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Abstract
In modern worlds, the economic climate, individuals face increasing risks when taking out loans, due to rising inflation and fluctuating 
unemployment rates. In this era, financial risk management is the process of identifying, assessing, and mitigating risks to protect 
financial assets and ensure stability. Therefore, loan defaults have a ripple effect on the economy, reducing consumer spending and 
weakening financial stability. Unemployment Rate impacts the ability of individuals to repay loans, as higher unemployment leads to 
less income and higher default risks. Inflation Rate reduces purchasing power and increases the cost of borrowing, making it harder 
for individuals to meet loan obligations. Increase in loan defaults leads to tighter credit conditions, lower economic growth, and higher 
unemployment as businesses face financial strain. Statistical measures, such as default rates and debt-to-income ratios, reveal a strong 
correlation between these macroeconomic factors and loan repayment challenges. The relationship between inflation, unemployment, 
and loan defaults can be modelled using regression analysis to predict default probabilities. As inflation and unemployment increase, 
the risk of default escalates, demanding more robust personal financial planning. This paper explores how individuals can manage these 
risks by adapting to changes in economic indicators and employing statistical tools to forecast financial stability. In this decade finance 
is more important in crisis than peace. Managing finance is important from daily life of an individual to developing economy of any 
country. By controlling financial risk helps to create a stable economy and a powerful nation. 

Keywords: Financial Risk Management, Exploratory Data Analysis, Ordinary Least Square Regression, Loss Distribution, Continuous 
Poisson Distribution, Deep Learning

1. Introduction
In the dynamic landscape of modern finance, understanding and 
managing financial risk has become a cornerstone of economic 
stability and institutional resilience. Financial risk refers to the 
possibility of losing money on investments or business operations 
due to market fluctuations, credit events, or macroeconomic 
factors. In this decade, financial services are main pillars to keep 
up the economic growth and stability of any country. Financial 
services play crucial role in fast-paced economy. Global economy 
is referred to the interconnected world. It is easier to understand 
the role of financial markets and institutions how much affecting 
the economy with the help of advance technology. One of the most 
critical aspects of financial risk management is the measurement 
and assessment of credit risk, particularly in the context of loan 
defaults. Loan defaults arise from where borrowers fail to meet 
their repayment obligations which leads to a significant threat 
to financial institutions, often signalling underlying economic 
distress. 

This paper explores the complex interrelationship between 
financial risk and key economic indicators, focusing on how loan 
default rates, unemployment trends, and inflation dynamics can 

be used to enhance financial risk measurement frameworks in 
European economy. According to Aslam et al. (2019), loan lending 
has become a crucial component of global finance for many 
years [1]. If this continues, credit scoring serves as a vital tool 
for managing and accessing credit risk. The occurrence of loan 
defaults in Europe is closely intertwined with broader economic 
indicators, notably the unemployment rate and the inflation rate. 
Rising unemployment can lead to reduced consumer income, 
thereby increasing the likelihood of defaults on personal and 
business loans. Similarly, high inflation erodes purchasing power 
and can disrupt cash flows, making it more difficult for borrowers 
to service their debts. Hence, integrating macroeconomic 
variables like unemployment and inflation rate into financial risk 
measurement models is essential for more accurate forecasting and 
proactive risk mitigation. 

The inflation rate represents the state at which the general level 
of prices for goods and services rises over time, leading to a 
decrease in the purchasing power. Inflation is typically measured 
through indices like the Consumer Price Index, CPI, and it plays a 
critical role in shaping monetary policy, consumer behaviour, and 
financial planning across all levels of the economy. There is a direct 
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association between inflation rate and loan defaults, this means if 
inflation rate rise then loan defaults will also rise and vice versa. 
This happens because individuals and businesses may struggle to 
keep up with rising costs while their incomes or revenues remain 
stagnant. In response to inflation, apex banks often raise interest 
rates, which can increase loan repayment amounts for borrowers 
with variable-rate loans. The combined pressure of higher living 
costs and increased debt servicing requirements can make it 
difficult for borrowers to meet their obligations, ultimately leading 
to a higher risk of loan default. 

The unemployment rate measures the percentage of the labour 
force that is actively seeking but unable to find work. High 
unemployment often signals economic weakness, as businesses 
reduce hiring or lay off workers due to declining demand, financial 
constraints, or broader market uncertainty. When unemployment 
rises, it affects household income levels and reduces overall 
consumer spending, which can further dampen economic growth. 
A high unemployment rate can lead to an increase in loan defaults 
and can also have complex effects on inflation. At the same time, 
high unemployment typically reduces consumer demand, which 
can put downward pressure on prices and slow inflation. Regardless 
of the inflationary impact, the connection between unemployment 
and loan default remains strong, as loss of income is one of the 
primary drivers of financial distress among borrowers. 
 	  
2. Literature Review 
According to JPK Gross et al., 2009, the effects of financial aid 
policies have been studied with difficulty due to their volatility 
but some areas like student debt, the issue of student loan defaults 
has not been thoroughly examined using large national datasets for 
over a decade [2]. According to Lin Zhu et al., 2019, predicting 
loan default can be built by using deep learning algorithm, and 
the results are compared with statistical models [3]. According to 
Barbaglia et al., 2023, loan defaulters are considered as crucial 
for policymakers to reduce costs and prevent inefficient resource 
allocation [4]. If the past dataset, which contains information on 
millions of residential mortgages and borrowers across many 
countries, is studied, with default occurrence predicted by using 
various statistical techniques, machine learning, and deep learning 
models. 

According to Hur et al., 2018, inflation cyclicality impacts 
borrowing costs, debt dynamics, and defaults [5]. Therefore, 
observing inflation rate estimates the co-movement between 
inflation and consumption growth fluctuates across advanced 
countries, with stronger co-movement linked to lower borrowing 
costs in stable periods. Hence, inflation cyclicality helps explain 
interest rates and default dynamics. In the benchmark model, 
economies with procyclical inflation face lower borrowing costs 
but higher default risks during downturns. As inflation falls, the 
real debt burden rises, increasing the likelihood of a debt crisis and 
magnifying countercyclical default risks. 

According to Guadencio et al., 2019, the preponderance of lending 
standards as default rate drivers is quantified with a unique dataset 

providing insights for supervisors in the selected area [6]. Loan 
defaults are intended to guide policy decisions regarding bank 
lending practices across euro area countries. According to Bai, 
2021, labour market moments are present as the growing economy 
for any country [7]. Benchmark and all-equity models, are used to 
report unemployment volatility and skewness across simulations. 
The analysis used to present a strong relationship between credit 
spreads and unemployment, with labour market conditions 
significantly impacting credit risk. According to Niu et al., 2015, 
job losses are directly affected on foreclosure is concluded using 
data from any region or any country and a job loss is a vulnerability 
index, which measures the spatial relationship between 
employment and residential locations [8]. The spatial separation 
between job and housing locations is shown to significantly affect 
foreclosure rates, supporting the double trigger theory. The study 
suggests that increasing unemployment benefits could mitigate job 
loss impacts on foreclosures, promoting housing market stability. 

According to Quercia et al., 2016, the impact of borrower 
unemployment as a trigger event for mortgage default using 
than lower income earning citizens and minority borrowers [9]. 
Unemployment is found to be a significant predictor of default, 
complementing the traditional unemployment rate. Both household 
unemployment and equity position are shown to influence 
default decisions, supporting the trigger event and option-based 
views. Increase in unemployment rate may offer more precise 
predictions of mortgage default and calls for further research on 
underemployment and unemployment benefits. According to Hurtin 
et al., 2018, estimating loss function is essential for financial risk 
analysis with inflation rate as it quantifies the deviation between 
predicted and actual outcomes, guiding model optimization [10]. 
Loss function helps assess the impact of inflation on investment 
portfolios and credit risk by evaluating inflation rate. This leads 
to accurate risk prediction and strategy formulation in inflation-
sensitive financial environments. 

According to Chen 2022, evaluation of loss function is essential 
to do the financial risk analysis with unemployment rate as it 
helps measure the discrepancy between predicted and observed 
outcomes, optimizing model performance [11]. Integrating the 
unemployment rate with the loss function allows for a more 
accurate assessment of its impact on loan defaults, credit risk, and 
market instability. According to Yang et al., 2016, gamma function 
is necessary in financial risk analysis because it helps model 
distributions of financial variables that are skewed or heavy-tailed, 
which are common in risk assessments. Gamma function used in 
risk metrics like Value at Risk (VaR). According to Marsaglia et 
al., 1986, continuous Poisson distribution is known as incomplete 
gamma function [12]. Continuous Poisson distribution, is essential 
to estimate risk and analysing the risk. This distribution only works 
for asymmetric data types. Risk is also asymmetric because both 
tail can not be measured equally, therefore CPD leads to better 
understanding the model and the volatility of the past data. 

According to Mashur et al., 2020, Machine learning models 
have a pivotal role in financial risk analysis by enabling the 
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identification of complex patterns in vast datasets [13]. ML models 
adapt historical data and making them valuable tools for dynamic 
financial environments, allowing various methods to better manage 
and mitigate risks in an increasingly complex market landscape. 
According to Stevenson et al., 2021, deep learning models are 
essential for financial risk analysis as they can process large 
amounts of data and identify complex patterns [14]. DL models 
improve predictive accuracy in assessing credit risk, market 
fluctuations, and potential loan defaults. Their ability to learn 
from historical data allows for more informed decisionmaking and 
better risk management strategies. 

3. Methodology 
Financial risk measurement is essential for observing the 
development of economic growth because it ensures financial 
stability, boosts investor confidence, and supports informed 
decision-making. If potential threats like loan defaults, market 
volatility, or liquidity issues, can identified then businesses and 
governments can take early action to minimize losses and avoid 
economic disruptions. When the distribution of data is not 
balanced or evenly spread is known as asymmetric data, which 
means one class or group has significantly more samples than 
others, leading to class imbalance. In this study, loan default 
data is also asymmetric because the number of people who repay 
loans is usually much higher than those who fails to repay loans. 
This creates a class imbalance, in the dataset. Loan defaults are 
relatively rare, the dataset becomes skewed, making it harder for 
models to learn and accurately predict the cases. 

A well-managed financial system encourages investment. If 
market risks are predictively analysed and controlled, investors 
are more likely to fund businesses, fuelling innovation, job 
creation, and overall productivity. This flow of capital is essential 
for a growing economy. Therefore, Exploratory Data Analysis, 
EDA is a crucial first step before analysing financial risk because 
it helps to understand the underlying patterns, detect anomalies, 
and prepare data for more complex modelling. Without a clear 
understanding of this data, risk assessments can be misleading or 
incomplete. EDA provides insights into data distribution, trends, 
and relationships between variables. In financial risk analysis, a 
loss function analyses the cost associated with prediction errors. 
It is crucial for building models that assess or forecast risk, as it 
guides optimized models are trained to minimize this function. 
Basically, loss function reflects the trade-off between false 
positives and false negatives, making it essential for accurate and 
practical risk management. 

The Laplace distribution is used in financial modelling because 
when modelling error terms or returns where sharp spikes are likely. 
The heavier tails of Laplace distribution provide more realistic risk 
estimates, especially for value-at-risk, VaR or stress testing. This 

helps in preparing for rare but severe events, improving financial 
resilience. The Pareto distribution is vital in modelling extreme 
financial risks, especially in the tails of the loss distribution. Pareto 
distribution follows the 80:20 rule, often applicable in finance 
where a small percentage of events cause a majority of losses. 
To measure the risk measurement, Pareto allows institutions to 
understand and hedge against rare, high-impact events, which 
traditional models might underestimate. 

Monte Carlo simulations are computational algorithms that rely on 
repeated random sampling to obtain numerical results. Specially, 
it is used to examine numerous trials using random inputs drawn 
from probability distributions to simulate a complex process or 
system. In this technique, Value at Risk (VaR) is used to measure 
the potential loss in value of an asset or portfolio over a defined 
period for a given confidence level. VaR estimates the maximum 
loss that is not expected to be exceeded with a specified probability. 
Continuous Poisson Distribution, CPD or the incomplete gamma 
function is important in financial risk analysis because it appears in 
the mathematical modelling of distributions used to describe rare 
events, extreme losses, and time-to-event data—key areas in risk 
management. The incomplete gamma function is used to compute 
cumulative probabilities for distributions like the gamma and chi-
squared distributions, which model the time until an event occurs. 
This allows analysts to estimate the likelihood of default over a 
specific period, which is critical for pricing loans, setting interest 
rates, or managing portfolio risk. Therefore, in loss modelling, 
especially under compound loss models, the continuous Poisson 
distribution helps to evaluate tail probabilities to assess the chance 
of large aggregate losses. 

Deep learning models is crucial to analyse in financial risk to excel 
at modelling sequential and time-dependent data, like stock prices, 
credit scores, or transaction patterns. Traditional deep learning 
models often detect subtle signals in financial time series, forecast 
market volatility, or predict the likelihood of credit defaults based 
on historical behaviour. They also adapt well to nonlinear, high-
dimensional data, making them powerful tools for identifying 
emerging risks that simpler models may miss. Overall, deep 
learning networks enhance prediction accuracy and provide a 
dynamic, data-driven approach to managing financial risk in real 
time. 
 
4. Analysis 
The dataset has been collected from European Central Bank 
website. Data has been collected from 31-01-2004 to 28-02-2025. 
There are total number of 254 entries. It is a monthly based dataset 
on loan defaults, inflation rate and unemployment rate. Descriptive 
statistics has been provided below to better understanding of the 
dataset.
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dataset on loan defaults, inflation rate and unemployment rate. Descriptive statistics has been 

provided below to better understanding of the dataset. 

Table 1: Descriptive Statistics 

Descriptive Statistics Adjusted Loans Inflation Rate Unemployment Rate 
Mean 3.393307 2.134646 9.001963 
Standard Deviation 2.92707 1.979055 1.722843 
Minimum Value -0.4 -0.6 6.117203 
Maximum Value 9.9 10.6 12.24594 

 

The average adjusted loan value in the European data is 3.39, with a moderate degree of 

variability of 2.93. Inflation shows a mean of 2.13 and a standard deviation of 1.98, suggesting 

inflation rates fluctuate considerably. Finally, the unemployment rate averages 9.00 with a 

lower standard deviation of 1.72. 

 

Figure-1: Adjusted Loans over time 

The adjusted loan values in Europe show considerable volatility over the period from 2004 to 

2024. It is cleared that there was a sharp decline following the 2008 financial crisis, reaching a 

low around 2012-2014. A subsequent gradual increase occurred until around 2020, followed 

by another downturn and a recent slight uptrend at the end of 2024. 
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Figure-3 displays histograms of adjusted loans, inflation rates, 
and unemployment rates in Europe, overlaid with fitted Laplace 
distributions and Pareto distributions. For adjusted loans and 
inflation, both distributions show some divergence from the 

empirical data, particularly at the extremes. It is also shown that 
the distribution function of unemployment rate appears somewhat 
better approximated by both the fitted Laplace and Pareto curves.

The Monte Carlo simulations yielded mean values of 2.77 
for adjusted loans, 1.90 for the inflation rate, and 9.00 for the 
unemployment rate in Europe. When these three variables were 
combined, the simulation produced a mean of 13.67. These 

simulated means provide an estimate of the expected central 
tendency for each individual variable and their sum based on the 
underlying probabilistic models used in the simulation. 

At a 95% confidence level, the VaR for adjusted loans is -2.48, 
suggesting that there is a 5% chance of losses exceeding 2.48 
units. For inflation, the VaR is -1.01, indicating a 5% probability 
of inflation decreasing by more than 1.01 percentage points. The 

VaR for unemployment rate is 5.58, implying a 5% chance of 
the unemployment rate increasing by more than 5.58 percentage 
points. 
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Figure-4: Monte Carlo Simulation 

Figure-4 presents the simulated probability distributions for adjusted loans, inflation rates, and 

unemployment rates in Europe, generated through Monte Carlo simulations. It is observed that 

the unemployment rate simulation shows a distribution skewed towards higher values, 

suggesting a greater likelihood of unemployment rates exceeding the central tendency in the 

simulated scenarios. The above figure also displays the results of Monte Carlo simulations, 

with vertical dashed red lines indicating their respective Value at Risk at a 95% confidence 

level. It can be observed in Figure-5 that the VaR lines are positioned on the left side of the 

distribution, marking the threshold below which 5% of the simulated outcomes are expected to 

fall. 

Now, to check the linearity between the variables, Ordinary Least Square, OLS method has 

been applied. To examine the effect of loan defaults with the volatility of inflation rate and 
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Table-4: Ordinary Least Square 

Dependent Variable Adjusted Loans 𝐑𝐑𝟐𝟐  0.138 
Model OLS Adjusted 𝐑𝐑𝟐𝟐  0.131 
Method Least squares F-statistic 20.03 
No. of Observations 253 P(F-statistic) 8.56E-09 
DF Residuals 250 Log-Likelihood -610.97 
DF Model 2 AIC 1228 
Covariance Type non robust BIC 1239 

 

 co-efficient std-error z P>|z| 0.025 0.975 
constant 6.116 0.430 14.215 0.001 5.273 6.959 
Inflation Rate -0.0452 0.037 -1.227 0.220 -0.117 0.027 
Unemployment Rate -0.5493 0.042 -12.985 0.001 -0.632 -0.466 

 

Omnibus 31.054 Durbin-Watson 0.003 

P(Omnibus) 0 Jarque-Bera (JB) 39.105 

Skew 0.954 P(JB) 3.22E-09 
Kurtosis 3.269 Cond. No. 64.7 

 

From the above Table-5, it is examined that low R-squared value is 0.138, which indicates that 

only about 13.8% of the variation in adjusted loans is explained by two independent variables 

inflation rate and unemployment rate. The statistically significant F-statistic value 8.65E-09 (< 

0.001) suggests that the model as a whole is better than a null model with no predictors. 

It is also examined that coefficient for unemployment rate value of -0.6013 (<0.001) is 

statistically significant, implying that higher unemployment is associated with a decrease in 

adjusted loans. However, the coefficient for inflation rate value of 0.0454 is not statistically 

significant as p = 0.650, suggesting that inflation rate does not have a significant linear 

relationship with adjusted loans in this model.  

Here, Durbin-Watson statistic of 0.003 indicates strong positive autocorrelation in the 

residuals, which violates a key assumption of OLS regression and suggests the model might be 

mis specified or the standard errors are unreliable. On the other side, the Jarque-Bera test 

strongly rejects the null hypothesis of normally distributed residuals (p < 0.001), further 

indicating potential issues with the model's assumptions. 
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strongly rejects the null hypothesis of normally distributed residuals (p < 0.001), further 

indicating potential issues with the model's assumptions. 
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 co-efficient std-error z P>|z| 0.025 0.975 
constant 6.116 0.430 14.215 0.001 5.273 6.959 
Inflation Rate -0.0452 0.037 -1.227 0.220 -0.117 0.027 
Unemployment Rate -0.5493 0.042 -12.985 0.001 -0.632 -0.466 
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From the above Table-5, it is examined that low R-squared value is 0.138, which indicates that 
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Table 4: Ordinary Least Square 

From the above Table-5, it is examined that low R-squared value 
is 0.138, which indicates that only about 13.8% of the variation in 
adjusted loans is explained by two independent variables inflation 
rate and unemployment rate. The statistically significant F-statistic 
value 8.65E-09 (< 0.001) suggests that the model as a whole is 
better than a null model with no predictors. It is also examined 

that coefficient for unemployment rate value of -0.6013 (<0.001) 
is statistically significant, implying that higher unemployment 
is associated with a decrease in adjusted loans. However, the 
coefficient for inflation rate value of 0.0454 is not statistically 
significant as p = 0.650, suggesting that inflation rate does not have 
a significant linear relationship with adjusted loans in this model. 
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Table-5: Generalised Linear Regression Model with Continuous Poisson Distribution 

Dependent Variable Adjusted Loans No. of observations 253 
Model GLM DF Residuals 250 
Model Family Gamma DF Model 2 
Link Function Log Scale 1.01E+00 
Method IRLS Log-likelihood nan 
No. of Iterations 63 Deviance 1723.2 
Covariance Type non robust Pearson 𝝌𝝌𝟐𝟐 251 

  Pseudo 𝐑𝐑𝟐𝟐 (CS) Nan 
 

 co-efficient std-error z P>|z| 0.025 0.975 
constant 6.116 0.430 14.215 0.001 5.273 6.959 
Inflation Rate -0.0452 0.037 -1.227 0.220 -0.117 0.027 
Unemployment Rate -0.5493 0.042 -12.985 0.001 -0.632 -0.466 

 

Table-6 presents the Generalized Linear Model (GLM) by using CPD, where a log link function 

was used to model the dependent variable, suggesting an assumption that the variance of 

adjusted loans is proportional to the square of its mean. This GLM-CPD model was fitted using 

Iteratively Reweighted Least Squares, IRLS with 253 observations. However, the Log-

likelihood and Pseudo R2 (CS) values cannot be calculated, which indicates a problem during 

the model fitting process or in the calculation of these statistics. The deviance is 1723.2, and 

the Pearson 𝜒𝜒2 is 251 with 250 degrees of freedom for residuals. 

 

Figure-5: Prediction Table 

Figure-4 displays scatter plots comparing the actual adjusted loan values against the predicted 

values from OLS and GLM-CPD. In both models, the red line represents a perfect fitted curve 

where predicted values matched with actual values. 

Table-5: Generalised Linear Regression Model with Continuous Poisson Distribution 

Dependent Variable Adjusted Loans No. of observations 253 
Model GLM DF Residuals 250 
Model Family Gamma DF Model 2 
Link Function Log Scale 1.01E+00 
Method IRLS Log-likelihood nan 
No. of Iterations 63 Deviance 1723.2 
Covariance Type non robust Pearson 𝝌𝝌𝟐𝟐 251 

  Pseudo 𝐑𝐑𝟐𝟐 (CS) Nan 
 

 co-efficient std-error z P>|z| 0.025 0.975 
constant 6.116 0.430 14.215 0.001 5.273 6.959 
Inflation Rate -0.0452 0.037 -1.227 0.220 -0.117 0.027 
Unemployment Rate -0.5493 0.042 -12.985 0.001 -0.632 -0.466 

 

Table-6 presents the Generalized Linear Model (GLM) by using CPD, where a log link function 

was used to model the dependent variable, suggesting an assumption that the variance of 

adjusted loans is proportional to the square of its mean. This GLM-CPD model was fitted using 

Iteratively Reweighted Least Squares, IRLS with 253 observations. However, the Log-

likelihood and Pseudo R2 (CS) values cannot be calculated, which indicates a problem during 

the model fitting process or in the calculation of these statistics. The deviance is 1723.2, and 

the Pearson 𝜒𝜒2 is 251 with 250 degrees of freedom for residuals. 

 

Figure-5: Prediction Table 

Figure-4 displays scatter plots comparing the actual adjusted loan values against the predicted 

values from OLS and GLM-CPD. In both models, the red line represents a perfect fitted curve 

where predicted values matched with actual values. 

Table 5: Generalised Linear Regression Model with Continuous Poisson Distribution 

Table-6 presents the Generalized Linear Model (GLM) by using 
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Figure 6: Deep Learning Models [Epochs] 

Figure-4 displays scatter plots comparing the actual adjusted loan 
values against the predicted values from OLS and GLM-CPD. In 
both models, the red line represents a perfect fitted curve where 
predicted values matched with actual values. In Figure-4, OLS 
model shows a cluster of predictions which does not closely align 
with the perfect fit line, particularly for higher actual adjusted loan 

values, which indicates a poor predictive performance. But, on the 
other hand GLM-CPD model predictions are following the trend 
of the actual values more closely than OLS model, especially in the 
lower to middle range. GLM-CPD is also shows some deviation 
from the perfect fit line, particularly at higher actual values, 
indicating that while potentially better than OLS. 

In Figure-4, OLS model shows a cluster of predictions which does not closely align with the 

perfect fit line, particularly for higher actual adjusted loan values, which indicates a poor 

predictive performance. But, on the other hand GLM-CPD model predictions are following the 

trend of the actual values more closely than OLS model, especially in the lower to middle 

range. GLM-CPD is also shows some deviation from the perfect fit line, particularly at higher 

actual values, indicating that while potentially better than OLS. 

  
 

Figure-6: Deep Learning Models [Epochs] 

Figure-6 contains two plots Loss Over Epochs, and Actual vs Predicted Adjusted Loans. Here, 

the plot showing Loss over Epochs, examines the training loss and validation loss over 200 

epochs. The training loss decreases rapidly in the initial epochs and then plateaus at a low value, 

which indicates the model learns well on the training data. But the validation loss initially 

decreases, then spikes dramatically before gradually decreasing and stabilizing at a higher level 

than the training loss. This pattern suggests overfitting, where the model starts to perform worse 

on unseen data after a certain number of epochs. But the other plot showing Actual vs Predicted 

Adjusted Loans, displays the relationship between the actual adjusted loan values and the 

predicted values from the model. The red line represents a perfect prediction. The predictions 

seem to be clustered in a narrow range, to reinforces the issue of overfitting observed in the 

loss plot, where good performance on training data doesn't translate to accurate predictions on 

unseen data. 

  

Here, Durbin-Watson statistic of 0.003 indicates strong positive 
autocorrelation in the residuals, which violates a key assumption 
of OLS regression and suggests the model might be mis specified 
or the standard errors are unreliable. On the other side, the 

Jarque-Bera test strongly rejects the null hypothesis of normally 
distributed residuals (p < 0.001), further indicating potential issues 
with the model's assumptions. 
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Figure-6 contains two plots Loss Over Epochs, and Actual vs 
Predicted Adjusted Loans. Here, the plot showing Loss over 
Epochs, examines the training loss and validation loss over 200 
epochs. The training loss decreases rapidly in the initial epochs 
and then plateaus at a low value, which indicates the model 
learns well on the training data. But the validation loss initially 
decreases, then spikes dramatically before gradually decreasing 
and stabilizing at a higher level than the training loss. This 
pattern suggests overfitting, where the model starts to perform 
worse on unseen data after a certain number of epochs. But the 
other plot showing Actual vs Predicted Adjusted Loans, displays 
the relationship between the actual adjusted loan values and the 
predicted values from the model. The red line represents a perfect 
prediction. The predictions seem to be clustered in a narrow 
range, to reinforces the issue of overfitting observed in the loss 
plot, where good performance on training data doesn't translate to 
accurate predictions on unseen data. 
 	  
5. Conclusion 
In this study, the analysis of European loan defaults with respect to 
inflation rates, and unemployment rates reveals that these economic 
variables exhibit complex behaviour over the period from 2004 
to 2024. Adjusted loan values and inflation rates are shown to 
experience considerable volatility, with significant fluctuations 
observed around key economic events. While the unemployment 
rate demonstrates less variability, exhibiting in a notable range. 
Loss distributions of these variables are not well-approximated 
by either the Laplace or Pareto distributions. Furthermore, the 
predictive performance of different models is evaluated. To ensure 
that GLM-CPD is found to be a more suitable choice for predicting 
adjusted loans compared to OLS regression. This conclusion 
is supported by a visual comparison of actual versus predicted 
values, where the GLM-CPD demonstrates a closer alignment 
with the observed data. 

The task of predicting economic variables such as loan defaults 
inherently involves the selection of appropriate statistical 
distributions and robust analytical techniques. Throughout this 
analysis, different statistical modelling approaches were applied to 
gain insights into the dynamics of financial risk. Therefore, a more 
exploration of the CPD, should be undertaken to fully ascertain 
its predictive power and reliability for these European economic 
indicators. There are more statistical techniques, machine learning 
algorithms and deep learning algorithms and reinforcement 
learning algorithms can be used with CPD contexts to solve the 
future the financial risks. It analysed better than loss distributions 
and OLS. Each and every financial datasets are asymmetric, hence 
exploration with CPD will be a better choice. Better economic 
condition makes a country and a continent better [15-19]. 

Further Scope of the Research 
In this era, technology is evolving day by day. New machine 
learning algorithms are coming to analyse the market volatility. 
New methods of deep learning and reinforcement learning are also 
inventing and innovating to develop the economy of any nation. 
In future there will be more advanced statistical tools, algorithms 

available to get perfect prediction. Also CPD will be used to 
develop deep learning models to have perfect predictions and 
remove the obstacles in growing economy. 

Limitations of this Research 
Research on financial risk may face inherent uncertainty of 
predicting future. Assuming variables can be fluctuating every 
time and may not follow the loss distributions or gamma functions. 
Furthermore, the complexity in the global economy vary with 
different times with respect to growing technology and other 
variables such as nature volatility. 
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