nanotube. Therefore, it can be stated that when the surface 
stress is zero, the effect of surface elasticity is not so important. 
Consequently, one can infer that the surface stress alone is 
important and effective even without consideration of the 
surface elasticity. However, when the surface stress is nonzero, 
the surface elasticity plays a significant role in the dynamic 
behaviour of the nanostructure.

Figure5: Effects of the nanotube nonlocal parameter and length 
on the frequency ratio
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Fig. 5 displays the significance of surface stress, nonlocality and 
nanobeam length on the frequency ratio of the fluid-conveying 
nanostructure. The figures show that the frequency ratio 
decreases with increase in the length and thickness ratio of the 
of the nanotube. It could also be stated that nonlocal parameter 
reduces the influence of the surface energy and stress on the 
frequency ratio. The results also presented that the vibration 
frequency of the nanotube under the consideration of the effects 
of surface energy and stress is larger than vibration frequency 
of the nanobeam given by the classical beam theory which does 
not consider the surface effect. Also, the figures present a clear 
statement that when the nanotube length increase, the natural 
frequency of the nanotube gradually approaches the nonlinear 
Euler–Bernoulli beam limit. This is as a result of decrease in 
the surface effect. Therefore, high thickness ratios and long 
nanotube length make the impacts of surface energy and stresses 
on the on the frequency ratio to vanish. 

Fig. 6 shows the effect of initial stress on the dynamic behaviour 
of the nanotube. It is depicted at any adimensional amplitude 
increases, there is an increase in the frequency ratio as the initial 
stress increases. 

Figure 6: Effect of initial stress on the frequency ratio of the 
nanotube

Figure 7: Effects of maximum amplitude and nonlocal parameter 
on ratio of the frequency ratio

Figure 8: Effects of change in temperature on the frequency at 
high temperature                                            

Figure 9: Effects of change in temperature on the frequency 
ratio at low temperature                                            

The nonlocal parameter is a scaling parameter which makes 
the small-scale effect to be accounted in the analysis of 
microstructures and nanostructures. Fig 7 depicts the effect 
of the nonlocality on the frequency ratio decrease for varying 
adimensional amplitude. The fundamental frequency ratio of the 
fluid-conveying structure decreases as the nonlocal parameter 
increases. Also, the effect of the nonlocality on the frequency 
ratio decreases by increasing the amplitude ratio of the structure. 

The variations in the ratio of the frequencies with adimensional 
nonlocal parameter for different change in temperature are 
presented in Figs. 8 and 9. In Fig. 8, it is shown that increase 
in temperature change at high temperature causes decrease in 
the frequency ratio. However, at room or low temperature, the 
frequency ratio of the hybrid nanostructure increases as the 
temperature change increases as shown in Fig. 8. Also, the ratio 
of the frequencies at low temperatures is lower than at high 
temperatures.
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Fig. 7 Effects of maximum amplitude and nonlocal parameter on ratio of the frequency ratio 

 

 
Fig. 8 Effects of change in temperature on the frequency at high temperature                                             
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Fig. 6 Effect of initial stress on the frequency ratio of the nanotube 
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Figure 10: Effects of magnetic field strength on the frequency 
ratio 

The effect of magnetic field strength on the frequency ratio of 
the nanotube is shown in Fig. 10. It is shown that the frequency 
ratio decreases when the strength of the magnetic field increases. 
Also, at high values of magnetic fields and amplitude of vibration, 
the discrepancy between the nonlinear and the linear frequencies 
increases. A further investigation shows that the vibration of the 
nanotube approaches linear vibration when the magnetic force 
strength increases to a certain high value. Such very high value 
of magnetic force strength which causes great attenuation in the 
beam can be adopted as a control and instability strategy for the 
nonlinear vibration system.  

Figure 11: Linear and nonlinear dynamic behaviour of the 
nanostructure
Fig. 11 shows the comparison of the midpoint deflection of linear 
and nonlinear vibrations of the nanostructure. The nonlinear 
term causes stretching effect in the nonlinear in the nonlinear 
vibration. As stretching effect increases, the stiffness of the 
system increases which consequently increases in the natural 
frequency and the critical fluid velocity.

Figure 12: Effects of nonlocal parameter and fluid flow velocity 
on the natural frequency of the nonlinear vibration

Figure 13: Effects Slip parameter (Knudsen number) on the 
natural frequency of the nonlinear vibration

Effects of nonlocal and slip parameters on the vibration of the 
nanotube is shown in Figs 12-13. It is depicted that increase 
in the nonlocal and slip parameters leads to decrease in the 
frequency of vibration and decrease in the critical velocity. 
Also, the Figures. depict the critical speeds corresponding to 
the divergence condition for different values of the system’s 
parameters for the varying nonlocal and slip parameters. 

7. Conclusion
This work has shown the potential of variation of parameter 
method in studying the the simultaneous impacts of surface 
elasticity, initial stress, residual surface tension and nonlocality 
on the nonlinear vibration of single-walled carbon conveying 
nanotube resting on linear and nonlinear elastic foundation 
and operating in a thermo-magnetic environment. Through the 
method, parametric studies were carried out and it was revealed 
that the ratio of the nonlinear to linear frequencies increases with 
the negative value of the surface stress while it decreases with 
the positive value of the surface stress. At any given value of 
nonlocal parameters, the surface effect reduces for increasing 
in the length of the nanotube. Also, ratio of the frequencies 
decreases with increase in the strength of the magnetic field, 
nonlocal parameter and the length of the nanotube. The 
natural frequency of the nanotube gradually approaches the 
nonlinear Euler–Bernoulli beam limit at high values of nonlocal 
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parameter and nanotube length. It was also shown that the 
nonlocal parameter reduces the surface effects on the ratio of 
the frequencies. Further investigation shown that an increase 
in temperature change at high temperature causes decrease in 
the frequency ratio. However, at room or low temperature, the 
frequency ratio of the hybrid nanostructure increases as the 
temperature change increases. Also, the ratio of the frequencies 
at low temperatures is lower than at high temperatures. Lastly, 
it was established that an increase in the nonlocal and slip 
parameters leads to decrease in the frequency of vibration and 
decrease in the critical velocity. The present work will assist in 
the control and design of carbon nanotubes operating in thermo-
magnetic environment and resting on elastic foundations.

Nomenclature
A	 Area of the nanotube
E	 Modulus of Elasticity
EI	 bending rigidity
Hs	 residual surface stress
Hx	 magnetic field strength
I	 moment of area
L	 length of the nanotube
mc	 mass of tube per unit length 
N	 axial/Longitudinal force
T	 change in temperature. 
t	 time coordinate
w	 transverse displacement/deflection of the nanotube
W	 time-dependent parameter                
x	 axial coordinate
	 trial/comparison function
	 coefficient of thermal expansion 
η	 magnetic field permeability 
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