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Abstract
 It is widely known that the conditional inference is usually efficient as the Bayesian inference based on the non-in-
formative prior. However, it is less efficient than the Bayesian inference based on the informative prior. Therefore, 
the main objective of this paper is to introduce an improvement to the conditional inference by using the kernel prior 
distribution. The improved conditional inference has been used for estimating the general lifetime model parameters, 
based on the generalized progressive hybrid-censoring scheme, and compared with the Bayesian estimates, via the 
Monte Carlo simulations. The simulation results have been shown that the improved conditional inference is highly 
efficient and provides better estimates than the Bayesian estimates based on different loss functions. Finally, real data 
sets have been given to demonstrate the efficiencies of the proposed methods. 
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Introduction
In statistical inference, it is known that the conditional inference is 
highly efficient as the Bayesian inference especially when the sam-
ple sizes are small or when the data are heavily censored based on 
the non-informative prior. However, unfortunately the conditional 
inference is less efficient than the Bayesian inference based on the 
informative prior. Thus, in this paper we introduce an improve-
ment to the conditional inference by using the kernel prior of the 
pivotal quantities. We employed the proposed method on general 
lifetime model that belongs to the shape-scale family, which has 
cumulative distribution function (CDF) and probability density 
function (PDF) as given respectively by:

For convenience, we assume g (x) to be differentiable as well as 
strictly increasing function of x such that,	            and   	   
as              ,with α and β are shape and scale parameters respectively.
 
This family includes among others, more common parametric dis-
tributions such as Weibull, Weibull extension, modified Weibull, 
Burr-type-XII, Lomax, Generalized Pareto and Pareto distribu-
tions with different values of ga (x) . Some important members of 
this family are shown in Table 1.
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This family includes the most common parametric models in life-
time distributions. Thus, the improved conditional (IMPC) and the 
Bayesian methods were applied to estimate the Weibull model pa-
rameters as an application based on the generalized progressive 
hybrid censoring scheme that guarantee the proposed method can 
be applied to all the members of this family. Many authors used the 
informative prior for Weibull model parameters, among of them 
[30] derived an informative conjugate prior by assuming each of 
the parameters has a gamma distribution [1]. Suggested a different 
prior based on the prior information about the reliability level or 
the hazard rate at a given time and converting it into information 
about the model parameters [2, 3]. Derived the confidence inter-
vals, via some pivotal quantities based on the Type-II progressive 
censored samples [4]. Derived the parameter estimates based on 
the classical and Bayesian approaches [5]. Presented the analy-
sis of the reliability and quantile of the Weibull distribution [6]. 
Applied some methods for estimating Weibull parameters [7]. Ap-
plied the Maximum Likelihood (ML) and Bayes methods for esti-
mating Weibull parameters based on censored samples and derived 
the empirical Bayes inference of Weibull Model parameters [8, 9]. 
For the continuation of these efforts, the purpose of this paper is 
deriving the point estimates for the general lifetime model parame-
ters with application to the Weibull model using the improved con-
ditional inference and Bayesian methods based on the generalized 
progressive hybrid-censoring scheme. 

Recently, proposed the generalized progressive hybrid-censoring 
scheme (GPHCS), which is a generalization of the type-II pro-
gressively hybrid censored data [10, 11]. The GPHCS has been 
described in [12, 13]. 
 
Thus, given a generalized progressive hybrid censored sample, the 
likelihood functions for the three different cases can be written in 
a unified form as follows:

where 			              is the number of surviving units 
that are removed at the termination time T.

The GPHCS has been applied for some distributions such as 
Weibull distribution, inverse Weibull distribution, Exponential 
distribution, see and Rayleigh distribution, the inverse Weibull 
distribution, the generalized shape scale family [10, 12-16]. 

The improved conditional inference and the Bayesian inference 
will be derived using the GPHCS based on the following loss func-
tions:

Firstly, the squared error loss function (SLF), L(θ,θ*)=(θ-θ*)2, 
which is classified as a symmetric loss function and that penalize 
overestimation and underestimation equally on (-∞,∞). For this 
loss function the Bayes estimator that minimizes the risk function 
is given by θ*=E(θ|x). 
 
Secondly, the Stein's loss function (STLF), L(θ,θ*)=θ*/θ-log ( 
θ*/θ)-1, which penalize gross overestimation and gross underes-
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rameter space (0,∞)[17, 18]. The Bayes estimator that minimizes 
the risk function is derived as θ^*=1/E(1/θ|x).
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Thirdly, in real applications the underestimation of a parameter 
value very often implies different results from overestimation, 
both in quality and quantity. Thus, losses resulting from this can 
be described by a linear function with different coefficients charac-
terizing positive and negative errors. This function, called LINEX 
loss function (LLF) that has been introduced in and it can be de-
fined as asymmetric loss function with the following form [19]
L(θ,θ*)=exp [ δ(θ*-θ)]-δ(θ*-θ)-1, δ≠0.

The sign and magnitude of the shape parameter δ represents the 
direction and degree of symmetry respectively, where positive val-
ues mean overestimation is more serious than underestimation and 
vice versa for negative values. 

The unique Bayes estimator θL* of θ under the LINEX loss func-
tion, the value that minimizes the risk function, is given by
 		            provided the expected Eθ (e-δθ)|x) exists 
and is finite.

Several authors have used this function [20, 21].

Bayesian estimation based on the informative prior
We suggest using independent priors for both parameters α and β 
which has a gamma distribution each as given by: 

Thus, the joint prior density is given by 
 
 

Using the informative prior (4) and the likelihood function (3) the 
joint posterior density is given by

K is the normalizing constant and can be derived as

The expected value for any function h(θ) can be derived from (5) 
as:

An Improved Conditional inference
This section provides an outline for converting the standard likeli-
hood function to function depends on pivotal quantities and ancil-
lary statistics for the general lifetime model (2) based on the gen-
eralized progressive hybrid-censoring scheme. For more details, 
who used the distribution of pivotal quantities for the parameters 
given ancillary statistics as tools for estimating the parameters 
based on complete and censored samples [22-26]. Thus, based on 
the GPHCS the likelihood function (3) can be written using (2) as 
follows: 

Therefore,  	    	   are pivotal quantities as their joint 
density function does not depend on either α or β, where ai=gα̂  (xi)/
β̂ being the ancillary statistics i=1,2,...,D .

Let A=(a1,a2...,aD-2) forms a set of ancillary statistics satisfies the 
maximum likelihood equations, thus only D-2 of which are func-
tionally independent.

Theorem:
Let α̂ and β̂ be the maximum likelihood estimators of α and β based 
on the generalized progressive hybrid censored sample. Thus, the 
joint PDF of Z1= ̂, Z2=ββ̂^ Z1 and A=(a1,a2...,aD-2) is of the form

 

where K is the normalizing constant.

Proof
Make the change of variables from (x1,x2,x3,...,xD) that has joint 
density function (7) to . 		               This transformation 
can be written as follows: g(xi)=(ai β̂)1/α̂ , i=1,2,....,D-2, g (xD-1)
=(aD-1 β̂)1/α̂ and g(xD)=(aD β̂ )1/α̂ , where aD and aD-1 can be expressed 
in terms of  . The Jacobin of this transformation is independent 
of Z1and Z2, therefore the joint PDF of α̂, β̂,a1,a2,....,aD-2  can be 
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Making further change of variables from �𝜶𝜶�,𝜷𝜷� ,𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐. . . ,𝒂𝒂𝑫𝑫�𝟐𝟐� to �𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐,𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐. . . ,𝒂𝒂𝑫𝑫�𝟐𝟐�, 
where the Jacobin of this transformation is proportional to 21/1 ZZ . Finally, the joint 

distribution function of �𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐,𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐. . . ,𝒂𝒂𝑫𝑫�𝟐𝟐� can be derived as in (8)  

 From (10), we can derive the Bayes estimators for 𝑍𝑍� and 𝑍𝑍� , and converting to the conditional 

estimators for   and   fiducially from the pivotal quantities𝑍𝑍� � 𝛼𝛼/𝛼𝛼� and 𝑍𝑍� � 𝛽𝛽𝛽𝛽��� as: 

𝛼𝛼∗ � 𝛼𝛼���𝑍𝑍�� and
 
𝛽𝛽∗ � ���� ������� 𝑧𝑧��� � ���� 𝛽𝛽�����𝑧𝑧���. 
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derived as where αβgα-1 (x)g' (x)=z1 z2 aiz1
-1.

Making further change of variables from (α̂,β̂, a1,a2...,aD-2) to 
(Z1,Z2,a1,a2...,aD-2), where the Jacobin 1/ Z1 Z2 of this transforma-
tion is proportional to . Finally, the joint distribution function of 
(Z1,Z2,a1,a2...,aD-2) can be derived as in (8) 

From (10), we can derive the Bayes estimators for Z1 and Z2 , and 
converting to the conditional estimators for α and β fiducially from 
the pivotal quantities Z1=α/α̂ and Z2=ββ̂ Z1) as:

α*=α̂ E(Z1) and β*= exp [(E(log (z2)-log ( β̂ )E(z1)].

Kernel Prior Estimation
For deriving the kernel prior, we introduce the bivariate kernel 
density estimator for the unknown probability density function 
g(z1, z2) with support on ( 0,∞), which is defined as 

 

hi,i=1,2 are called the bandwidths or smoothing parameters, which 
chosen such that hi→ 0 and Dhi→∞ as D→∞, where D is the sam-
ple size. The influence of the smoothing parameters hi are criti-
cal because they determine the amount of smoothing. Too small 
value of hi may cause the estimator to show insignificant details 
while too large value of hi cause over smoothing of the informa-
tion contained in the sample, which in consequence, may mask 
some of the important characteristics. Thus, a certain compromise 
is needed. However, the optimal choice for hi which minimize the 
mean squared errors are hi=1.06 Si D

-0.2 and Si the sample standard 
deviations. The optimal choice for the kernel function K (.,.) can 
be used as the bivariate standard normal distribution. The basic el-
ements associated with the kernel density estimation function have 
been studied extensively in [27, 28]. Also, a good discussion of the 
kernel estimation techniques can be found in [29]. 

Based on the pivotal quantities, which are functions of the MLEs 
and whose distributions are free of the unknown parameters, the 
kernel prior estimate can be derived using the following algorithm: 

1.	 Generate a random sample X=(x1,x2,x3,...,xD) from the parent 
distribution f(x;α,β) with a given specified values for the un-
known parameters α and β. 

2.	 Bootstrapping with replacement D samples x1*,x2*,x-
3*,...,xD*, with size D each, where xi*=(xi1*,xi2*,xi3*,...,xiD*)
for i=1,2,....,D from the given random sample in step 1.

3.	  For each sample in step 2, calculate the MLEs for the param-
eters α and β, thus the pivotal quantities Z1=(z11,z12,...,z1D) and 
Z2=(z21, z22,...,z2D) can be derived.

4.	 Finally, based on the random variables Z1 and Z2, the kernel 
density estimation (11) can be used to derive the kernel den-
sity estimator for the density function of the pivotal quantities 

Z1 and Z2, say ĝ (z1, z2), which is the kernel prior estimate.

It is worthwhile to mention that this kernel prior estimate has been 
used for some distributions, see [9, 30-32]. 

Simulation Study 
For studying the performance of the improved conditional and 
Bayes methods, through the root mean squared error (RMSE):  

 

Here θ* is the estimator for the unknown parameter θ and M is 
number of replications.

In our simulation study we choose different combinations for the 
prior hyperparameters of α and β say: (a,b,c.d)=[(5,3,8,2);(7,8,9,5)]. 
The true values of the parameter α=(2,3) and for the parameter 
β=(2,4) respectively. Using the above values of the parameters for 
generating different samples from the Weibull distribution with 
sizes n=20,40 and 60 to represent small, moderate and large sizes. 
To assess the performance of these estimates, the RMSEs for each 
one were calculated using 1000 replications. 
The generation of the generalized progressive hybrid censored or-
der statistics has been described in [12, 13].

From the simulation results in Tables 4,5,6 and 7, it is seen that, 
some of the points are quite clear based on these estimates and the 
others have been summarized in the following main points:

i.	 It is clear that, generally for both parameters the estimat-
ed RMSE values based on the improved conditional (IMPC) meth-
od are often less than the corresponding values based on the Bayes 
method for the different loss functions. 
ii.	 The estimated RMSE values increase as the values of α 
and β increase for the IMPC, while decreasing as the value of β 
increases for the Bayes method.
iii.	 It is evident that, the estimated RMSE values decrease 
with increasing the hyperparameters, the termination time of the 
experiment T and the sample sizes as expected for both method.
iv.	 The estimated RMSE values based on the squared error 
loss function are less than those based on the Linex and Stein loss 
functions.
v.	 The estimated RMSE values based on LINEX loss func-
tion for negative shape parameter are greter than for positive shape 
parameter, which ensures overestimation are not serious.
vi.	 Generally, the estimated RMSE values based on LINEX 
loss function are less than for Stein's loss function for positive 
shape parameter.

As a conclusion, it appears that the point estimates based on the 
IMPC method compete and outperform the Bayes method.

𝒈𝒈��𝒛𝒛𝟏𝟏, 𝒛𝒛𝟐𝟐� � 𝟏𝟏
𝑫𝑫𝑫𝑫𝟏𝟏𝒉𝒉𝟐𝟐 ∑ ��𝒛𝒛𝟏𝟏�𝒛𝒛𝟏𝟏𝟏𝟏𝒉𝒉𝟏𝟏 , 𝒛𝒛𝟐𝟐�𝒛𝒛𝟐𝟐𝟐𝟐𝒉𝒉𝟐𝟐 �𝑫𝑫𝟏𝟏�𝟏𝟏 , (11) 

 

𝒉𝒉𝒊𝒊, 𝟏𝟏 � 𝟏𝟏,𝟐𝟐 are called the bandwidths or smoothing parameters, which chosen such that 0ih  

and 𝑫𝑫𝑫𝑫𝒊𝒊 → ∞ as 𝑫𝑫 𝑫𝑫 , where 𝑫𝑫
 
is the sample size. The influence of the smoothing parameters 

ih are critical because they determine the amount of smoothing. Too small value of ih may 

cause the estimator to show insignificant details while too large value of ih  cause over 

smoothing of the information contained in the sample, which in consequence, may mask some of 

the important characteristics. Thus, a certain compromise is needed. However, the optimal choice 

for ih which minimize the mean squared errors are 𝐡𝐡𝐢𝐢 � 𝟏𝟏.𝟎𝟎𝟎𝟎 𝐒𝐒𝐢𝐢𝐃𝐃�𝟎𝟎.𝟐𝟐 and 𝑺𝑺𝒊𝒊 the sample 

standard deviations. The optimal choice for the kernel function (.,.)K  can be used as the 

bivariate standard normal distribution. The basic elements associated with the kernel density 

estimation function have been studied extensively in [27, 28]. Also, a good discussion of the 

kernel estimation techniques can be found in [29].  

 

Based on the pivotal quantities, which are functions of the MLEs and whose distributions are 

free of the unknown parameters, the kernel prior estimate can be derived using the following 

algorithm:  

1- Generate a random sample 𝐗𝐗 � �𝐱𝐱𝟏𝟏, 𝐱𝐱𝟐𝟐, 𝐱𝐱𝟑𝟑, . . . , 𝐱𝐱𝐃𝐃� from the parent distribution ��𝐱𝐱;𝛂𝛂,�� with a 

given specified values for the unknown parameters 𝜶𝜶 and 𝜷𝜷.  

2- Bootstrapping with replacement D samples𝐱𝐱𝟏𝟏∗ , 𝐱𝐱𝟐𝟐∗ , 𝐱𝐱𝟑𝟑∗ , . . . , 𝐱𝐱𝐃𝐃∗ , with size D each, where 𝐱𝐱𝐢𝐢∗ �
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It is worthwhile to mention that this kernel prior estimate has been used for some distributions, 

see [9, 30-32].  

 

Simulation Study  
For studying the performance of the improved conditional and Bayes methods, through the root 

mean squared error (RMSE): RMSE��∗� � �∑ �� � �∗������ /M. 

Here 𝜃𝜃∗ is the estimator for the unknown parameter 𝜃𝜃 and M is number of replications. 

 

In our simulation study we choose different combinations for the prior hyperparameters of 

and  say: �a, b, c. d� � ��5,3,8,2�; �7,8,9,5��. The true values of the parameter α � �2,3� and 
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generating different samples from the Weibull distribution with sizes � � 20, 40 and 60 to 

represent small, moderate and large sizes. To assess the performance of these estimates, the 

RMSEs for each one were calculated using 1000 replications.  

The generation of the generalized progressive hybrid censored order statistics has been described 

in [12, 13]. 

 

From the simulation results in Tables 4,5,6 and 7, it is seen that, some of the points are quite 

clear based on these estimates and the others have been summarized in the following main 

points: 

i. It is clear that, generally for both parameters the estimated RMSE values based on the improved 

conditional (IMPC) method are often less than the corresponding values based on the Bayes 

method for the different loss functions.  

ii. The estimated RMSE values increase as the values of α and β increase for the IMPC, while 

decreasing as the value of β increases for the Bayes method. 

iii. It is evident that, the estimated RMSE values decrease with increasing the hyperparameters, the 

termination time of the experiment T and the sample sizes as expected for both method. 

iv. The estimated RMSE values based on the squared error loss function are less than those based on 

the Linex and Stein loss functions. 

v. The estimated RMSE values based on LINEX loss function for negative shape parameter are 

greter than for positive shape parameter, which ensures overestimation are not serious. 
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Real Data Analysis
In this section, we studied two sets of real data to study the per-
formance of the proposed methods on Weibull model, which is 
the most widely used and desirable lifetime distribution. Thus, we 
have fitted these data sets using some goodness of fit tests such 
as the Kolmogorov-Smirnov (K-S), Anderson-darling (A-D) and 
Chi-Square (CH2) tests for significance level test equals 0.05. Pre-
sented a comprehensive study of these tests [11, 33]. 

Vinyl Chloride Data Application
As vinyl chloride is a known human carcinogen, exposure to this 
compound should be avoided as far as practicable, and levels 
should be kept as low as technically feasible. Where it is known 
that a concentration of vinyl chloride in drinking-water of 0.5 mg/
liter was calculated as being associated with an excess risk of 
liver and Brain tumors for exposure beginning at adulthood and 
it would double cancer risk for continuous exposure from birth. 
Therefore, we consider dataset used by which represents 34 data 
points in mg/L from the vinyl chloride that obtained from clean 
upgrade monitoring wells as [34].

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 
0.5, 5.3,
3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 
0.4, 0.2.

We found the Weibull model is a good fit for this dataset as shown 
in Table 2 and the Figure (1 a). For studying the concentration of 
the vinyl chloride in the water of these wells based on this dataset 
we find the estimates for the parameters which represent the scale 
and the shape of the concentration using our model to determine 
the average concentration in the water. We noticed that the IMPC 
and Bayes estimates for α lie in the interval [0.0018, 0.22], which 
indicates that the above dataset is moderately right skewed and 
that means the concentration decreases with increasing time, see 
Figure (1 b). Also, the IMPC and Bayes estimates for β lie in the 
interval [0.015, 0.15] which ensure the dataset is right-skewed and 
the vinyl chloride concentration will decrease with increasing time 
and therefore monitoring these wells is very significant. 

Leukemia Data Application
In the area of health care, leukemia affects blood status and can 
be discovered by using the Blood Cell Counter (BCC). Mostly, 
leukemia patients undergo chemotherapy treatment. Therefore, we 
study the effect of this treatment on the leukaemia patients based 
on a dataset collected by the Ministry of Health Hospital in Saudi 
Arabia and used by which indicates the lifetimes in days for for-
ty-three blood patients with leukemia after they are given chemo-
therapy treatment [5]:

115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 
983, 1025, 1062, 1063, 1165, 1191, 1222, 1222, 1251, 1277, 1290, 
1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578, 1599, 1603, 
1605, 1696, 1735, 1799, 1815, 1852, 1899, 1925, 1965.

We found the Weibull model is a good fit for this dataset as shown 
in Table 2 and the Figure (2 a). For studying the effect of the che-
motherapy treatment on the patients based on this dataset we find 
the estimates for the distribution parameters, which represent the 
scale and the shape of the lifetime. We noticed that the IMPC and 
Bayes estimates for α lie in the interval [0.135, 1.07], which are 
greater than one. However, the IMPC and Bayes estimates for β 
lie in the interval [0.0011, 0.08], which are approximately zero 
that means the curve that represent this dataset is approximately 
symmetric, see Figure (2b). Therefore in general, based on this 
model, this dataset indicates the patient's lifetimes are more stable 
and they live longer due to the dose of the chemotherapy treat-
ment, which is very efficient for giving the patients more antibod-
ies against cancer.

the above dataset is moderately right skewed and that means the concentration decreases with 

increasing time, see Figure (1 b). Also, the IMPC and Bayes estimates for β lie in the interval 

[0.015, 0.15] which ensure the dataset is right-skewed and the vinyl chloride concentration will 

decrease with increasing time and therefore monitoring these wells is very significant.  

 
Fig. 1: (a) The Empirical and the estimated CDF for the Vinyl Chloride Data.  

 (b) The Histogram and the estimated densities PDF for the Vinyl Chloride Data. 
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Figure 1: (a) The Empirical and the estimated CDF for the Vinyl Chloride Data. 
 (b) The Histogram and the estimated densities PDF for the Vinyl Chloride Data.
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which are greater than one. However, the IMPC and Bayes estimates for β lie in the interval 

[0.0011, 0.08], which are approximately zero that means the curve that represent this dataset is 

approximately symmetric, see Figure (2b). Therefore in general, based on this model, this dataset 

indicates the patient's lifetimes are more stable and they live longer due to the dose of the 

chemotherapy treatment, which is very efficient for giving the patients more antibodies against 

cancer. 

 

  
 Fig. 2: a) The Empirical and the estimated CDF for the Leukemia Data.  

 b) The Histogram and the estimated densities PDF for the Leukemia Data. 

Table 2: The critical and calculated values for the K-S, A-D and CH2 tests and the powers (p-

values) for Weibull model. The MLE's for the parameters for these data sets have been 

calculated. 

 

Data 

The 

Tests 

Critical 

value 

Calculated 

value 

The 

P-values 
̂  ̂  

Chloride data 

N=34 

K-S 0.8624 0.5355 0.6525 1.0102 0.5263 

A-D 0.7504 0.2826 0.6708   

CH2 15.428 4.9912 0.4474   

Leukemia data 

N=43 

K-S 0.8699 0.7285 0.1915 2.5533 1.04E-08 

A-D 0.7598 0.9159 0.0206   

CH2 15.399 12.409 0.0528   
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Figure 2: a) The Empirical and the estimated CDF for the Leukemia Data. 
 b) The Histogram and the estimated densities PDF for the Leukemia Data.

Table 2: The critical and calculated values for the K-S, A-D and CH2 tests and the powers (p-values) for Weibull model. The 
MLE's for the parameters for these data sets have been calculated.

Table 3: The estimated parameters and the root mean squared errors (RMSEs) for the parameters α and  based on the IMPC 
and Bayes methods at the hyper parameters (A=5, B=3, C=8, D=2) for the GPHCS: basd on  m = n/2 , k = m/2

Data The
Tests

Critical
value

Calculated
value

The
P-values  

Chloride data
N=34

K-S 0.8624 0.5355 0.6525 1.0102 0.5263
A-D 0.7504 0.2826 0.6708
CH2 15.428 4.9912 0.4474

Leukemia data
N=43

K-S 0.8699 0.7285 0.1915 2.5533 1.04E-08
A-D 0.7598 0.9159 0.0206
CH2 15.399 12.409 0.0528

Data T Parameters  Improved Conditional Method Bayes Method
Squard
Loss

Stein'
Loss

Linex Loss Squard
Loss

Stein'
Loss

Linex Loss

Vinyl
Chl.
Data
N=34

0.75
α 0.0018 0.0123 0.0180 0.0143 0.0023 0.0823 0.1285 0.0992
β 0.0156 0.0139 0.0135 0.0177 0.2014 0.1739 0.2145 0.1892

1.5
α 0.0057 0.0049 0.0179 0.0064 0.0753 0.1438 0.0083 0.1454
β 0.0082 0.0087 0.0063 0.0099 0.1104 0.0952 01144 0.1067

3.5
α 0.0092 0.0177 0.0009 0.0193 0.1991 0.2324 01673 0.2286
β 0.0155 0.0157 0.0136 0.0017 0.1593 0.1359 0.1686 0.1506

Leuk.
Data
N=43

850
α 0.1358 0.1225 0.1534 0.1182 0.2464 0.3847 0.3198 0.2705
β 0.0017 0.0019 0.0012 0.0021 0.1171 0.0993 0.1194 0.1148

1250
α 0.1433 0.1338 0.1562 0.1304 0.8068 0.8372 0.786 0.8261
β 0.0010 0.0013 0.0068 0.0014 0,0813 0.0687 0.0825 0.0802

1700
α 0.0851 0.0737 0.0999 0.0704 0.0467 0.5746 0.4208 0.2709
β 0.0011 0.0013 0.0083 0.0013 0.0900 0.0747 0.0916 0.0885

β̂α̂

2−=δ 2−=δ 2=δ2=δ
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The results in Table 2, refer that the Weibull model is a good fit 
for these data sets where the calculated value are less than the crit-
ical values for the goodness of fit tests and the power of the tests 
are greater than the significance level of the tests. Also, the re-
sults in Table 3 indicate that the estimated RMSE values based on 
the improved conditional method are less than those based on the 
Bayes method for large values of T with considering the MLEs are 
the true values of the parameters. The estimated values of RMSE 
based on LINEX loss function are less than those under Stein's loss 
function, while the results under the squared error loss function are 
less than the other loss functions. Thus, the results of these data 
sets ensure the simulation results. 

Conclusions
It is known that, the Bayesian inference based on the informative 
prior is more efficient than the conditional inference. However, us-
ing the kernel prior leads to the improvement of the conditional 
inference. It becomes strongly unbiased and much more efficient 
than the Bayesian inference even when using informative priors 
based on different loss functions. 
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Table 4: The root mean square errors (RMSEs) for the Weibull parameter  using the IMPC and Bayes estimations at T=0.75 with 
m = (n/2 and 3n/4) and k=(m/2 and 3m/4) for different values of α and 	 .

N M K α β Improved Conditional Estimations Bayes Estimations

Squared
Loss

Stein's
Loss

LINEX Loss Squared
Loss

Stein's
Loss

LINEX Loss
δ= -2 δ= 2 δ= -2 δ= 2

20

10

5
2

2 0.1298 0.1475 0.1219 0.1432 0.4123 0.3861 0.6131 0.3535
4 0.4378 0.4752 0.4111 0.4644 0.4583 0.5330 0.3833 0.5616

3
2 0.1830 0.1848 0.1981 0.1803 0.5079 0.5571 0.8503 0.6694
4 0.3705 0.4185 0.3329 0.4095 0.7251 0.8443 0.5311 0.9641

8
2

2 0.1213 0.1365 0.1158 0.1327 0.4403 0.4019 0.6617 0.3533
4 0.3359 0.3666 0.3124 0.3594 0.4291 0.4902 0.3587 0.5165

3
2 0.1672 0.1782 0.1711 0.1738 0.5032 0.5185 0.8377 0.5833
4 0.3004 0.3411 0.2674 0.3345 0.6467 0.7446 0.4769 0.8546

15

8
2

2 0.1229 0.1357 0.1211 0.1314 0.5025 0.4349 0.7285 0.3447
4 0.1231 0.1371 0.1195 0.1330 0.2596 0.2709 0.3010 0.2786

3
2 0.1854 0.2072 0.1788 0.2013 0.4411 0.4375 0.7485 0.4819
4 0.1799 0.2005 0.1742 0.1951 0.4581 0.5253 0.3864 0.6234

11
2

2 0.1105 0.1201 0.1101 0.1168 0.4559 0.4034 0.6487 0.3346
4 0.1082 0.1167 0.1086 0.1138 0.2591 0.2653 0.3073 0.2691

3
2 0.1630 0.1745 0.1644 0.1705 0.4672 0.4564 0.7516 0.4731
4 0.1634 0.1783 0.1608 0.1743 0.4471 0.5074 0.3854 0.5969

40 20

10
2

2 0.1255 0.1364 0.1199 0.1341 0.3521 0.3853 0.3549 0.4010
4 0.4467 0.4703 0.4296 0.4638 0.6378 0.6897 0.5667 0.7037

3
2 0.1766 0.1759 0.1855 0.1734 0.5269 0.5895 0.5465 0.6796
4 0.3725 0.4036 0.3472 0.3982 0.8831 0.9639 0.7127 1.0387

15
2

2 0.1158 0.1261 0.1104 0.1239 0.3099 0.3156 0.3654 0.3150
4 0.3191 0.3389 0.3035 0.3346 0.4867 0.5279 0.4267 0.5453

3
2 0.1551 0.1591 0.1587 0.1569 0.4404 0.4549 0.5803 0.4935
4 0.2899 0.3167 0.2679 0.3126 0.6608 0.7241 0.5254 0.7983
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30

15
2

2 0.1226 0.1330 0.1172 0.1308 0.3313 0.3438 0.3756 0.3463
4 0.3487 0.3692 0.3328 0.3646 0.5208 0.5645 0.4577 0.5814

3
2 0.1631 0.1713 0.1629 0.1686 0.4351 0.4365 0.6031 0.4561
4 0.1703 0.1823 0.1663 0.1793 0.3756 0.4171 0.3252 0.4840

23
2

2 0.1046 0.1037 0.1094 0.1024 0.3966 0.3647 0.4972 0.3203
4 0.1037 0.1068 0.1047 0.1054 0.2241 0.2268 0.2456 0.2272

3
2 0.1727 0.1646 0.1857 0.163 0.5593 0.5153 0.7832 0.4193
4 0.1484 0.1505 0.1521 0.1488 0.3385 0.3633 0.3312 0.4080

60

30

15
2

2 0.1133 0.1209 0.1088 0.1195 0.3241 0.3514 0.3001 0.3665
4 0.3974 0.4133 0.3853 0.4095 0.6234 0.6557 0.5785 0.6659

3
2 0.1767 0.1853 0.1743 0.1828 0.4376 0.4362 0.5569 0.4409
4 0.1867 0.1983 0.1812 0.1956 0.3328 0.3691 0.2833 0.4304

23
2

2 0.1124 0.1211 0.1080 0.1185 0.2947 0.3166 0.2836 0.3292
4 0.3693 0.3848 0.3573 0.3813 0.5841 0.6155 0.5394 0.6266

3
2 0.1538 0.1571 0.1559 0.1552 0.4243 0.4262 0.5251 0.4346
4 0.1682 0.1753 0.1663 0.1733 0.3270 0.3540 0.3005 0.4013

45

23
2

2 0.1052 0.1104 0.1038 0.1089 0.3635 0.3351 0.4517 0.2968
4 0.1074 0.1115 0.1070 0.1101 0.1961 0.1996 0.2123 0.2016

3
2 0.1548 0.1636 0.1515 0.1615 0.4054 0.3863 0.5547 0.3602
4 0.1609 0.1680 0.1591 0.1660 0.3221 0.3497 0.2943 0.3982

34
2

2 0.0999 0.0968 0.1056 0.0959 0.3724 0.3469 0.4468 0.3110
4 0.0997 0.1012 0.1009 0.1003 0.2041 0.2043 0.2209 0.2027

3
2 0.1833 0.1735 0.1959 0.1724 0.6063 0.5653 0.7887 0.4645
4 0.1416 0.1437 0.1435 0.1424 0.2944 0.3107 0.2897 0.3419

Table 5: The root mean square errors (RMSEs) for the Weibull parameter α using the IMPC and Bayes estimations at T=1.5 with 
m = (n/2 and 3n/4) and k=(m/2 and 3m/4) for different values of  α and β.

N M K α β Improved Conditional Estimations Bayes Estimations
Squared
Loss

Stein's
Loss

LINEX Loss Squared
Loss

Stein's
Loss

LINEX Loss
δ= -2 δ= 2 δ= -2 δ= 2

20

10

5
2

2 0.1133 0.1250 0.1113 0.1214 0.4661 0.4110 0.6704 0.3363
4 0.1093 0.1207 0.1073 0.1175 0.2492 0.2606 0.2893 0.2693

3
2 0.1662 0.1842 0.1619 0.1795 0.4426 0.4458 0.7073 0.4890
4 0.1762 0.1940 0.1713 0.1893 0.4706 0.5316 0.4105 0.6204

8
2

2 0.1144 0.1251 0.1135 0.1214 0.4733 0.4158 0.6771 0.3399
4 0.1159 0.1273 0.1137 0.1239 0.2627 0.2731 0.3031 0.2795

3
2 0.1667 0.1842 0.1630 0.1795 0.4597 0.4559 0.7502 0.4875
4 0.1667 0.1841 0.1624 0.1797 0.4526 0.5163 0.3823 0.6095

15

8
2

2 0.1054 0.1080 0.1091 0.1062 0.3871 0.3569 0.5136 0.3163
4 0.1033 0.1070 0.1061 0.1050 0.2706 0.2741 0.3139 0.2735

3
2 0.1571 0.1583 0.1649 0.1561 0.4564 0.4639 0.6208 0.4905
4 0.1605 0.1658 0.1641 0.1631 0.4354 0.4780 0.4178 0.5454

11
2

2 0.1051 0.1075 0.1091 0.1056 0.3914 0.3591 0.5226 0.3160
4 0.1094 0.1126 0.1124 0.1106 0.2774 0.2780 0.3261 0.2750

3
2 0.1607 0.1644 0.1663 0.1619 0.4585 0.4702 0.6085 0.5021
4 0.1539 0.1587 0.1582 0.1562 0.4271 0.4710 0.4043 0.5406
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40

20

10
2

2 0.1033 0.1075 0.1038 0.1059 0.3786 0.3469 0.4833 0.3041
4 0.1044 0.1095 0.1039 0.1078 0.2181 0.2242 0.2357 0.2281

3
2 0.1555 0.1649 0.1530 0.1625 0.4132 0.4061 0.5553 0.4045
4 0.1552 0.1625 0.1548 0.1602 0.3609 0.3934 0.3318 0.4481

15
2

2 0.1040 0.1076 0.1052 0.1060 0.3974 0.3645 0.5052 0.3189
4 0.1038 0.1079 0.1046 0.1062 0.2152 0.2194 0.2368 0.2217

3
2 0.1587 0.1669 0.1573 0.1645 0.4247 0.4144 0.5746 0.4066
4 0.1607 0.1670 0.1611 0.1647 0.3626 0.3931 0.3417 0.4451

15

15
2

2 0.2073 0.2187 0.1978 0.2171 0.3612 0.3815 0.3362 0.3916
4 0.4551 0.4668 0.4461 0.4638 0.5907 0.6131 0.5591 0.6212

3
2 0.5164 0.5345 0.5011 0.5315 0.8774 0.9136 0.7996 0.9509
4 0.8789 0.8944 0.8680 0.8899 0.1395 0.1689 0.2841 0.1924

23
2

2 0.2240 0.2371 0.2127 0.2353 0.3740 0.4003 0.3331 0.4149
4 0.4511 0.4629 0.4422 0.4599 0.5831 0.6054 0.5511 0.6138

3
2 0.5130 0.5311 0.4978 0.5282 0.8706 0.9069 0.7922 0.9446
4 0.8823 0.8978 0.8714 0.8933 0.1433 0.1727 0.2882 0.1960

60

30

15
2

2 0.2397 0.2523 0.2291 0.2503 0.4009 0.4255 0.3624 0.4388
4 0.4602 0.4714 0.4519 0.4685 0.6175 0.6374 0.5901 0.6442

3
2 0.5338 0.5513 0.5196 0.5480 0.8964 0.9297 0.8260 0.9637
4 0.8656 0.8803 0.8552 0.8761 0.1451 0.1717 0.2957 0.1929

23
2

2 0.2428 0.2555 0.2322 0.2535 0.4067 0.4314 0.3682 0.4445
4 0.4595 0.4707 0.4512 0.4678 0.6161 0.6360 0.5886 0.6429

3
2 0.5375 0.5549 0.5234 0.5517 0.9019 0.9350 0.8321 0.9686
4 0.8667 0.8814 0.8563 0.8770 0.1478 0.1744 0.2987 0.1954

45

23
2

2 0.2680 0.2781 0.2594 0.2767 0.4085 0.4275 0.3786 0.4378
4 0.5217 0.5305 0.5153 0.5280 0.6358 0.6514 0.6144 0.6567

3
2 0.6026 0.6163 0.5913 0.6138 0.9051 0.9305 0.8513 0.9567
4 0.9885 1.0011 0.9806 0.9963 0.1944 0.2148 0.1573 0.2303

34
2

2 0.2605 0.2702 0.2521 0.2688 0.3949 0.4133 0.3658 0.4235
4 0.5791 0.5879 0.5728 0.5852 0.6865 0.7022 0.6658 0.7067

3
2 0.6733 0.6872 0.6622 0.6843 0.9784 0.8040 0.9262 0.8284
4 0.7781 0.6895 0.5707 0.5855 0.2704 0.2907 0.2349 0.3047
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Table 6: The root mean square errors (RMSEs) for the Weibull parameter β using the IMPC and Bayes estimations at T=0.75 
with m = (n/2 and 3n/4) and k=(m/2 and 3m/4) for different values of α and β .
 

N M K α β Improved Conditional Estimations Bayes Estimations
Squared
Loss

Stein's
Loss

LINEX Loss Squared
Loss

Stein's
Loss

LINEX Loss
δ= -2 δ= 2 δ= -2 δ= 2

20

10

5
2

2 0.2226 0.2424 0.1994 0.2460 0.4891 0.6125 0.4366 0.6501
4 0.7446 0.7874 0.6888 0.8001 2.8105 0.9337 0.6112 0.9386

3
2 0.2849 0.3085 0.2561 0.3138 0.6293 0.7956 0.3505 0.8202
4 0.8626 0.9093 0.8046 0.9196 0.6503 0.8063 0.3150 0.8281

8
2

2 0.2144 0.2339 0.1915 0.2375 0.4271 0.5570 0.3510 0.6041
4 0.5457 0.5819 0.4997 0.5917 0.3673 0.5097 0.0349 0.5645

3
2 0.1902 0.2088 0.1673 0.2133 0.3624 0.4905 0.6018 0.5472
4 0.5574 0.5939 0.5106 0.6040 0.1859 0.3607 0.6526 0.4453

15

8
2

2 0.0762 0.0902 0.0619 0.0945 0.3351 0.2387 0.9684 0.6182
4 0.1397 0.1623 0.1135 0.1735 0.4509 0.5714 0.5296 0.6553

3
2 0.0864 0.1008 0.0696 0.1060 0.9968 0.7422 0.9020 0.4360
4 0.1831 0.2083 0.1496 0.2208 0.5849 0.8463 0.0987 0.2913

11
2

2 0.0665 0.0777 0.0570 0.0807 1.1533 0.9372 0.7420 0.6094
4 0.1316 0.1521 0.1096 0.1607 0.5474 0.5899 0.3813 0.9537

3
2 0.0553 0.0660 0.0461 0.0697 0.9474 0.7463 0.9004 0.4759
4 0.1360 0.1566 0.1115 0.1661 0.6049 0.7757 0.6104 0.1528

40

20

10
2

2 0.3123 0.3285 0.2936 0.3310 0.9237 0.9018 0.8232 0.8008
4 0.8453 0.8781 0.8044 0.8859 0.9455 0.1168 0.9640 0.9088

3
2 0.3066 0.3238 0.2859 0.3273 0.8557 0.9606 0.6893 0.9642
4 0.9665 1.0006 0.9256 0.9068 0.8854 0.9810 0.7433 0.9822

15
2

2 0.2039 0.2178 0.1874 0.2205 0.5549 0.6427 0.4151 0.6699
4 0.5302 0.5560 0.4907 0.5634 0.4282 0.5281 0.2271 0.5677

3
2 0.1743 0.1876 0.1577 0.1911 0.4321 0.5242 0.3996 0.5630
4 0.5302 0.5559 0.4966 0.5637 0.2105 0.3384 0.8788 0.4074

15

15
2

2 0.2341 0.2486 0.2170 0.2512 0.6734 0.7598 0.5358 0.7776
4 0.6167 0.6441 0.5821 0.6512 0.6203 0.7099 0.4654 0.7319

3
2 0.1514 0.1632 0.1369 0.1665 0.7465 0.6686 0.1956 0.5599
4 0.1715 0.1905 0.1451 0.2003 0.6289 0.7965 0.8891 0.1661

23
2

2 0.0466 0.0502 0.0466 0.0513 0.8674 0.7440 0.5582 0.5493
4 0.1046 0.1158 0.0947 0.1206 0.6604 0.6338 0.7070 0.7800

3
2 0.0420 0.0366 0.0522 0.0351 0.8323 0.8818 0.8482 0.6465
4 0.0906 0.0994 0.0843 0.1041 0.6121 0.6557 0.4376 0.8804

60 30

15
2

2 0.3049 0.3172 0.2909 0.3189 0.9070 0.9609 0.8397 0.9626
4 0.8019 0.8267 0.7724 0.8314 0.8771 0.9311 0.8075 0.9343

3
2 0.1958 0.2071 0.1820 0.2103 0.9768 0.8273 0.7881 0.6552
4 0.2583 0.2811 0.2253 0.2922 0.6106 0.8346 6.0489 1.2523

23
2

2 0.2583 0.2701 0.2446 0.2720 0.7804 0.8378 0.7063 0.8453
4 0.7053 0.7285 0.6769 0.7336 0.7337 0.7940 0.6447 0.8051

3
2 0.1747 0.1846 0.1627 0.1871 0.7027 0.6710 0.3654 0.6088
4 0.1703 0.1865 0.1473 0.1946 0.6104 0.7218 0.5894 0.5366
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23
2

2 0.0801 0.0881 0.0712 0.0905 0.9509 0.7903 0.3945 0.5554
4 0.1287 0.1424 0.1109 0.1493 0.6240 0.6248 0.6626 0.8788

3
2 0.0793 0.0881 0.0683 0.0914 0.7683 0.6248 0.9298 0.4364
4 0.1754 0.1916 0.1524 0.1997 0.6193 0.7331 0.5488 0.6466

34
2

2 0.0427 0.0442 0.0443 0.0448 0.7437 0.6503 0.1397 0.5074
4 0.1067 0.1156 0.0980 0.1194 0.6862 0.6481 0.2781 0.7088

3
2 0.0480 0.0415 0.0581 0.0392 0.8594 0.9349 0.6598 0.7284
4 0.0945 0.1020 0.0879 0.1058 0.6072 0.6198 0.8431 0.7703

Table 7: The root mean square errors (RMSEs) for the Weibull parameter  using the IMPC and Bayes estimations at T=1.5 with 
m = (n/2 and 3n/4) and k=(m/2 and 3m/4) for different values of α and β .
 

N M K α β Improved Conditional Estimations Bayes Estimations
Squared
Loss

Stein's
Loss

LINEX Loss Squared
Loss

Stein's
Loss

LINEX Loss
δ= -2 δ= 2 δ= -2 δ= 2

20

10

5
2

2 0.0747 0.0870 0.0629 0.0903 0.1852 0.9491 0.4316 0.6027
4 0.1349 0.1561 0.1117 0.1653 0.5231 0.5093 0.3249 0.9959

3
2 0.0694 0.0816 0.0567 0.0857 0.9531 0.7419 0.4498 0.4668
4 0.1550 0.1771 0.1272 0.1875 0.6143 0.8101 0.3663 0.2057

8
2

2 0.0679 0.0801 0.0571 0.0834 0.2175 0.9742 0.5556 0.6154
4 0.1363 0.1568 0.1145 0.1658 0.5431 0.5942 0.5769 0.9855

3
2 0.0711 0.0833 0.0584 0.0873 0.9371 0.7280 0.3232 0.4581
4 0.1573 0.1791 0.1301 0.1894 0.6194 0.8111 0.4087 0.2048

15

8
2

2 0.0651 0.0727 0.0608 0.0742 0.9215 0.7884 0.8024 0.5707
4 0.1204 0.1361 0.1081 0.1416 0.6378 0.6101 0.4858 0.8052

3
2 0.0601 0.0669 0.0563 0.0688 0.7414 0.6238 0.4157 0.4514
4 0.1014 0.1131 0.0950 0.1182 0.5889 0.6663 0.6144 0.9485

11
2

2 0.0679 0.0757 0.0633 0.0772 0.9056 0.7739 0.7286 0.5609
4 0.1197 0.1365 0.1057 0.1423 0.6255 0.6041 0.4471 0.8095

3
2 0.0611 0.0677 0.0578 0.0694 0.7393 0.6221 0.4729 0.4500
4 0.1039 0.1150 0.0982 0.1199 0.6078 0.6711 0.7795 0.9401

40

20

10
2

2 0.0571 0.0642 0.0514 0.0663 0.9033 0.7573 0.9087 0.5380
4 0.1122 0.1259 0.0976 0.1321 0.6092 0.6107 0.8121 0.8481

3
2 0.0559 0.0627 0.0501 0.0651 0.7486 0.6222 0.5901 0.4462
4 0.1171 0.1305 0.1014 0.1373 0.6221 0.7093 0.0609 0.9934

15
2

2 0.0590 0.0659 0.0535 0.0679 0.9390 0.7907 0.0382 0.5612
4 0.1079 0.1212 0.0941 0.1273 0.6292 0.6064 0.0677 0.8215

3
2 0.0553 0.0623 0.0491 0.0649 0.7360 0.6102 0.5939 0.4360
4 0.1143 0.1280 0.0983 0.1349 0.6119 0.6996 0.0724 0.9872

15

15
2

2 0.1324 0.1431 0.1207 0.1446 0.5150 0.5325 0.5474 0.5275
4 0.2965 0.3196 0.2681 0.3252 0.9741 0.8365 0.8345 0.0912

3
2 0.1557 0.1680 0.1413 0.1702 0.6235 0.6614 0.5690 0.6733
4 0.3102 0.3351 0.2796 0.3409 0.2317 0.2838 0.1319 0.3181

23
2

2 0.1462 0.1582 0.1327 0.1599 0.4895 0.5304 0.4262 0.5481
4 0.3036 0.3267 0.2751 0.3323 0.9805 0.8426 0.8420 0.9967

3
2 0.1599 0.1723 0.1455 0.1744 0.6316 0.6692 0.5777 0.6806
4 0.3102 0.3351 0.2797 0.3409 0.2321 0.2841 0.1323 0.3184
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60

30

15
2

2 0.1505 0.1611 0.1378 0.1633 0.5589 0.6013 0.4946 0.6168
4 0.3380 0.3577 0.3121 0.3639 0.1225 0.1848 0.9923 0.2308

3
2 0.1886 0.1998 0.1750 0.2022 0.7378 0.7735 0.6904 0.7810
4 0.4361 0.4586 0.4075 0.4647 0.3897 0.4393 0.3030 0.4649

23
2

2 0.1519 0.1625 0.1392 0.1647 0.5652 0.6075 0.5014 0.6228
4 0.3416 0.3614 0.3157 0.3675 0.1284 0.1905 0.9992 0.2360

3
2 0.1849 0.1962 0.1713 0.1985 0.7311 0.7671 0.6829 0.7748
4 0.4279 0.4504 0.3993 0.4565 0.3814 0.4313 0.2937 0.4573

45

23
2

2 0.1710 0.1813 0.1595 0.1826 0.5928 0.6209 0.5518 0.6311
4 0.3567 0.3768 0.3322 0.3813 0.1517 0.1927 0.0709 0.2237

3
2 0.1945 0.2053 0.1822 0.2069 0.7374 0.7626 0.7043 0.7683
4 0.3774 0.3993 0.3510 0.4039 0.3776 0.4119 0.3189 0.4311

34
2

2 0.1677 0.1777 0.1564 0.1790 0.5697 0.5967 0.5298 0.6070
4 0.4039 0.4251 0.3784 0.4295 0.3139 0.3515 0.2467 0.3744

3
2 0.2262 0.2376 0.2133 0.2391 0.8275 0.8514 0.7984 0.8547
4 0.4302 0.4535 0.4024 0.4579 0.5180 0.5497 0.4688 0.5631
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