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Abstract
In this article, we provide tentative first-order calculations of some coupling constants λ and particle mass corrections 
δm based on the results of prior work. We show that it is possible to derive values which are very roughly within the 
ballpark of the empirical data, though higher-order corrections are vital for higher accuracy. This article thus may 
provide a tentative clue on the deeper underlying physics if it exists. The difficulty of interpreting the physicality (if 
any) of the results are emphasized, and error discussions are made since the inclusion of this is considered vital. Finally, 
the importance of further work regarding the rigor of the derivations and the accuracy of the physical interpretations 
are underlined.
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1. Introduction
The derivation from first principles of coupling constants and 
particle masses should in the author’s opinion be required for 
any aspiring unifying physical formalism. Previous efforts in 
doing this, in particular those from string theory are known 
to give precise and rigorous predictions for the - in this case - 
Higgs mass based on mild assumptions [1]. The latest accurate 
measurements obviously confirmed this prediction [2]. It is also 
possible to use quantum field theoretic calculations to give very 
rough calculations for such quantities through first-order mass 
corrections, see the appendix (5) for a quick derivation of this.

In this article we will give a very - with an emphasis on very - 
rough estimate of a few particle masses and coupling constants, 
and explain our physical interpretation of the following 
formulae, which interpretations as far as the author of this article 
understands remains self-consistent with both present and 
previous work.

The motivation for doing this is to provide a tentative explanation 
of some coupling constants and particle masses which are very 
roughly within the ballpark of experimental data [2], where the 
error is expected to lie in a combination of finding the exact 
value of the geometrical proportionality constant A2 ∼ O(−1), 
but may also lie in higher-order coupling constant λ corrections. 
Using our previously obtained results, we show that it then 
becomes possible to derive what is interpreted as physical values 
for the self-coupling constant λ, which measures the strength of 
the self-interaction of the scalar field ϕ, as well as the particle 
mass correction δm. Which may or may not, at least up to our 
first-order O(λ) calculation correspond to particle masses of some 

perhaps neutrally charged elementary particles. It is important to 
say that it remains very difficult to interpret the physicality (if 
any) of these results.

2. Results
The physical particle mass mphys is known from quantum field 
theoretic calculations [3]  to first loop order O(λ) in the self-
coupling constant λ to be given by

Where ∆F(0) is the Feynman loop propagator in Minkowski 
space and is thus proportional to the first-order O(λ) particle 
mass correction δm as shown  That is the so-called bare particle 
mass m gets shifted due to the self-interactions of the scalar field 
of the form LI ∼−λϕ4, thus λ is dimensionless as desired. Please 
see section (3) for a discussion of the self-consistency of the 
entire formalism with regards to turning on self-interactions and 
the then arising second-order logarithmic amplitude divergence, 
which does not allow for analytic continuation.

We already know that due to the requirement of conformal 
invariance that the bare particle mass m = 0, thus we are only 
interested in the first-order particle mass correction
Conveniently, we already showed that the divergence of the 
virtual Feynman loop integral must be treated by analytic 
continuation, the analytic continuation being physical for all 
fully virtual diagrams without external lines as far as the author 
of this article understands as of today, therefore
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Where we use the subscript η to denote the specific Lagrange multiplier value in
Minkowski space, which may or may not be variable in different spaces. Again we
have an implicit lengthscale L = 1 m for dimensional consistency and an unknown
geometrical proportionality constant A2 ∼ O(−1), since slightly different calcula-
tions, all with analytic continuation for divergence treatment give slightly different
values for A. Thus

δm =

√
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Aℏc (3)
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Where we use the subscript η to denote the specific Lagrange 
multiplier value in Minkowski space, which may or may not 
be variable in different spaces. Again we have an implicit 
lengthscale L = 1 m for dimensional consistency and an 
unknown geometrical proportionality constant A2 ∼ O(−1), since 
slightly different calculations, all with analytic continuation for 
divergence treatment give slightly different values for A. Thus

Our goal is now to combine equation (3) with one more piece 
of information as shown below and then solve our system of 
equations for λ and δm. The other piece of information is that we 
know that the mass density ρm must be of the form

Where the lengthscale is implicit again for the same reason as 
before. Thus we arrive at the following equation for the self-
coupling constant λ

Which we may solve exactly, given our first-order approximation

Where the exact order of magnitude of λ may vary depending 
on the exact geometrical value chosen for A. This may help to 
constrain the exact geometrical value for A since it is required 
that the dimensionless value for λ << 1 for our calculation to be 
valid.

These calculations may also be extended to the Higgs particle 
(see again the appendix (5)), thus we very roughly expect 
perhaps neutral particle masses like that of the Higgs H0, and 
perhaps some other neutral particle masses to be very roughly 
of order

In SI-units. Here the error is expected to be explained in the 
higher-order λ calculations. It is however not clear how to 
interpret these results, and exactly what (if any) particle masses 
this corresponds to. Please read the next section for a brief error 
discussion on this and other aspects of this formalism.

3. Error Discussion
In this section we briefly discuss the potential flaws of this short 
analysis, and how the formalism maintains consistency at least 
for all inertial reference frames as far as the author of this article 
understands today.

Turning on self-interactions of the form LI ∼−λϕ4 allows in 
the second-order O(λ2) vertex correction for three logarithmic 
Mandelstam loop divergences iAu,s,t, this logarithmic divergence 
does not allow for analytic continuation. Previously we modeled 
the ground state as an ideal fluid, this implies that the fluid is not 
self-interacting, so λ = 0 in that case. This will eliminate these 
logarithmic higher-order divergences in the previous model.

However, in this model where we turn on self-interactions, the 
higher-order vertex corrections logarithmic loop divergences 
will be present. As far as is understood today, the application of 
analytic continuation for divergence treatment in quantum field 
theories as a way to develop a tentative intuition for how to treat 
the arising loop divergences in general and as an alternative to 
the direct use of renormalization and regularization only applies 
to vacuum diagrams without external lines, thus the analytic 
continuation is not claimed to be applicable in this case, but the 
cut-off parameter may very well be identical to the Λη-value as 
used in this article.

In addition, since we are considering a local amplified Higgs 
fluctuation H0(x) such that our scalar field ϕ is of the form

 

Where v = √Λη is the standard vacuum expectation value 
in Minkowski space that we are considering, it is clear that 
the particle masses originate from the self-interaction of the 
localized fluctuation (i.e. a standard Higgs mechanism) and is of 
course not due to the ground state energy directly. Thus, for the 
sake of accuracy there may or may not be a different geometrical 
proportionality constant in equation (4). Furthermore, it is clear 
that when there are no localized fluctuations, that is when ϕ(x) 
= ϕ0 = v, (choosing the positive value) as in the previous model, 
then there will be no self-interactions either.

It is also clear that the author’s inability or lack of motivation 
for making precise calculations is not ideal, but anyone who 
feels motivated enough to do this based on the formalism as 
outlined is encouraged to do so. The purpose of this article is 
simply to provide tentative explanations and calculations, as the 
possibility for developing some tentative understanding of the 
potential underlying physics (if any) per unit of work put in is - 
in the author’s opinion - considered the greatest in this way.

Finally, a quick note on the fact that the SI-units calculation 
yields an extra c4 factor in equation (1), which cancels out the 
c−4 factor in the interaction Lagrangian density LI term, so that 
the same answer, equation (6) for the dimensionless λ in SI-units 
remains as far as the author understands. This nuance is not 
included in the calculation for the sake of simplicity. Thus as far 
as the author understands no factors of c have been overlooked.

4. Conclusions
In this article we provide tentative calculations to first loop order 
of some dimensionless coupling constants and some particle 
masses, and show that the latter is very roughly within the 
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Our goal is now to combine equation (3) with one more piece of information as
shown below and then solve our system of equations for λ and δm. The other piece
of information is that we know that the mass density ρm must be of the form

ρm =
A2

8π

ℏ2c4

G
=

δm

L3
(4)

Where the lengthscale is implicit again for the same reason as before. Thus we
arrive at the following equation for the self-coupling constant λ

A2

8π

ℏ2c4

G
=

√
λ

2
Aℏc (5)

Which we may solve exactly, given our first-order approximation

λ =
1

32π2
(
Aℏc3

G
)2 ≈ 5.75A2 ∼ O(−2) (6)

Where the exact order of magnitude of λ may vary depending on the exact geomet-
rical value chosen for A. This may help to constrain the exact geometrical value for
A since it is required that the dimensionless value for λ << 1 for our calculation to
be valid.

These calculations may also be extended to the Higgs particle (see again the ap-
pendix (5)), thus we very roughly expect perhaps neutral particle masses like that
of the Higgs H0, and perhaps some other neutral particle masses to be very roughly
of order

mH0 ∼ ℏ2c4

G
(7)

In SI-units. Here the error is expected to be explained in the higher-order λ calcu-
lations. It is however not clear how to interpret these results, and exactly what (if
any) particle masses this corresponds to. Please read the next section for a brief
error discussion on this and other aspects of this formalism.

3 Error discussion

In this section we briefly discuss the potential flaws of this short analysis, and how
the formalism maintains consistency at least for all inertial reference frames as far
as the author of this article understands today.

Turning on self-interactions of the form LI ∼ −λϕ4 allows in the second-order
O(λ2) vertex correction for three logarithmic Mandelstam loop divergences iAu,s,t,
this logarithmic divergence does not allow for analytic continuation. Previously we
modeled the ground state as an ideal fluid, this implies that the fluid is not self-
interacting, so λ = 0 in that case. This will eliminate these logarithmic higher-order
divergences in the previous model.
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modeled the ground state as an ideal fluid, this implies that the fluid is not self-
interacting, so λ = 0 in that case. This will eliminate these logarithmic higher-order
divergences in the previous model.

3

However, in this model where we turn on self-interactions, the higher-order ver-
tex corrections logarithmic loop divergences will be present. As far as is understood
today, the application of analytic continuation for divergence treatment in quantum
field theories as a way to develop a tentative intuition for how to treat the arising
loop divergences in general and as an alternative to the direct use of renormalization
and regularization only applies to vacuum diagrams without external lines, thus the
analytic continuation is not claimed to be applicable in this case, but the cut-off
parameter may very well be identical to the Λη-value as used in this article.

In addition, since we are considering a local amplified Higgs fluctuation H0(x)
such that our scalar field ϕ is of the form

ϕ(x) =
1√
2
(v +H0(x)) (8)

Where v =
√
Λη is the standard vacuum expectation value in Minkowski space

that we are considering, it is clear that the particle masses originate from the self-
interaction of the localized fluctuation (i.e. a standard Higgs mechanism) and is of
course not due to the ground state energy directly. Thus, for the sake of accuracy
there may or may not be a different geometrical proportionality constant in equation
(4). Furthermore, it is clear that when there are no localized fluctuations, that is
when ϕ(x) = ϕ0 = v, (choosing the positive value) as in the previous model, then
there will be no self-interactions either.

It is also clear that the author’s inability or lack of motivation for making pre-
cise calculations is not ideal, but anyone who feels motivated enough to do this
based on the formalism as outlined is encouraged to do so. The purpose of this
article is simply to provide tentative explanations and calculations, as the possibility
for developing some tentative understanding of the potential underlying physics (if
any) per unit of work put in is - in the author’s opinion - considered the greatest in
this way.

Finally, a quick note on the fact that the SI-units calculation yields an extra c4 fac-
tor in equation (1), which cancels out the c−4 factor in the interaction Lagrangian
density LI term, so that the same answer, equation (6) for the dimensionless λ in
SI-units remains as far as the author understands. This nuance is not included in
the calculation for the sake of simplicity. Thus as far as the author understands no
factors of c have been overlooked.

4 Conclusions

In this article we provide tentative calculations to first loop order of some dimension-
less coupling constants and some particle masses, and show that the latter is very
roughly within the ballpark as compared with empirical data [2], where the error
is expected to lie in a combination of higher-order λ calculations and in the exact
value of the geometrical proportionality constant A. We show or argue that the
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ballpark as compared with empirical data [2] where the error is 
expected to lie in a combination of higher-order λ calculations 
and in the exact value of the geometrical proportionality constant 
A We show or argue that the formalism remains self-consistent 
when you turn on these self-interactions λ ≠ 0, and propose how 
to treat the second-order vertex correction logarithmic loop 
divergence for both models.

Further work is needed in order to remedy these errors, either 
by figuring out the exact value for A or calculate higher-order 
corrections. It is not clear which (if any) particle masses our 
results corresponds to, and the difficulty of the interpretation of 
these results is highly emphasized. In general the tentativeness 
of our calculations are highly emphasized. The entire formalism 
remains self-consistent at least for all inertial reference frames 
as far as the author of this article understands as of today.
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√
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Now choosing the positive value and expanding as in equation (8) our scalar field
ϕ around a localized quantum fluctuation yields the following now positive Higgs
mass term

mH0 =
√
2µ (11)
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