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Abstract
The struggle of medics, computational biologist and experts in bioinformatics to find a cure for cancer is one of the most 
difficult problems in the world today. Given the large amounts of genomic data that is generated on a daily basis, it is becoming 
increasing difficult to evaluate and investigate this data. This is due to the fact that cancer data is heterogeneous, consisting 
of passenger genes which do not contribute to oncogenesis as well as driver genes which are directly led to oncogenesis. 
Hence identifying these driver genes from passenger genes in these large chunks of data increasingly becomes a difficult task. 
Considering the previous methods that have been developed to solve this problem, in this research we propose a bio-inspired 
method called Artificial Rabbit’s Optimization (ARO) that integrates a mutation phase to be used to solve this problem of 
identifying cancer driver genes. This method merges the survival behavior of rabbits through exploration and exploitation 
to handle both global and local search respectively, with a gene interaction network to improve the accuracy of discovering 
cancer driver genes. The model is applied to 4 different types of cancers: breast cancer, brain cancer, prostate cancer and 
ovarian cancer. The results demonstrate that the proposed model can identify well-known labelled canonical driver genes while 
prioritizing them over unknown cancer driver genes. GBM found 9 genes, BRCA found 25 genes, OV found 4 genes and PRAD 
found 12 genes in the top 30 ranked genes as recognized by the NCG7.0.
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1. Introduction
The development of cancer is driven by the alteration or evolution 
in a cell’s genetic make-up, otherwise known as mutation [1]. 
Oncogenesis occurs when tumor suppressor genes are set to 
inactive while activating oncogenes and Copy Number Aberrations 
(CNA) tend to be a great contributor to oncogenesis [2]. In the field 
of medicine, there are two major challenges involved in the study 
of oncogenesis. The first challenge is faced in the identification 
of molecular subtypes whereby patients are stratified clinically, 
with the aim of improving patient treatment as well as prognosis. 
The second challenge is in the discovery of cancer driver genes 
and mutations that are effective in cancer development. This is 
a challenge as cancer driver genes are shuffled up in passenger 
mutations that do not directly contribute to the development 
of cancer and also happen to exist in much larger numbers [3]. 
According to a study by The Cancer Genome Atlas (TCGA), a 

single cancer patient can have up to 100 different cancer mutations 
in their DNA and amongst these, only up to 6 actually are revealed 
to be cancer driver mutations while the rest are just passenger 
mutations with no effect on oncogenesis [4]. 

Approaches to identify cancer driver genes have been developed 
which are based on classification techniques, for example, Random 
Forests [5]. Unfortunately, it is difficult for these techniques to 
provide information about the interaction between the different 
regulatory systems involved when working with different 
datatypes. Computational and statistical approaches which are 
based on identifying patterns in driver gene groups or communities 
across a number of patients have also been developed for the 
purpose of identifying driver genes from passenger genes. Some 
of the methods discovered over the years include Dendrix, MEMo, 
RME and QuaDMutEx [6-9]. Using interaction networks for the 
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identification of cancer driver genes has been a promising area of 
study for bio-scientists and computational biologists. 

The reason for this success is that cancer mutations that carry out 
a particular function exists in groups that share similar biological 
properties [10]. For example, HotNet and HotNet2 were one of the 
first network-based cancer driver gene identification approaches to 
be developed whereby a propagation process is applied to diffuse 
mutation frequency score across the biological interaction network 
(such as a gene-gene interaction network) in order to discover 
significantly mutated cancer subnetworks. Another network-based 
method called NBS which is closely similar to HotNet, identifies 
cancer mutation subnetworks found different patients separately 
and then uses a consensus clustering framework to combine all 
of these subnetworks [11-13]. MUFFIN unlike the other methods, 
takes the impact of neighbors of mutated genes into consideration 
in order to prioritize cancer driver genes in the functional biological 
network [14].

Junrong Song et al. in 2018 proposed a method known as 
DyTidriver which aims at discovering cancer driver mutations 
through the use of variation frequency, tissue-specific expression 
and gene dysregulated expression on a human functional 
interaction network [15]. In this method, mutation genes were 
first of all selected with respect to the effect they have on their 
downstream genes. This is then followed by weighing the gene 
interactive network via its gene-to-gene co-expression and its 
inter-mutated gene relations. Mutated genes were then ranked as 
a result of merging variation frequency and the weighted graph. 
In 2019, Junrong Song, Wei Peng and Feng Wang discovered a 
novel method for driver gene identification which was based on 
random walk [16]. In this work, a bipartite graph, subcellular 
localization and mutation frequency we all integrated to improve 
driver mutation prediction performance. 

The random walk algorithm was then implemented in order to 
efficiently combine the above-mentioned biological features. In 
this work, the following hypothesis was used: the assumption that 
driver mutations are identified through their appearance frequency, 
dysregulated genes and reliable relationships found between 
dysregulated genes and mutated genes in a range of patients. The 
results showed that driver mutations are the mutations which are 
more liable to affect more dysregulated genes while having a higher 
variation frequency in important clusters. Zexian Zeng et al. used 
deep learning for driver gene discovery in 2021 [17]. 

In this study, a Convolutional Neural Network (CNN) model was 
used for raw sequencing of tumor DNA. A deep learning model was 
used in this study due to the fact that these models were discovered to 
be more efficient in learning intricate patterns gotten from raw data 
as compared to the conventional models. [18-20]. Here, the CNNs 
shares parameters between regions in order to compute convolution 
on these regions. Hence, permitting smooth model training on large 
sequences of DNA. Applications of this model we also done in 
DanQ, DeepBind, DeepCpG and DeepSEA [21-24].

It is fact that meta-heuristic algorithms have become quite popular 
in solving optimization problems. The reason for this is that meta-
heuristic algorithms are less expensive and also more efficient 
than the normally-used numerical methods. Meta-heuristic 
algorithms have a random nature which gives them an added 
advantage in successfully escaping local minima and exploring 
the entire search space. In cancer driver gene identification, some 
of the common meta-heuristic algorithms such as the Genetic 
Algorithm and Differential Evolution have been implemented [25, 
26]. Even though there are have been many proposed algorithms, 
more algorithms are still being developed to solve optimization 
problems. The reason to this is because there doesn’t exist an 
algorithm that performs best in solving all optimization problems, 
most algorithms are problem specific and developed to solve 
specific optimization problems. 

Therefore, in this study, recently proposed metaheuristic algorithm 
known as the Artificial Rabbits Optimization algorithm (ARO) was 
implemented for the discovery of cancer driver genes [27]. This 
algorithm was further improved by implementing mutation such as 
that implemented in the Genetic Algorithm at every iteration. The 
mutation step was used to help generate more optimized results. 
The optimization process proposed here is generally divided into 
the exploration step and exploitation step. Exploration allows 
the algorithm to search for a new solution in the solution space 
found far away from the current solution while keeping the search 
extensive and global. Exploitation on the other hand aims to 
improve the current solution in its local neighborhood intensively. 
ARO is based on the mathematical modelling of the survival 
nature of rabbits. This nature is based on three search strategies 
which will be implemented here. These are: random hiding, detour 
foraging and energy shrinking strategy. In this research we first of 
all generate a bipartite graph as that implemented by DriverNet 
and BetweenNet [28, 29]. 

The ARO algorithm is then implemented on the generated bipartite 
graph in order to identify cancer driver mutations in accordance 
with the Network of Cancer Genes and Healthy Drivers (NCG) 
[30]. The experiments were carried out on 4 benchmarking cancer 
datasets from TCGA: Glioblastoma Multiforme (GBM) brain 
cancer dataset, Prostate Adenocarcinoma (PRAD) prostate cancer 
dataset, Breast Cancer (BRCA) dataset and Ovarian Cancer (OV) 
dataset. Gene Ontology (GO) analysis was then performed on 
the results in order to outline the biological significance of the 
discovered genes in biological processes in humans. The rest of 
this research is divided as follows. Section 2 discusses the materials 
and methods used in this study. This includes the mathematical 
model of the Artificial Rabbits Optimization algorithm, the 
datasets used, and the proposed model. Section 3 discusses the 
experimental analysis carried out and discusses the results. The 
results are compared with other state-of-the-art methods for 
detecting cancer driver genes developed in recent years. Section 
4 is the discussion section which give a full summary of the entire 
study and perspectives for future challenges. Finally, Section 5 
summaries and concludes the study.
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2. Materials and Methods
2.1 Background
The use of an evolutionary method for cancer driver gene 
identification is crucial as evolutionary methods are better in 
maximizing the data search space while avoiding local maxima 
and/or minima and attaining global maxima and/or minima 
respectively. This is due to the fact that day by day the amount 
of available cancer data increasingly becomes overwhelming. 
Therefore, efficiently picking out this data is quite important. The 
ARO algorithm enhances search by accurately alternating between 
two important phases later on explained in this chapter. These 
phases are: exploration (detour foraging) and exploitation (random 
hiding). 

2.2 Artificial Rabbits Optimization (ARO) algorithm General 
Idea
ARO is a bio-inspired algorithm derived from the strategies 
rabbits use in order to survive in nature. Rabbits are animals that 
feed on greens such as leafy weeds, grass and forbs (herbivores), 
and just like other evolutionary animals, they have to evolve with 
survival [31]. The survival strategy of rabbits is to eat grass which 
are far away from their own nests, hence preventing their nests 
from being discovered by predators. Given their wide arial vision, 
they are able to scan wide areas for food resources [32-33]. This 
strategy is known as “detour foraging” and will be regarded as 
the exploration mechanism in this study. Another strategy for 
survival used by rabbits is the random hiding strategy. Rabbits 
escape predators through the use of burrows. Rabbits dig many 

burrows and randomly choose one during a chase and uses it for 
shelter [34]. Because rabbits can easily stop and change direction 
while being chased at high speeds, this technique has been a very 
important strategy for survival. This random hiding technique 
is known here as exploitation. Rabbits being on the lower level 
of the food chain have a vast range of predators, meaning they 
have to be able to run really fast to escape danger. This affects 
the rabbit energy-wise, meaning that they have to change between 
random hiding and detour foraging adaptatively with respect to 
their energy levels. 

2.3 Model and Algorithm
In ARO, detour foraging is implemented as the exploration strategy 
while random hiding is implemented as the exploitation strategy. 
Finally, as an energy shrinking strategy, rotation between random 
hiding and detour foraging is applied. The model is described as 
follows.

2.3.1 Detour Foraging (Exploration)
Detour foraging as mentioned earlier is a technique where the 
rabbits feed on food far away from their own nests. This is done 
by randomly selecting a location which is far away from the home 
location. Rabbits assume that every rabbit in the population has a 
nest with a given number of burrows, d. So, in detour foraging, the 
rabbits randomly update their position close to the nest of other 
rabbits in the population. This is demonstrated mathematically as 
follows: 

  𝑣⃗𝑣𝑖𝑖 (𝑡𝑡 + 1) =  ⃗𝑗𝑗 (𝑡𝑡) + 𝑅𝑅 ⋅ ( ⃗i (𝑡𝑡) −  ⃗𝑗𝑗 (𝑡𝑡)) + 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 (0.5 ⋅ (0.05 + 𝑟𝑟1)) ⋅ 𝑛𝑛1      𝑖𝑖, 𝑗𝑗 = 1, …, 𝑛𝑛 and 𝑗𝑗 ≠ 𝑖𝑖              (1) 

      𝑅𝑅 = L * c                                                                                                                                 (2)  
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In the above equations, 𝑣⃗𝑣𝑖𝑖 (𝑡𝑡 + 1)  represents the 

candidate position at time t+1 of the ith rabbit, n is 

the population size,  ⃗𝑗𝑗 (𝑡𝑡) represents the position of 

the rabbit at time t, d is the problem dimension, T is 

the number of iterations, roundperm(d) is a function 

that returns a random integer between 1 and d, L is 

the running length when carrying out detour foraging, 

r1, r2 and r3 are random numbers between 0 and 1, n1 

is the subject to standard normal deviation. 

Equations 1-6 are implemented to achieve detour 

foraging. Equation 1 is used to demonstrate the 

random search of individuals in finding a food 

source. This significantly contributes to exploration 

and gives the ARO algorithm the ability to perform 

global search. Equation 3 represents the running 

length, L, generated during iterations, which is 

typically longer during initial iterations and shorter 

during later iterations. 

 

- Random Hiding (Exploitation) 

This is the situation whereby the rabbit has to dig a 

couple of burrows around its nest, in which it 

randomly chooses and hides when it is being chased 

by a predator. ARO implements random hiding by 

generating across the search space d number of 

burrows in each iteration. At every iteration, one of 

the burrows is chosen for hiding in order to increase 

probability of survival. In mathematically expressing 

exploitation, a hiding parameter, H, linearly drops 

from 1 to 1/T, where T is the total number of 

iterations [35]. This implies that as the start of the 

iterations, the search space across which burrows are 

generated is quite large, and reduces as the iteration 

number increases. The mathematical implementation 

of random hiding is demonstrated below using 

Equations 7-11. 
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   H =      
  * r4                    (7) 

In the above equations, v⃗𝑖 (𝑡 + 1)  represents the candidate 
position at time t+1 of the ith rabbit, n is the population size, x⃗𝑗 
(𝑡) represents the position of the rabbit at time t, d is the problem 
dimension, T is the number of iterations, roundperm(d) is a 
function that returns a random integer between 1 and d, L is the 
running length when carrying out detour foraging, r1, r2 and r3 are 
random numbers between 0 and 1, n1 is the subject to standard 
normal deviation.

Equations 1-6 are implemented to achieve detour foraging. 

Equation 1 is used to demonstrate the random search of 
individuals in finding a food source. This significantly contributes 
to exploration and gives the ARO algorithm the ability to perform 
global search. Equation 3 represents the running length, L, 
generated during iterations, which is typically longer during initial 
iterations and shorter during later iterations.

2.3.2 Random Hiding (Exploitation)
This is the situation whereby the rabbit has to dig a couple 
of burrows around its nest, in which it randomly chooses and 
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hides when it is being chased by a predator. ARO implements 
random hiding by generating across the search space d number of 
burrows in each iteration. At every iteration, one of the burrows 
is chosen for hiding in order to increase probability of survival. 
In mathematically expressing exploitation, a hiding parameter, 
H, linearly drops from 1 to 1/T, where T is the total number of 

iterations [35]. This implies that as the start of the iterations, the 
search space across which burrows are generated is quite large, 
and reduces as the iteration number increases. The mathematical 
implementation of random hiding is demonstrated below using 
Equations 7-11.
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ARO in this study is improved by implementing 

mutation just before detour foraging and random 

hiding. Mutation here is implemented in order to 

Equations 1 and 8 denote the new candidate positions generated for 
each rabbit. Here, b⃗i,r is a burrow selected at random from the total 
d number of burrows. r4 and r5 are two randomly selected number 
between 0 and 1. If the calculated fitness score of these positions is 
better than that of the current position, the rabbit’s position will be 
updated with respect to this new candidate positions. Updating the 
position of the rabbit is shown by Equation 11.

2.3.3 Energy Shrink (Alternating between exploitation and 
exploration)
Rabbits tend to perform detour foraging when they have high 
energy levels. Later when energy levels drop, they will switch 
to random hiding. This application is the same in ARO. At the 
start of the iterations, exploration is performed and then switches 
to exploitation at later stages in the iteration. This brings about 
an energy factor in the current rabbit that is used to model the 
alternation between random hiding and detour foraging. This 
energy factor is given mathematically as follows on Equation 12. 
Where r is a random number between 0 and 1.

A large value of A(t) indicates that the rabbit has enough energy 
to perform exploration. On the other hand, a small value of A(t) 
indicates that the rabbit has less energy and has to go into hiding 
(exploitation). This is indicated in ARO by: exploration occurs 
when A(t) > 1 and exploitation when A(t) ≤ 1. Wang L et al. [27] 
demonstrate the behavior of the energy factor over 1000 iterations 
as shown on Figure 1 below. This shows how the value of the 
energy factor decreases as the number of iterations increase.

2.3.4 Mutation
ARO in this study is improved by implementing mutation just before 
detour foraging and random hiding. Mutation here is implemented 
in order to variate the search space and foster evolution, hence 
prevent the algorithm from converging and eventually coming to 
a halt. To implement mutation, at every iteration, individuals in 
the current solution are randomly chosen and given new randomly 
selected positions. Exploration and exploitation are then carried 
out on the output solution gotten from mutation.
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Figure 1: Behavior of the energy factor, A, over 1000 iterations.
Figure 1: Behavior of the energy factor, A, over 1000 iterations.

2.3.5 The Algorithm
The improved ARO algorithm implemented in this research is as 
follows: First, a random solution of X rabbits is initialized. The 
fitness of this initial rabbit is calculated and labelled as the best 
solution Xbest. The iteration parameter is then set as the terminating 
criteria. In the iteration loop, mutation is first of all applied to the 
current selected population of X rabbits. For each individual in 
this population, the energy factor of the rabbit is calculated. If the 
energy factor, A, is greater than 1, then a new rabbit is randomly 
chosen from the neighborhood population, it fitness calculated and 
position updated using Equation 11.  

If the energy factor is less than or equal to 1, a number of burrows, 
d, is generated, random hiding implemented and the position of 
the current selected rabbit is updated using Equation 11. These 
steps are repeated until the stopping criteria for both the inner and 
outer loops are met, after which the update best solution is taken 
as the optimized solution. The flowchart for the ARO algorithm 
is demonstrated on Figure 2. The algorithm is simplified in the 
following pseudocode in Table 1

- The Algorithm 
 

The improved ARO algorithm implemented in this 

research is as follows: First, a random solution of X 

rabbits is initialized. The fitness of this initial rabbit 

is calculated and labelled as the best solution Xbest. 

The iteration parameter is then set as the terminating 

criteria. In the iteration loop, mutation is first of all 

applied to the current selected population of X 

rabbits. For each individual in this population, the 

energy factor of the rabbit is calculated. If the energy 

factor, A, is greater than 1, then a new rabbit is 

randomly chosen from the neighborhood population, 

it fitness calculated and position updated using 

Equation 11. 

If the energy factor is less than or equal to 1, a 

number of burrows, d, is generated, random hiding 

implemented and the position of the current selected 

rabbit is updated using Equation 11. These steps are 

repeated until the stopping criteria for both the inner 

and outer loops are met, after which the update best 

solution is taken as the optimized solution. The 

flowchart for the ARO algorithm is demonstrated on 

Figure 2. The algorithm is simplified in the following 
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Pseudocode for ARO 
 

 Begin 
 Initialize a random solution of rabbits, X 
 Calculate their fitness, Xbest 
 Start while (t < iteration count) 

 Implement mutation on the current solution 
 Begin for loop 

o For each solution, X, calculate the energy factor, A, using Equation 12 
o If (A > 1),  

 Randomly choose new rabbit from neighborhood 
 Calculate R using Equations 2-6, perform detour foraging using equation 1,  
 Calculate the fitness and update the position of the rabbit using Equation 11 

o Else If (A ≤ 1),  
 Generate d number of burrows and choose one of the burrows at random 

which will be used for hiding (Equation 10) 
 Use Equation 8 to perform random hiding then calculate the fitness of the 

solution.  
 Finally, update the position of the rabbit using Equation 11 

o End if 
 End for loop. 

 End while loop 
 Update the solution to get the new best solution Xbest 
 End 

 

 

Table 1: Pseudocode for Artificial Rabbits Optimization. Table 1: Pseudocode for Artificial Rabbits Optimization.
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Figure 2: Flow chart of Artificial Rabbits Optimization (ARO) algorithm. Figure 2: Flow chart of Artificial Rabbits Optimization (ARO) algorithm.

3. Results
3.1 Datasets
In this research, 4 different datasets were used to carry out 
experimental analysis. These datasets were gotten from of The 
Cancer Genome Atlas (TCGA) datasets gotten from the cBioPortal 
for Cancer genomics [36]. Table 2 below shows the demographics 
of the different datasets with respect to the number of patients 
involved, the number of genes, number of mutations, CNA and 
RNA-Seq. The first dataset used for experiments in this research 

was made up of copy number alteration (CNA), mRNA sequencing 
expression and gene mutation data for 585 patients with brain 
cancer. This dataset is called the Glioblastoma Multiforme (GBM). 
The next dataset was for patients with ovarian cancer. This dataset 
was made up of copy number alterations, gene mutations and 
mRNA sequencing expression data for 585 patients. It is called 
the TCGA Ovarian Serous Cystadenocarcinoma (OV). The third 
dataset was the TCGA Prostate Adenocarcinoma (PRAD) dataset. 
This dataset was made up of gene expression data, gene mutations 



   Volume 5 | Issue 2 | 7J Robot Auto Res, 2024

and copy number alteration data for 334 patients. The fourth dataset 
was the TCGA Breast Cancer (BRCA) dataset which was made up 
of mRNA-seq expression data, gene expression data and CNA data 
for 112 patients. The biological interaction network used here was 
a gene-gene interaction influence graph gotten from REACTOME 
database, consisting of over of 518,302 genes.

In this study, experiments were carried out on 4 benchmarking 
datasets from TCGA as mentioned above in section 2. These were 
GBM, BRCA, OV and PRAD datasets. The implementation was 
carried out in a python environment with number of iterations being 

the input parameter. The fitness is calculated using the Schwefel 
2.22 function, which is an unconstraint test benchmark function 
[37]. The Top 30 ranked genes discovered by this algorithm for each 
dataset are represented on Table 3. Benchmarking performance 
analysis was then carried out on the results and compared with the 
results of 4 state-of-the-art models: HotNet2 Dendrix, DriverNet 
and QuaDMutNetEx [6, 9, 28, 38]. The analysis was done using 
information of genes labelled as canonical cancer driver genes by 
the Network of Cancer Genes and Healthy Drivers (NCG7.0) data 
repository [30]. 

 

 

Dataset No of Patients No of genes Mutations CNA RNA-Seq 

PRAD 334 34,192 333 333 290 

OV 585 53,204 523 572 300 

GBM 585 68,802 397 575 160 

BRCA 112 17,272 112 112 112 
 

Table 2: TCGA datasets from the cBioPortal 
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3.2 Performance Benchmarking Analysis  
In the benchmarking performance analysis of the glioblastoma 
multiforme brain cancer dataset (GBM) which consist of 68,802 
genes, a total of 15 canonical genes were identified out of the total 
24 canonical genes presented by NCG7.0. of these 15 genes, 9 
were ranked amongst the top 30 genes by the ARO algorithm. 
These genes include: TP53, PTEN, PIK3R1, PIK3CA, RB1, NF1, 
PDGFRA, PTPN11 and STAG2. For the triple negative breast 
cancer dataset (BRCA), out of the total 110 canonical driver genes, 

a total of 55 BRCA driver genes were identified in this study. From 
the 55 identified driver genes, 25 were ranked in the top 30 genes 
by ARO. For ovarian cancer (OV), out of the total of 11 canonical 
cancer genes, a total of 6 were identified in this study, with 4 gene 
(TP53, BRCA1, RB1, FAT3) ranking in the top 30. Finally for 
the prostate adenocarcinoma (PRAD) dataset, out of the total 43 
canonical driver genes, 19 were identified in experiments with 
ARO, where 12 of these genes rank in the top 30 genes. Table 
4 shows the cancer driver genes identified by ARO in this study.

Rank GBM BRCA OV PRAD 

1 TP53 TP53 TP53 TP53 
2 PTEN PIK3CA EP300 CTNNB1 
3 PIK3R1 EP300 UBC EP300 
4 PIK3CA AKT1 TTN FOXA1 
5 RB1 CDH1 DYNC1H1 PIK3CA 
6 EB300 KMT2C EGFR ATM 
7 NF1 GATA3 PIK3CA PTEN 
8 PLCG2 NCOR2 BRCA1 TTN 
9 PRKACA PIK3R1 RB1 STAT3 

10 UBC MAP3K1 PRKCB CREBBP 
11 PDGFRA NOTCH1 PIK3CB HSPA8 
12 PTPN11 ERBB3 NCOA3 DYNC1H1 
13 PIK3CB NCOR1 DCTN1 SPOP 
14 CREBBP ERBB2 TAF1 SPTA1 
15 SP1 NF1 LRRK2 HRAS 

16 SPTA1 CBFB SRC PRKACA 

17 LRP2 EGFR PRKACB KMT20 
18 APOB ARID1A LRP2 FAT3 
19 PIK3CG BRCA1 STAT3 NCOR1 
20 DYNC1I1 CTCF SP1 EGFR 
21 KDR SMAD4 FAT3 PIK3CD 
22 MUC16 NCOA3 HTT RELA 
23 ITGB2 JAK1 NCOR2 MUC16 
24 JUN RYNX1 PDGFRA APC 
25 SRC ATR ATM POLR2B 
26 PRKCB AKAP9 POLR2A HTT 
27 STAG2 ERBB4 NFKB1 KMT2C 
28 ARRB1 TAF1 ALMS1 PLCB4 
29 ESR1 SMARCC2 GNAL SMAD4 
30 DYNC1H1 HERC2 PCDH15 ANK2 

 

Table 3: Top 30 ranked genes discovered by ARO from experiments on GBM, BRCA, PRAD and OV. 
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Table 3: Top 30 ranked genes discovered by ARO from experiments on GBM, BRCA, PRAD and OV.

Dataset Canonical Driver Genes 

BRCA 

TP53 
PIK3CA 
EP300 
AKT1 
CDH1 

KMT2C 
GATA3 
PIK3R1 

MAP3K1 
NOTCH1 
ERBB3 
NCOR1 
ERBB2 

NF1 
CBFB 
EGFR 

ARID1A 
BRCA1 
CTCF 

SMAD4 
ATR 
RB1 

RUNX1 
PTEN 

OV 

TP53 
BRCA1 

RB1 
FAT3 

GBM 

TP53 
PTEN 

PIK3R1 
PIK3CA 

RB1 
NF1 

PDGFRA 
PTPN11 
STAG2 

PRAD 

TP53 
CTNNB1 
FOXA1 
PIK3CA 

ATM 
PTEN 
SPOP 
HRAS 

KMT2D 
NCOR1 

APC 
KMT2C 

 

Table 4: Driver genes discovered by ARO ranked amongst top 30. 
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3.3 Performance Evaluation
3.3.1 Exploration and Exploitation Analysis
Artificial Rabbits Optimization tends to have an accelerated 
convergence at during its iterations. Therefore, at initial iterations, 
the search individuals can identify promising regions and then speed 
up the rate of convergence. ARO depicts an effective performance 
due to the fact that the global search mechanism used is integrated 
to effectively enhance the exploration level. This makes ARO very 
competitive in exploration the search space for the best solution in 
a multimodal function. By balancing exploitation and exploration, 
ARO and evidently avoid local optima. Furthermore, the ratio of 

exploration to exploitation is defined by a trade-off between two 
searches as shown by Hussain K. et al. [39].

3.3.2 Performance Analysis
The performance of the algorithm was done by calculating the 
precision, recall, f-score and accuracy of the results. Here, true 
positives are represented as TP, true-negative as TN, false-positive 
represented as FP, and false-negative represented as FN. Table 5 
below shows the number of genes labelled as canonical genes by 
the NCG7.0 for the different datasets used in this research.
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Precision, recall and the f-score are calculated as follows:

Where, 	 TP is the total number of genes discovered by the 
algorithm that have also been labelled as canonical driver genes 
by the NCG7.0.
TN is the number of genes that have not been labelled by NCG7.0 
as canonical driver gene and also have not been ranked amongst 
the top N genes by the algorithm. FP is the total number of genes 
identified by our algorithm but have not been labelled by the 
NCG7.0 as canonical driver genes. FN is the total number of 
genes which have not been discovered by the algorithm but have 
been labelled as driver genes by the NCG7.0 database.

Table 6 shows the comparison of results of ARO with HotNet2, 
Dendrix, DriverNet and QuaDMutNetEx. The table depicts the 
genes found in the solution for each algorithm, the canonical genes 
identified, the True Positives and False Positives for each of the 
datasets.

4. Discussion
The proposed algorithm in this research is an improved version 
of the bio-inspired Artificial Rabbit’s Optimization algorithm 
proposed by Wang L et al. in 2022 [27]. This algorithm was 
improved by adding a mutation phase before implementing 
the detour foraging and random hiding phases of the ARO. The 
model in this study is as follows. First, using the cancer data for 
the respective cancer type gotten from the TCGA data repository 
and a biological interaction network similar to that presented by 
Sarkar A et al., a bipartite graph was generated as that presented 
in DriverNet and QuaDMutNetEx [40]. ARO was then applied on 
this bipartite graph to identify cancer driver genes. This improved 
ARO algorithm is implemented as thus. A random solution is 
initialized in the neighborhood space. Mutation was then applied 
on this solution to generate a more diverse solution that covers the 
search space. 
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Dataset Algorithm Genes in Solution Canonical Genes TP FP f-score 

OV 

ARO 11 6 6 5 0.545 

HotNet2 11 4 4 7 0.363 

DriverNet - - - - - 

Dendrix 11 3 3 8 0.273 

QuaDMutNetEx 11 7 7 5 0.636 

GBM 

ARO 24 11 11 13 0.458 

HotNet2 24 11 11 26 0.458 

DriverNet 24 9 9 8 0.375 

Dendrix 24 4 4 20 0.167 

QuaDMutNetEx 24 6 6 18 0.250 

PRAD 

ARO 43 19 19 24 0.442 

HotNet2 43 9 9 34 0.209 

DriverNet 43 14 14 32 0.326 

Dendrix 43 8 8 35 0.186 

QuaDMutNetEx 43 13 13 30 0.302 

BRCA 

ARO 110 55 55 55 0.500 

HotNet2 110 18 18 92 0.164 

DriverNet 110 33 33 77 0.300 

Dendrix 110 16 16 94 0.145 

QuaDMutNetEx 110 25 25 85 0.227 

 

Table 6: Comparison of canonical genes with HotNet2, DriverNet, Dendrix and QuaDMutNetEx. 
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Next, the energy factor, A, was calculated to determine whether 
detour foraging or random hiding will be implemented on the 
current rabbit solution. This is the energy shrinking mechanism 
which is used by rabbits for survival. If the energy factor is 
greater than 1, then detour foraging (exploration) is implemented 
to generate the new position of the rabbit. If the energy factor 
is less than or equal to 1, then random hiding is implemented to 
generate the new position of the current rabbit. At every iteration, 
the fitness of the current solution was calculated by using the 
Schwefel 2.22 function and compared with that of the candidate 
solution in order to select the new current solution. The best 
solution was then gotten at the end of the iterations. Performance 
analysis was then applied to evaluate the results of this model. 
Performance analysis was carried out on 4 benchmarking datasets: 
Glioblastoma Multiforme (GBM) brain cancer dataset, Prostate 
Adenocarcinoma (PRAD) prostate cancer dataset, Breast Cancer 
(BRCA) dataset and Ovarian Cancer (OV) dataset. Comparison on 
results was performed with 4 other state-of-the-art models used for 
identifying cancer driver mutations: Dendrix, DriverNet, HotNet2 
and QuaDMutNetEx. ARO proposed in this study proved to be 

quite efficient in identifying cancer driver mutations in comparison 
with these methods. ARO was able to identify the following driver 
genes labelled as canonical genes by the NCG7.0. For GBM: 
TP53, PTEN, PIK3R1, PIK3CA, RB1, NF1, PDGFRA, PTPN11 
and STAG2 were identified among the top 30 ranked; for OV: 
TP53, BRCA1, RB1 and FAT3 were identified among the top 30 
ranked; for PRAD: TP53, CTNNB1, FOXA1, PIK3CA, ATM, 
PTEN, SPOP, HRAS, KMT2D, NCOR1, APC and KMT2C were 
identified among the top 30 ranked; for BRCA: TP53, PIK3CA, 
EP300, AKT1, CDH1, KMT2C, GATA3, PIK3R1, MAP3K1, 
NOTCH1, ERBB3, NCOR1, ERBB2, NF1, CBFB, EGFR, 
ARID1A, BRCA1, CTCF, SMAD4, ATR, RB1, RUNX1 and 
PTEN were identified among the top 30 ranked.

There are several aspects to why ARO serves are an appropriate 
algorithm for this study. In ARO, the detour foraging helps in 
accomplishing global search, while random hiding helps in 
accomplishing local search. There parameter, R, presented in 
Equation 2 could be adaptatively adjusted as the number of 
iterations increase, in order to foster the gradual alternation from 
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exploration to exploitation. Approximately half of the iterations 
are assigned to exploitation (A ≤ 1) and the other half assigned 
to exploration (A > 1), as an outcome of the energy factor, A. 
This energy factor is a time dependent factor effectively switches 
between exploitation and exploration as well as enhances these 
phases. Furthermore, ARO has a good ability for bearing fault 
diagnosis gotten from its ability to balance exploitative and 
explorative search. The computation complexity of ARO is linear 
and given by Equation 16 below:

Despite having a superior performance, ARO also has a couple 
of shortcomings. ARO lacks multiple search mechanisms during 
optimization of problems that have variable types of certainty. 
Also, ARO faces shortcomings in handling unimodal problems that 
have multiple extrema. Hence ARO is less efficient in solving NP-
Hard problems. These problems could be solved by implementing 
multi-objective and binary versions of the algorithm. 
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5. Conclusion
This study implements a modified version of a newly developed 
bio-inspired optimizer which mimics the natural behavior of 
rabbits. The optimizer models the strategies used by rabbits 
for survival, through random hiding and detour foraging. This 
model, known as Artificial Rabbits Optimization, was developed 
to accurately determine global optima for multimodal, unimodal 
and composite functions while performing both local and global 
search. In this study, we use make use of this algorithms property 
to identify known cancer driver mutations found in cancer patients. 
The Artificial Rabbits Optimization algorithm is significantly 
important in tackling engineering problems that have constrained 
as well as unknown search spaces. With that respect, it is important 
to mention that this algorithm properly serves cancer driver 
mutation identification as the amount of available cancer data in 
the world increases day by day. That is, the search space for cancer 
driver genes is continuously changing. To highlight the efficiency 
of the algorithm in this context, experiments are carried out in this 
research on 4 different cancer types: Breast cancer, ovarian cancer, 
brain cancer and prostate cancer. Even though this algorithm shows 
some shortcomings in finding multiple search mechanisms for 
exploration, it still portrays outstanding performance in achieving 
efficient results.
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