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Abstract 

In a pre-hilbertian structure of an unitary  K,g -module underlie 

spinor subspaces that are spin invariant modules under right and left 
actions of G and that are images of endomorphisms restricted on t  
belonging to the Lie algebra .g  

1. Introduction 

One condition inherent of those unitary   K,g -modules whose 

endomorphisms are in g  is that these must be restricted to the algebra 
gt  ,  considering the Cartan decomposition .ptg   However, the 

nature of their endomorphisms in the corresponding compact maximal torus 
T, which is isomorphic to the standard torus T and whose Lie group is an 
compact Abelian Lie subgroup of G, has spin modules. These can be related 
by tensor product and are finally subspaces characterized by spinors. 
Likewise, for example         ,TIIT     where   is the 

Dirac operator   ,End: SV   ,V  and T is a linear isomorphism. Here 
I  is the identity mapping on ,U  or on ,U  where U  and U  are 
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1. Introduction  

One condition inherent of those unitary (g, K)-modules 

whose endomorphisms are in g is that these must be 

restricted to the algebra t  g, considering the Cartan 

decomposition g=t +p. However, the nature of their 

endomorphisms in the corresponding compact maximal 

torus T, which is isomorphic to the standard torus T 

and whose Lie group is an compact Abelian Lie 

subgroup of G, has spin modules. These can be related 

by tensor product and are finally subspaces 

characterized by spinors. Likewise, for example 

TI I T, where  is the Dirac 

operator :VEndS, V, and T is a linear 

isomorphism. Here I+ is the identity mapping on U+, or 

on U-, where U+ and U- are subspaces of S(V), the set of 

element . In the technical lemma, we want 

establish that so(V) is the compact image of all the 

endomorphisms of the Lie algebra S(V) restricted to the 

subalgebra t [1]. This has advantages to establish linear 

isomorphisms and define a restriction of so(V) sobre 

V. 

 

 

2. Mean Lemma  

Definition 2.1. Let V be a vector space of finite 

dimension on  with inner product (,). Then a spinor 

space to V, ,  is determined for the pair  

                       I,        V                                           

(1)  

Let G be a real reductive group. Then, S(V) is the 

spinor space of V.  

                    S(V) = {()End(S) ()2 = (, ) I, 

V},  

 

Definition 2.2. A g, K-module is unitary if there is a pre-
hilbertian 
Structure ( , ) on V such that X g, k K and u, w V,  

 

Lemma 2.1. In S(V) exists a pre-hilbertian structure 

 such that  

V and u, w SVwith EndS, 

 

, w u, ,   (2)  

   

For proof, see and [2-4].  

 

 

 

A pre-hilbertiana structure of an unitary (g, K)-module 

is the Hermitian structure given by a product or form (, 

).  

 

Lemma 2.2 (F. Bulnes). In a pre-hilbertian structure 

of an unitary  

(g, K)-module can be constructed a spinor subspace 

whose endomorphisms are endomorphisms of the Lie 

algebra g restricted to the algebra t. 

  

, 
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element . In the technical lemma, we want 

establish that so(V) is the compact image of all the 

endomorphisms of the Lie algebra S(V) restricted to the 

subalgebra t [1]. This has advantages to establish linear 

isomorphisms and define a restriction of so(V) sobre 

V. 

 

 

2. Mean Lemma  

Definition 2.1. Let V be a vector space of finite 

dimension on  with inner product (,). Then a spinor 

space to V, ,  is determined for the pair  

                       I,        V                                           

(1)  

Let G be a real reductive group. Then, S(V) is the 

spinor space of V.  

                    S(V) = {()End(S) ()2 = (, ) I, 

V},  

 

Definition 2.2. A g, K-module is unitary if there is a pre-
hilbertian 
Structure ( , ) on V such that X g, k K and u, w V,  

 

Lemma 2.1. In S(V) exists a pre-hilbertian structure 

 such that  

V and u, w SVwith EndS, 

 

, w u, ,   (2)  

   

For proof, see and [2-4].  
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One condition inherent of those unitary (g, K)-modules 

whose endomorphisms are in g is that these must be 

restricted to the algebra t  g, considering the Cartan 

decomposition g=t +p. However, the nature of their 

endomorphisms in the corresponding compact maximal 

torus T, which is isomorphic to the standard torus T 

and whose Lie group is an compact Abelian Lie 

subgroup of G, has spin modules. These can be related 

by tensor product and are finally subspaces 

characterized by spinors. Likewise, for example 

TI I T, where  is the Dirac 

operator :VEndS, V, and T is a linear 

isomorphism. Here I+ is the identity mapping on U+, or 

on U-, where U+ and U- are subspaces of S(V), the set of 

element . In the technical lemma, we want 

establish that so(V) is the compact image of all the 

endomorphisms of the Lie algebra S(V) restricted to the 

subalgebra t [1]. This has advantages to establish linear 

isomorphisms and define a restriction of so(V) sobre 

V. 

 

 

2. Mean Lemma  

Definition 2.1. Let V be a vector space of finite 

dimension on  with inner product (,). Then a spinor 

space to V, ,  is determined for the pair  

                       I,        V                                           

(1)  

Let G be a real reductive group. Then, S(V) is the 

spinor space of V.  

                    S(V) = {()End(S) ()2 = (, ) I, 

V},  

 

Definition 2.2. A g, K-module is unitary if there is a pre-
hilbertian 
Structure ( , ) on V such that X g, k K and u, w V,  

 

Lemma 2.1. In S(V) exists a pre-hilbertian structure 

 such that  

V and u, w SVwith EndS, 

 

, w u, ,   (2)  

   

For proof, see and [2-4].  
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Lemma 2.1. In S(V) exists a pre-hilbertian structure 

 such that  
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A pre-hilbertiana structure of an unitary (g, K)-module 

is the Hermitian structure given by a product or form (, 

).  

 

Lemma 2.2 (F. Bulnes). In a pre-hilbertian structure 

of an unitary  

(g, K)-module can be constructed a spinor subspace 

whose endomorphisms are endomorphisms of the Lie 

algebra g restricted to the algebra t. 

  

, 

 

Proof. Let g be a semi simple Lie algebra on p with 

Cartan involution  

and corresponding Cartan decomposition g = t +p. 

Consider a vector space V of finite dimension with 

inner product (, ). Let S(V)be the spinor space to (V, ( 

,)).  

 

If V=p, the lemma follows trivially, since the spinor 

module of S(p) whose pre-hilbertian structure given for 

 on S(p) is such that it is a subspace with a t -

invariant inner product and the endomorphisms of 

End(S(p)) are images of End(S(p)) restricted to t.  

 

If V =g, then we extend (, ) to a X-bilineal form on V. 

However, the said X-bilineal form conforms to a pre-

hilbertian structure on S(V ) 

(Lemma 2. 1), and thus of the spin module (, S (V)) 

so (V)* 

considering so VEnd (S(V))), which is a (g, 

K)-module in the pre-hilbertian space  

  (3)  

By the demonstration of the Lemma [2], there exists a t 

-invariant inner product  on S(V). Thus t X 

t ,, and then g = so(V), where so(V) is the compact 

image of endomorphism of the Lie algebra S(V) 

restricted to the subalgebra t.  

 

In particular, if (g, K) -module is unitary, said pre-

hilbertian structure induced by the product ( , ) is a 

Hermitian form and is a sesquilineal form in each 

complex of the corresponding cohomology on V, 

that is to say, in each one of their restrictions on 

Vrespect to t, these restrictions are the 

corresponding images of so(V). Then can be 

constructed a spinor subspace W S(V) such that End 

(S ((W= so(V) with S(W) an unitary (g, K)-module.   

   

3. Applications of Lemma  

Example 3. 1. Little representations as cuspidal forms 

and infinite dimensional representations (possibly some 

G-modules induced by hyperbolic G-orbits Gh) can be 

expressed by a spinor decomposition. A concrete 

application of this, we can see the works to the twistor 

transform applied to finite dimensional representations 

of SU (p, q) and of SU (2, 2) to the problem no solved 

of the globalization of finite dimensional 

representations to the study of the Universe and the 

extension of said representations to the case of infinite 

dimensional representations [6, 7].  

 

The first generalized twistor transform to group 

representations with the idea of conform group was 

constructed by of certain class of cuspidal 

representations of SU (p, q) called ladder 

representations. These representations are those that 

can be determined for analytic continuation of the 

discrete series. The classification of the corresponding 

unitary modules of maximum weight are given in and 

others [8]. Its unitarization was demonstrated firstly in 

using the spinor structure underlying in the 

prehilbertian structure of the spin modules. Rawnsley 

et al,develop a general harmonic theory to indefinite 

metrics which include more of the ladder 

representations. Finally, all the set of ladder 

representations to SU(p, q) was constructed using L2 -

cohomology where the Penrose transform plays an 

important role. In the result obtained in the choice of a 

complex structure on an underlying homogeneous 

space is linked to the parameter for the representation, 

therefore any possible action of Weyl group is lost on 

the parameters as in the discrete series [9, 10].  

 

We consider the vector complex space T of a complex 

manifold M, whose complex structure of T is given by 

the Hermitian form  with signature (p, q) such that 

p+q =N +1, with dim T= N+1. We consider the Lie 

group underlying in the complex manifold defined for  

G= SU (p, q), which is a subgroup of SL (N + 1, ℂ) and 

which preserves . The projective space ℙ = ℙN(ℂ) 

divide to G in three open G-orbits: ℙ+, ℙ- and ℙ0, where  

 

 
 

And 

 

 
 

Then ℙ0, is a real hypersurface in ℙ.   

, 

, 
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ℙ- and ℙ0, where 

ℙ+ = ,0if,0,00lines
lineslines

 T  (4) 

and 

ℙ- =  .0if,0,00lines
lineslines

 T  (5) 

Then ℙ0, is a real hypersurface in ℙ.  

ℙ+, and ℙ-, are the open G-orbits that determine the construction of the 
sesquilineal appearing more simple ,  in  ., qpSU  Said sesquilineal 

appearing induces a prehilbertian structure whose restriction to germs of the 
sheaf  pn--o  corresponds to the pn-  power of the tautological bundle of 

lines on ℙ) of the complex holomorphic bundle 

T  SU(p, q)  SL(N + 1, ℂ)/SO(N + 1, ℂ),                  (6) 

which  determines  an  inner  product  ,  on  the  cohomological  space 

Hp-1(ℙ+, o(-n - p)), and ,  Hp-1(ℙ+, o(-n - p)), the image of the Dirac 
operator is the module     which is the spin space  .1,spin N  Then 

underlies  a  spinor   subspace      in  the  unitary  K,g -module 

Hp-1(ℙ+, o(-n - p)).  

Then a concrete application of the pre-hilbertian structure where underlie 
spinor subspaces (whose linear endomorphisms are the representations of 

 qpSU , )  is the following result: 

Theorem 3.1. Let ,  be the inner product on Hp-1(ℙ+, o(-n - p)) 

positive defined. Then the subspace Hp-1(ℙ+, o(-n - p)) contains classes of 
cohomology that are dense spinor subspaces in a Hilbert space H. Then are 
K-finite vectors to the representation of  qpSU ,  on H. 

This statement is a version of the Eastwood theorem in [7], which 
affirms the same that this in the language of the spinor subspaces underlying 
in all pre-hilbertian structure of the unitary module Hp-1(ℙ+, o(-n - p)).   
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subspaces of Hp-1(|ℙ+|, o (-n - p)).  Theorem 3.1 is 

proved by twistor transform in [6, 7].  

 

Example 3. 2. Another example of application is 

consider unitary representations such that 

  

                                 Hi(g, K; V F*) = HomK(p, V F*),                  

(7)    

 

where V, is admissible and unitary (g, K)-module with 

infinitesimal character +, p, is a compact component 

of g (g = t  p) and F, is an unitary module as (gu, Gu)-

module with u(p)* and with a Hermitian form <, >, 

such that u, F, is satisfied g<u, > = <gu, g> 

gGu [11]. 

 

Likewise, on p, we introduce a corresponding inner 

product to the restriction B (bilinear form) to p. The 

restriction of B to p, is an image complex Bi(p, V 

F*) = dCi-1(p, V F*), considering the complex 

sequence   
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Ci-1(g, K; V F*) Ci(g, K; V F*) Ci+1(g, K; V 
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Then is given the cohomology Hi(g, K; VF*) [2, 3, 5]. 

Likewise, has been used strongly the structure of the 

complex Ci(g, K; VF*) determined by the functorial 

diagram where appears the restriction of the 

corresponding endomorphisms of Lie algebra g, to the 

Lie algebra t,   

 

                            i(g/t) V F* 
 
                                     Id HomK                                         (9) 
ip, 
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