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AI Uncertainty Based on Rademacher Complexity and Shannon Entropy

Abstract
In this paper from communication channel coding perspective we are able to present both a theoretical and practical discussion 
of AI’s uncertainty, capacity and evolution for pattern classification based on the classical Rademacher complexity and Shannon 
entropy. First AI capacity is defined as in communication channels.  It is shown qualitatively that the classical Rademacher 
complexity and Shannon rate in communication theory is closely related by their definitions. Secondly based on the Shannon 
mathematical theory on communication coding, we derive several sufficient and necessary conditions for an AI’s error rate 
approaching zero in classifications problems. A 1/2 criteria on Shannon entropy is derived in this paper so that error rate can 
approach zero or is zero for AI pattern classification problems. Last but not least, we show our analysis and theory by providing 
examples of AI pattern classifications with error rate approaching zero or being zero.

Impact Statement: Error rate control of AI pattern classification is crucial in many lives related AI applications. AI uncertainty, 
capacity and evolution are investigated in this paper. Sufficient/necessary conditions for AI’s error rate approaching zero are 
derived based on Shannon’s communication coding theory. Zero error rate and zero error rate approaching AI design methodology 
for pattern classifications are illustrated using Shannon’s coding theory.  Our method shows how to control the error rate of AI, 
how to measure the capacity of AI and how to evolve AI into higher levels. 

Index Terms: Rademacher Complexity, Shannon Theory, Shannon Entropy, Vapnik-Cheronenkis (VC) dimension.
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Introduction 
Artificial Intelligence (AI) based on deep learning neuron networks 
are widely used in CT imaging, pattern recognitions, medical 
diagnosis, and scientific computing.  Usually large neuronal 
network architectures are first selected for a specific purpose 
and the neuron network are trained by large samples of  the data 
from the specific applications such as CT imaging for medical 
diagnosis. Secondly fully trained neuron networks are used as AI 
model to diagnose unknown patterns for example CT images to 
be normal or abnormal ones. Current AI model depends upon the 
large samples training methods and control the error rate as small 
as possible.  

However, in practice one wishes to control the error rate to 
be approaching zero or even to be zero in many lives related 
applications such as in medical diagnosis. It is therefore an 
important task for AI designers to design an AI model that can 
control the error rate in an efficient way so that AI model can be 
used in life related crucial applications. There are huge references 
in analyzing upper and lower bounds for neuron network errors 

in accurately recognizing the patterns. However very few papers 
addressed AI design methods to control the error rates to be zero 
or approaching zero as much as desired in applications.  In this 
article, we are investigating in this direction by providing both a 
theory and a pragmatic methodology.  

Background 
As Artificial Intelligence (AI) is based on trained various neuron 
networks such as CNN or RNN and becomes wide-spreading and 
applied in various industries, AI uncertainty investigations based 
on various neuron networks obviously becomes more and more 
important in practical applications in that probability errors from 
data driven AI model itself and errors from nuisance or noise 
in engineering applications are inevitable in practice. Given a 
problem with certain complexity measured by different measures 
such as Rademacher complexity and Vapnik-Cheronenkis (VC) 
dimensions etc., it is desired in practice that one can design a 
neuron network trained by deep learning algorithms so that the 
trained neuron network can accurately classify patterns with 
no errors or even small errors. It is therefore our wish that after 



deep learning training, neuron network can classify the test 
patterns with no errors or with errors approaching zero.  Errors 
of two-layer forward neuron networks for classification problems 
and approaching functions were theoretically and in quantity 
investigated in [1, 2].

Upper and lower bounds depending upon various parameters of 
neuron networks are derived. In this paper, however, by applying 
Shannon’s mathematical theory on communications channel 
coding [3]. We address the pattern classification errors of trained 
neuron networks from Shannon’s entropy perspective. We provide 
a generalized framework to discuss AI uncertainty, capacity and 
evolution with the existence of probability errors from data driven 
AI models and errors from nuisance and noise in AI applications [1-
3]. We prove that a sufficient and necessary condition that ensures 
classification error of trained neuron network can approach zero as 
much as desired. Other sufficient conditions are derived as well. 
We do not limit our neuron network structures into specific CNN 
or RNN or two-layer forward neuron networks, but provide a more 
generalized discussion on the errors introduced at trained neuron 
network phase and at application phase with nuisance and noise. 
Learning algorithms are therefore not included in this letter paper.

 In  Section III , a methodology is described on how to design an 
AI system that can ensure an AI evolution and reduce mistakes in 
AI systems .  Section IV is devoted to theory and analysis of zero 
error approaching AI system by relating Rademacher complexity 
to Shannon’s transmission rate in communication theory. We 
derive several sufficient and necessary conditions for AI zero error 
approaching classification problem.  An analysis is done in this 
section and sufficient /necessary conditions are derived for zero 
error approaching AI system.  An examples of simple “coding” 
method is given for zero error approaching AI system in Section 
V.  This paper is concluded with Section VI in which major results 
are summarized.

Methodology
Considering a scenario in which a clinic is doing CT scanning and 
then needs an AI to process and identify COVID-19 lung images 
from normal ones per second. We wish to design an AI to classify 
the normal images and COVID-19 images with error approaching 
zero or being zero during a given interval time. We first summarize 
our methodology as in the following steps and then explain our AI 
design methodology.

The principle is to apply Shannon’s channel coding theory thought 
to ensure zero error approaching property of designed AI system. 
As illustrated in Figure 1,

1.	 AI core is designed with a proper neuron network architecture 
such as CNN, RNN or forward 2-layer neuron network 
with each neuron with sigmoid functions property. ERROR 
in figure1 denotes the system error due to training. NOISE 
denotes the nuisance in real applications.  

2.	 A training is completed with Back Propagation(BP) algorithms 
with large known samples such as CT imaging samples for 
COVID19 lung images and normal lung images. There we 
have 2 types of patterns, one is COVID19 lung CT images and 
the other pattern is normal lung images without COVID19 
virus affections. Note that there is an error rate (denoted by 

ERROR in figure 1) in this AI core in that normal lung images 
may be wrongly classified into COVID19 case.  

3.	 Given ERROR obtained at 2), if ERROR satisfies conditions 
which are to be discussed in the following section, a simple 
or advanced coding method exists so that the images can be 
classified with error approaching zero.

4.	 For identified failure images, go to 2) and train the failed 
samples so that AI evolves to a higher level.

5.	 The process is completed until there are no more failed images. 
This process can be thought as an adaptive and evolving AI 
methodology.  

Theory and Analysis 
In this section, we first relate neuron network based AI system 
to a communication channel and then derive two theorems 
regarding zero error approaching property by relating Rademacher 
complexity to Shannon’s transmission rate and Shannon’s entropy. 
We first overview the main results of Shannon’s communication 
theory by reviewing Shannon’s definition on channel/AI 
capacity and information transmission rate. Then we present two 
theorems about zero error approaching of an AI model for pattern 
classification problems. We will show that an AI system and a 
communication channel resemble in principle.  First the following 
Shannon condition are well known to ensure a proper encoding for 
zero error approaching communication channels. 
                                 

                                                                                              (1)

where C between 0 and 1 is defined as the channel/AI capacity in 
Shannon theory for a noisy channel, and Rs is Shannon transmission 
rate between 0 and 1. Max denotes maximum value and H(x) 
denotes Shannon information x’s entropy and Hy(x) denotes 
Shannon conditional entropy [3]. Condition (1) by Shannon theory 
indicates that the transmission rate Rs must not exceed channel/AI 
capacity C in order to recover the original information exactly by a 
proper encoding method with errors approaching or being zero [3].

Now with an AI model for classification problems, it is natural to 
relate AI system to a communication channel with the following 
confronted problem: given a pattern classification problem with 
known complexity measured by a known Rademacher complexity, 
to what extend a neuron network AI should be trained so that AI 
deep learning neural network with a certain known recognition 
error rate has the ability to recognize all patterns/symbols correctly 
in a “coding” way with classification errors approaching to zero 
or being zeros? In AI system, Hy(x) can be interpreted as the total 
errors introduced by the trained AI model and the errors introduced 
by inevitable nuisance and physical noises in real AI applications, 
see Figure 1 [1, 2]. We wish to explore the conditions under which 
an AI system can tolerant such total errors and in a way can reach 
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a zero error approaching or a zero error recognition rate. In the 
following, we will show that based on definition of traditional 
Rademacher complexity and Shannon coding theory, sufficient/
necessary conditions can be derived for zero error AI system or 
zero error approaching AI system. 

It is well known that classical Rademacher complexity is defined 
as in the following equation (2).

                                                                                             (2)

Where E denotes ensemble, F denotes the problem’s hypothesis 
space. R(F) lies between value of 0 and 1 with value of 1 denoting 
the maximum complexity and value of 0 minimum complexity.  
For a given problem of transmitting a symbols series of either 1 or 
0, Shannon transmission rate Rs of equation (1) in Shannon theory 
is closely related to classical Rademacher complexity R(F) defined 
in equation (2), where F denotes the hypothesis function space of 
given problems.  

To show this, we only need to relate the definition of classical 
Rademacher complexity R(F) in equation (2) to Shannon 
communication channel conditions of equation (1). When 
Rademacher complexity R(F) is zero, that means a fixed constant 
1 or 0(-1) is transmitted via a channel, thus Shannon rate Rs is 
constant 1.0. When Rademacher complexity R(F) is non-zero, 
that means an alternative 1 or 0(-1)’s is transmitted via a channel 
in a given time. Therefore, Shannon rate Rs could be equal to or 
even less than 1.0 because of noise error denoted by entropy Hy(x) 
in equation (1). Thus a Rademacher complexity R(F) for an AI 
system can be interpreted as related to Shannon transmission rate 
Rs. We denote the  mapping by  from Rademacher complexity 
R(F) to Shannon transmission  rate Rs. In fact, in most cased where 
Rademacher complexity R(F) is non-zero, they are equivalent in 
the sense of communication problem. This interpretation from 
communication theory by taking into consideration of Rademacher 
complexity will help us to investigate an AI system in Figure 1. 

Based on the above descriptions, we now present two conditions 
as follows 

                                                                                                (3)

where ϕ denotes the mapping from Rademacher complexity to 
Shannon rate Rs. Condition A) in equation (3) indicates a condition 
of Rademacher complexity, and 

                                                                                               (4)

where min denotes minimum value. Condition B) in equation 
(4) indicates a condition regarding Shannon conditional entropy 
Hy(x). We now have the following theorem regarding conditions 
A) and B):

Theorem 1: If well-known Shannon condition in equation (1) is 
satisfied, either condition A) in equation (3) or condition B) in 
equation (4) must be valid.

The proof is a case analysis starting from equation (1). By Shannon 
theory on the noise channel with conditional entropy Hy(x), to 
ensure transmission with no errors starting from equation (1), 
following equation (5) must be satisfied

                                                                                                 (5)

Equation (5) implies that

                                                                                                 (6)

Taking into considerations of mapping ϕ

                                                                                  (7)
The analysis is now performed as 1) and 2):

1), if                                              , then

                                                                                                 (8)

2), if                                            ,  then

                                                                                                (9)

In practice one wishes that Hy(x) is small or close to zero in 
applications. Therefore, condition (9) is not valid in practice in 
most cases. Cases from condition (8) are valid in most cases when 
Hy(x)’s are small enough approaching to zero.  Therefore, it is 
reasonable that we assume a condition of following inequality 
(10). We now have theorem 2 as follows.

Theorem 2: Under the condition/assumption with valid reason 

                                                                                               (10)

If Shannon condition of equation (1) is satisfied, condition B) of 
inequality (4) must be valid. If further condition is imposed 

                                                                                                (11)
Then Shannon’s condition (1) is satisfied and inequality (4) is valid 
accordingly. 

Proof: If Shannon condition is satisfied in (1), by theorem 1 when 
equation (10) is valid, inequality (4) is derived. On the other 
hand, under condition of inequality (11), Shannon condition (1) is 
obviously satisfied and inequality (4) must be valid accordingly.

Theorem 2 has a significant importance in practical use. As 
explained before, Hy(x)’s is usually small enough approaching 
zero in practical AI applications. Therefore, Shannon rate Rs and 
Rademacher complexity R(F) are much bigger than Hy(x)’s in most 
cases. Without loss of generality, we can assume that Max(H(x)) 
=1.0 in the subsequent discussions. To show an example of theorem 
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2, for a moderate complexity problem R(F)&lt;1.0,

Max(H(x)) =1.0 in the subsequent discussions.
To show an example of theorem 2, for a moderate complexity 
problem R(F)<1.0,

                                                                                                 (12)

Equation (12) denotes an example that under valid assumption of 
equation (11), Shannon condition of inequality (1) is valid.  Thus 
for a given moderate complexity problem, there exists an error 
tolerance for a channel/AI system so that a zero error approaching 
channel/AI system is possible by a “coding” method. Theorem 2 
also indicates that for a given moderate complexity problem, AI 
system total errors in Figure 1, measured by entropy Hy(x)<1/2 
must be controlled strictly according to theorem 2, so that a zero 
error approaching is possible by a proper “coding” method with 
Shannon rate Rs ranging in the following inequality (13).

                                                                                               (13)

Examples and Future Work
Suppose we are faced with classifying two patterns in Figure 1 
which are COVID-19 imaging pattern denoted by A pattern and 
normal pattern denoted by B pattern. The rate Rs in AI system in 
Figure 1 is defined as the images per second rate that recognizes 
all A and B patterns correctly with errors approaching zero. As 
indicated in (12) and (13), there is a range of Rs that can be selected 
to ensure a zero error approaching “coding” method.   

Given entropy Hy(x)<1/2 of AI model in figure 1, in our example 
error rate is then less than about 12% as shown in, that is, the error 
rate of pattern A is classified as B’s or vice versa ’s probability is 
less than about 12% [3]. Suppose we have A1, B1, B2, A2, A3, 
B3 images to be classified, a simplest “coding” method to ensure 
a zero error approaching is to calculate from Hy(x)<1/2 value first, 
and then make a decision of “coding” sequence, such as A1, B1, 
B2, A1, B1, B2, B2, A3, B3, A3, B3 or A1, A1, A1, B1, B2, B1, 
B2, B1, B2 ...etc. as long as inequality (13) is satisfied. Higher Rs 
value means more efficient “coding” AI system with zero error 
approaching property.

 A more complex coding method is possible as long as inequality 
(13) is satisfied. Once the total errors in Figure 1 are bounded as 
in (13), we can design a “coding” method to ensure a zero error 
approaching AI system in applications. However, if condition in 
theorem 2 is not satisfied, zero error approaching AI system is 
NOT possible anyhow.

In this paper Rademacher complexity is interpreted as related to 
Shannon’s transmission rate in communication theory. Based on 
the derived results in this paper, we can possibly extend to other 
complexity measures such as Vapnik-Cheronenkis (VC) and 
Gaussian complexity by provoking the results in [6]. Criteria and 
condition based on other complexity measures are possible.

Conclusion 
In this paper, we study AI capacity, uncertainty and evolution 
from communication channel coding perspective. A methodology 
framework based on communication channel coding insight is used 
and then proposed to investigate AI’s capacity and uncertainty as 
well as AI’s evolution. First classical Rademacher complexity 
is outlined and its relations with Shannon transmission rate in 
communication theory is interpreted. Secondly by comparing 
AI system to a communication channel, we are able to apply 
Shannon communication theory methodology to propose a zero 
error approaching AI “coding” method. A 1/2 criteria are derived 
from Shannon theory for zero error approaching condition. 
Several sufficient/necessary conditions are derived for zero error 
approaching condition for an AI. The theoretical results derived 
in this paper can provide an insight into zero error approaching 
AI framework.  Methodology and example are shown on how to 
evolve AI to reach a lower error rate and how to utilize a simple 
“coding” sequence to ensure zero error approaching purpose in AI 
applications.  The main results are summarized as follows:

1.	 Classical Rademacher complexity is interpreted as closely 
related to Shannon transmission rate in communication theory.

2.	 For pattern classification problems, practical sufficient and 
necessary conditions are derived and discussed to ensure zero 
error approaching property of an AI system under valid and 
reasonable assumptions.
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