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Abstract
In this paper a 2-dimensional model by solving partial differential equations for single Rotor Double Stator Interior 
Permanent Magnet Brushless Synchronous Machine with Spoke-Type structure (SRDSIPMBSMWSTS) is formulated to 
predict flux density in air-gaps at only no load. After extracting relations are governing in each domain (magnetic potential 
vector and magnetic field intensity), boundary conditions between each two domain that are in adjacent to each other are 
applied to determine unknown coefficients. Output results are compared to finite element analysis (FEA) yield from Maxwell 
software to validate this fast and accurate model.
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1. Introduction
The proposed machine has been of great interest in variable 
speed wind turbine generators due to the high efficiency of 
energy production (power) and low torque pulses And they are 
used in the hybrid car, also the most important advantages of the 
interior permanent magnet machine which made it necessary to 
conduct research on this machine are:

• High efficiency
• Long life and high reliability
• High power density
• High resistance to demagnetization
• Robust and simple structure
• Low manufacturing cost due to small volume

Structures with two stators or two rotors or two stators and two 
rotors are so popular due to receiving energy from two sides 
and have high usage in industry [1]. Figure 1 shows a magnetic 
gearbox for a hybrid car. The researched machine for use in 
a hybrid car is installed in such a way that its outer rotor is 
connected to the ring gear and its inner rotor is connected to the 
sun gear, which causes the required torque to be transferred to 
the wheels at the desired speed. Another application of this car 
is in wind turbines in figure 1, which have the ability to produce 
energy simultaneously from two turbines. Figure 2 shows the 
placement of this type of machine for use in this system and 
permanent magnet switched flux machines with 2-way structure, 
which are shown in Figure 3, Figure 4, Figure 5 and Figure 6.
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Figure 2. Wind Turbine 
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Figure 5. DSHEFSM 

 

 
 

Figure 6. DSDRPM 

 

Many works have been done so far that in two linear permanent magnet machines with two moving parts 

with different windings are used to calculate the quantities of induced voltage, thrust force, power pulses, 

vertical force and copper losses with the help of finite element method [7]. In a new structure from the 

point of view of winding (winding is a complete step and the magnets are located on the stator teeth) has 

been proposed for the permanent magnet machine and with the conventional structure in the torque 

quantities [8]. In the effect of current density, number of winding turns and slot space for winding on the 

torque of permanent magnet machine is investigated and the relationship between the torque and the outer 

radius of the rotor on the four  permanent magnet machines is checked with the help of the finite element 

method [9]. In two examples of permanent magnet machine without stator yoke and two rotors have been 

proposed, and the effect of the number of poles and optimization variables on torque, torque pulses and 
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Many works have been done so far that in two linear permanent 
magnet machines with two moving parts with different windings 
are used to calculate the quantities of induced voltage, thrust 
force, power pulses, vertical force and copper losses with the 
help of finite element method [7]. In a new structure from the 
point of view of winding (winding is a complete step and the 
magnets are located on the stator teeth) has been proposed for 
the permanent magnet machine and with the conventional 
structure in the torque quantities [8]. In the effect of current 
density, number of winding turns and slot space for winding on 
the torque of permanent magnet machine is investigated and the 
relationship between the torque and the outer radius of the rotor 
on the four  permanent magnet machines is checked with the 
help of the finite element method [9]. In two examples of 
permanent magnet machine without stator yoke and two rotors 
have been proposed, and the effect of the number of poles and 
optimization variables on torque, torque pulses and machine 
speed has been seen, and the torque quantities, pulses Torque, 
induced voltage are calculated with the help of finite element 
method [10]. In a permanent magnet machine without bearing 
with combined winding is proposed and in two different 
structures in terms of the number of rotor and stator poles, a 
comparison between the quantity torque, magnetic flux density, 
iron and copper losses and suspension force are performed by 
considering the saturation limit and with the help of the finite 
element method [11]. In with the help of frozen permeability 

method and finite element method, a quantitative comparison is 
made between two single-stator and two-stator structures of the 
permanent magnet machine by considering saturation. After the 
superiority of the structure of two stators, a comparison is made 
between this structure with an internal magnet permanent 
magnet machine and a synchronous reluctance motor with a 
high permeability core, and the quantities of torque, link flux in 
different currents are calculated [12]. For the permanent magnet 
machine for different structures, the amount of torque, suspension 
force, induced voltage, induced voltage harmonics and link flux 
are calculated with the help of the finite element method [13]. In 
two rotor permanent magnet switched flux machine with two 
designs Different types of stator winding are suggested (two 
types of centralized winding, parallel and series with magnets) 
and these two designs in terms of average torque quantities, 
torque pulses, flux distribution, induced voltage, link flux, torque 
ratio They are compared to the size of the magnet and the 
efficiency, and they are compared with the single stator, single 
rotor switched flux machine of the internal rotor type [14]. In the 
external rotor permanent magnet flux-switched machine with 
concentrated-fractional winding is proposed and the quantities 
of torque, output power, induced voltage, induced voltage 
harmonics and link flux are calculated with the help of finite 
element method [15]. In the new structure of permanent magnet 
machine with two-stator is modeled with the help of finite 
element method and quantities of power pulses, average power, 
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inductance, induced voltage and induced voltage harmonics are 
extracted [16]. In two single-phase permanent magnet two-stator 
axial flux machine is investigated in two models, in the first 
model, the two stators are completely matched, but in the second 
model, they have a spatial difference of 180 electrical degrees, 
and the analyzes are performed. Also, in order to increase the 
self-starting torque, the asymmetry in the air gap is done by 
cutting a part of the rotor, and finally, the quantities of link flux, 
induced voltage, tooth torque, average torque, self-starting 
torque are calculated with the help of the finite element method 
[17]. they become In a new structure for permanent magnet 
machine is proposed and with the conventional structure in the 
quantities of linked flux, induced voltage, induced voltage 
harmonics, tooth torque, average torque, core losses, eddy 
current losses in the magnet at speed different types, distribution 
of flux density in different points of the magnet are compared in 
terms of demagnetization in the magnet and output power [18]. 
In two different structures of permanent magnet flux-switched 
machine with two moving parts, from the point of view of the 
teeth of the moving part (with and without teeth) - gear) is taken 
into account and a comparison between the two is made by the 
finite element method between the average quantities of force, 
gear force and induced voltage [19]. In the four structures of the 
permanent magnet two-stator and two-rotor machine (the 
location of the winding and magnet in the four structures are 
different, so that in one structure, the magnet and the armature 
winding are both on the stator, and in the other, the magnet is in 
The external stator and the winding in the internal stator, as well 
as the location of the stator and rotor in different structures and 
the number of stator and rotor teeth are also different) and from 
the point of view of the quantities of induced voltage, harmonics, 
tooth torque, efficiency which are extracted from the finite 
element model and compared with the internal magnet machine 
[20]. In the goal is to reduce the temperature throughout the 
machine and reduce the eddy current losses for the permanent 
magnet square-switched machine. For this purpose, two different 
types of non-magnetic materials are used in the rotor and their 
effects are compared with each other. And the quantities of 
temperature in different parts, torque, core losses are calculated 
by finite element method and thermal analysis [21]. In  the 
permanent magnet machine is studied and with the help of the 
finite element method, the quantities of induced voltage, tooth 
torque are calculated. Combined winding (permanent magnet, 
armature winding and excitation current winding) has been done 
and its zero-dimensional, two-dimensional and three-
dimensional models are extracted and average torque quantities, 
torque pulses, torque Tooth and losses are obtained by 
considering saturation and demagnetization [22]. The structure 
of three permanent magnet machines that are different in terms 
of magnet placement (three different structures where the magnet 
is placed only on the stator, on the rotor, and on both the stator 
and the rotor) and has 12 stator poles for the pole are studied and 
different quantities of average torque, torque pulses, induced 
voltage and tooth torque are calculated by considering decay 
effect, end effect and unsaturated core with the help of finite 
element method and analytical model [23]. In a new structure for 
the permanent magnet machine with one moving part and two 
stators is introduced, whose stator has a back yoke of the 
stabilizing part, and this new structure with a linear induction 
machine with two stators and one moving part is quantitatively 

Induced voltage, thrust force, tooth force, losses and flux density 
are compared, and the quantities are calculated with the help of 
finite element method [24]. In the permanent magnet machine 
with stacked structure is studied and a comparison is made 
between different structures from the point of view of winding, 
and the desired quantities are average torque, torque pulses, 
induced voltage, harmonics. and the radial force for each 
structure are checked separately by the finite element method 
[25]. In the permanent magnet linear machine with the additional 
iron part to the stator is checked and the quantities of tooth force, 
force pulses, average force , distribution of flux density, induced 
voltage is calculated with the help of finite element method [26]. 
In a new structure of permanent magnet machine is proposed 
[27]. In there are three structures of permanent magnet machine 
with combined winding (in the first two structures, there are two 
stators in the inner stator of the magnet and the winding of the 
excitation current and the winding of the primary armature, and 
in the outer stator of the armature winding are secondary and in 
the third structure there is primary armature and magnet winding 
in the inner stator, and magnet and secondary armature winding 
and excitation current winding in the outer stator) are discussed 
and compared with each other. In this analysis, magnet 
magnetization curve is seen and the change of its working point 
is also considered [28]. First, the two-dimensional analysis of 
the structures is performed, and after that, the finite element 
model is extracted and compared with each other from the 
perspective of flux quantities, air gap, induced voltage, 
harmonics, torque, iron losses in relation to speed changes, in 
the states of weakening and strengthening the flux. are compared. 
It should be mentioned that the magnetic equivalent circuit is 
extracted in this study for three structures in order to show the 
regulation [29]. In a permanent magnet machine with combined 
winding is designed to be used in a wind turbine, and then From 
the extraction of the analytical model with the finite element 
model, the quantities of the magnetic field in the air gap caused 
by the excitation current and armature current, link flux, torque, 
efficiency, output voltage, output power are compared under 
different working conditions. This structure has two working 
modes, series and parallel, for the winding of the excitation 
current field so that it can supply the output voltage (series) and 
remove the mutual inductance (parallel) [30]. In a new structure 
for permanent magnet machine is introduced, where the stator is 
located outside of the two inner rotors (two rotors, one rotor 
without winding and the other with magnets and armature 
winding) and the thermal analysis is based on  the new structure 
and the conventional structure of the permanent magnet flux-
switched machine, it is performed at different speeds, and the 
quantities of flux density in different parts, core losses, copper 
losses, and efficiency are calculated with the help of thermal 
model and finite element method [31]. In the optimal design of a 
permanent magnet, linear machine is carried out for the purpose 
of high throwing force and low cost [32]. In a dynamic model of 
a permanent magnet machine with double armature winding is 
proposed, and the effects of changing the air gap and magnetic 
saturation are investigated with the finite element method. In a 
permanent magnet machine with two stators is designed and 
optimized from the point of view of the type of winding, and in 
a new magnetic circuit model for permanent magnet machine is 
proposed [33,34]. 
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In this paper, 2 dimensional model used to solve the problem is 
a novel method for spoke type permanent magnet machines that 
is so fast and accurate to be very acceptable substitution method 
for FEA.

1.1 Sub-Domains
Based on figure 7 and figure 8 and the infinite permeability 
assumption of the stator and rotor irons, the active sub-domains 
consist of the inner air-gap, inner stator slots, PM that direction 
of magnetization is tangential, outer stator slots, outer air-gap.
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1.2 Governing Relations
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The magnetic flux density components are in accessibility for each sub-region by using curl from the magnetic vector potential, 
i.e. B = ∇ × A,and the magnetic field intensity is calculated by (3) that for PM regions M is not zero and for the other regions M=0.
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2. Results
To show the validation of the categorized analytical magnetic field expressions, a SRDSIPMBSMWSTS with the specifications 
listed in Table 2 is selected as the case study. The proposed model can be used to accurately analyze the influence and interference 
of the inner part on the outer part and vice versa. Outputs are shown in figures that horizontal index for whole results are between 
0 to 180 degrees.
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Appendix 

Nomenclature 

A Magnetic vector potential (V.s/m) 

B Magnetic flux density vector (T) 

Br Radial component of B (T) 

B  Tangential component of B (T) 

H Magnetic field intensity vector (A/m) 

J Armature current density vector (A/m2) 

μ0 Free space permeability (H/m). 

μr Relative permeability 

Niss Number of inner stator slots 

r Radial direction 

 Tangential direction 

z Axial direction 

iry Inner rotor yoke 

ia Inner airgap 

iss Inner stator slot 

isy Inner stator yoke 

osy Outer stator yoke 

oss Outer stator slot 

Noss Number of outer stator slots 

αi Central angle of ith slot of inner rotor 

βi Central angle of ith slot of inner stator 

σi Central angle of ith slot of outer rotor 

ψi Central angle of ith slot of outer stator 

Гi Central angle of ith slot of permanent 

magnet 

              Width of slots of inner rotor 

          Width of permanent magnets 

oa Outer airgap 

ors Outer rotor slot 

ory Outer rotor yoke 

m, n, v, k  Harmonic order 

a,b,c,d,e   Unknown coefficient 

           Width of slots of inner stator 
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