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Abstract
This systematic literature review introduces managerial info physics, a novel interdisciplinary metaparadigm that integrates 
Business Process Management (BPM), information entropy, econophysics, and informatics to address organizational 
complexity and uncertainty. Anchored in the PRISMA 2020 methodology, the review analyzes 191 peer-reviewed sources 
published between 2018 and 2024 across 21 academic databases. Findings indicate that entropy-based metrics—originally 
developed in thermodynamics and information theory—can quantify process variability and execution uncertainty, extending 
traditional key performance indicators (KPIs). The review highlights entropy’s practical utility in enhancing workload 
distribution, resource allocation, and dynamic system modeling, particularly in high-variability sectors such as healthcare, 
finance, and manufacturing. Moreover, it identifies foundational gaps in entropy’s integration within BPM, emphasizing 
conceptual ambiguities and methodological inconsistencies. By applying analogical induction, the study formalizes managerial 
info physics as a framework for entropy-informed BPM, bridging theory and application. While empirical validation remains 
limited, the framework offers a unified approach to managing unpredictability, supporting adaptive modeling and strategic 
decision-making in data-intensive environments. Future research directions are proposed for refining entropy-based tools and 
operationalizing this metaparadigm in real-time, smart system contexts.
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I. Introduction
Business Process Management (BPM) frameworks are instrumental 
in optimizing organizational workflows, reducing inefficiencies, 
and managing operational complexity in contemporary business 
environments [1-15]. However, as organizations increasingly 
encounter dynamic and unpredictable conditions, conventional 
BPM approaches may fall short in addressing variability and 
uncertainty. This has led to a growing interest in incorporating 
insights from information theory, particularly entropy, to improve 
decision-making processes across domains such as finance, social 
sciences, and managerial science [9,16-33].

This study introduces an interdisciplinary framework—managerial 
info physics—which integrates BPM principles with entropy-
based metrics to enhance the management of uncertainty. By 
systematically evaluating emerging modeling techniques, the 
framework seeks to bridge theoretical knowledge and industry 
application, thereby strengthening the practical effectiveness of 
BPM strategies [1,4, 6, 10,11,34,35].

Entropy-based metrics represent a paradigm shift from traditional 
key performance indicators (KPIs), offering avenues for refined 
resource allocation and improved modeling precision, especially 
within sectors characterized by high complexity [3,6,16,29,36-
38]. Despite this potential, BPM literature lacks a coherent model 
that incorporates entropy-driven insights for managing inherent 
process variability [3,6,11,32,33,36,39,40]. This review identifies 
this gap and emphasizes the value of combining BPM’s structured 
methodologies with entropy’s capacity for capturing complexity 
and unpredictability.

Entropy has demonstrated wide applicability across disciplines—
from financial markets to healthcare systems [9,21,26,40–
42]. Shannon entropy, in particular, offers robust tools for 
quantifying uncertainty and enhancing process optimization 
[9,17,20,21,26,29,36,43]. In the BPM context, entropy can support 
the detection of inefficiencies, guide predictive modeling, and 
refine operational planning [4,9,17, 20,26,29,36, 43,44].
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Nevertheless, integrating entropy into BPM presents notable 
challenges. BPM emphasizes stability and process efficiency, 
while concepts like volatility and variability introduce analytical 
complexities. Volatility—commonly used in financial contexts—
refers to rapid fluctuations, whereas variability captures broader 
process deviations [2,3,6,9,17,26,29,43,45]. Entropy-based 
models can address both: Shannon entropy is suitable for general 
uncertainty, while Tsallis and Rényi entropy better capture non-
linear and heavy-tailed phenomena typical of volatile systems 
[27,36]. Real-world implementation, however, requires empirical 
validation to ensure that these models are both effective and 
practical [3,9,11,17,20,26,29,45,46].

Econophysics offers examples of entropy's utility in resource 
optimization, strategic planning, and adaptability—all valuable 
contributions to BPM methodologies [9,16,20,23,29,36,44,47–
50].

The objective of this paper is to formulate and validate the 
managerial info physics framework through a systematic literature 
review, guided by the PRISMA methodology [51]. Covering 
research published between 2018 and 2024, this study explores the 
convergence of BPM, information entropy, and econophysics to 
build a unified foundation for managing organizational complexity. 
Results are expected to highlight entropy’s utility in augmenting 
BPM models and in supporting decision-making in uncertain 
operational environments [3,6,9,32,33,44,49].

The central hypothesis is that entropy-integrated BPM creates a 
cohesive managerial paradigm capable of improving organizational 
performance by balancing efficiency and informational 
complexity. This is supported through inductive synthesis drawn 
from literature, presenting managerial info physics not only as a 
theoretical proposition but also as an observable and practicable 
framework. An interpretive lemma capturing the main conceptual 
finding is discussed in later sections.

Falsifiability is addressed by identifying conditions under which 
the hypothesis would not hold—specifically if the literature fails to 
reveal convergence between entropy and BPM or if entropy-based 
tools do not enhance BPM outcomes. Conversely, successful 
applications and empirical validations would substantiate the 
framework’s relevance and adaptability across industries.

In summary, integrating information entropy into BPM introduces 
a promising avenue for enhancing organizational management. 
The proposed managerial info physics framework emphasizes 
uncertainty quantification and process adaptability, aiming to 
extend the robustness of BPM in dynamic, information-rich 
environments.

2. Methodology
2.1 Research Design, Prisma Framework, and Search Strategy
Systematic reviews play a crucial role in synthesizing 
existing knowledge, prioritizing future research, identifying 
primary research issues, and evaluating theories [52]. Given 
the interdisciplinary nature of this study—bridging BPM, 
Econophysics, and Information Theory—a structured and 
transparent review methodology was necessary. The PRISMA 
framework was selected for its ability to provide a rigorous, 
replicable process for synthesizing literature across these domains 
ensuring that relevant studies on entropy-based BPM models, 
statistical physics applications, and com-plex system optimization 
were systematically evaluated[53]. 

While PRISMA 2020 was originally developed for health sciences, 
its structured approach has been widely adopted across disciplines, 
including complex systems, computational modeling, and business 
process optimization [51]. In this review, PRISMA was tailored to 
identify and evaluate studies incorporating entropy-based metrics 
(e.g., Shannon entropy, Tsallis entropy) in BPM frameworks. 
This ensures that findings from statistical physics, econophysics, 
and information theory are systematically synthesized to assess 
their impact on BPM efficiency and decision-making processes. 
Based on observational research, the utilization of the statement 
results in improved reporting [27,54]. Since the previous iteration, 
systematic review practices have changed considerably. The 
statement’s evolution was made possible and necessary by certain 
technological advancements. For instance, deep machine learning 
and natural language processing rendered it less difficult to identify 
and evaluate research systematically [55]. Certain approaches 
have been devised to facilitate the synthesis and presentation 
of findings in situations where conducting a meta-analysis is 
problematic [56,57]. In addition, the understanding of bias sources 
has improved systematic review assessment methodologies 
[58]. Recent modifications in review systems have changed the 
emphasis from high quality evidence to reliable evidence [59]. 

The statement’s latest version is termed PRISMA 2020 [60]. The 
primary emphasis of PRISMA 2020 is on conducting systematic 
reviews of health practices. However, other fields may also 
utilize and benefit from its checklist. The most recent version 
of the statement is encompassing of meta-analyses and other 
synthesis methodologies, irrespective of the subject of study. 
This methodology can be utilized in mixed-methods reviews, 
although the presentation and analysis of qualitative data may 
need to adhere to supplementary criteria [51]. It is noteworthy to 
mention, however, that the statement is not necessary to serve as 
a guide for conducting systematic reviews, when such a task can 
be accomplished with the assistance of extensive, peer reviewed 
re-sources [61]. Fig. 1 represents the general schematic of the 
PRISMA flow diagram which has been used as the basic literary 
tool for conducting this review.
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irrespective of the subject of study. This methodology can be 
utilized in mixed-methods reviews, although the presentation 
and analysis of qualitative data may need to adhere to 
supplementary criteria [51]. It is noteworthy to mention, 
however, that the statement is not necessary to serve as a 
guide for conducting systematic reviews, when such a task 
can be accomplished with the assistance of extensive, peer 
reviewed re-sources [61]. Fig. 1 represents the general 
schematic of the PRISMA flow diagram which has been used 
as the basic literary tool for conducting this review.
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Even though its fundamental structure should remain 
unchanged, it can be altered in accordance with the pertinent 
details of the research at hand. However, the authors mention 
the following considerations:

1. If possible, the number of records found in each 
database or registration searched should be reported rather 
than the total.

2. The number of excluded records (either manually or 
automatically) should be indicated.

This systematic review follows the PRISMA framework to 
ensure a transparent and replicable review process. The 
study, conducted from 2018 to 2024, involved three research 
cycles, each focusing on distinct, overarching thematic units:

1. BPM: Focusing on optimization through modeling, 
quality standards, and data-driven decision-making.

2. Econophysics and Financial Networks: Integrating 
complex systems theory and machine learning within 
economic and ethical contexts.

3. Thermodynamics, Entropy, and Information 
Theory: Their applications in industrial settings, complex 
systems, and interdisciplinary scientific advancements.

Each research cycle was designed to assess whether a 
convergence of ideas could be identified across the literature, 
spanning multiple disciplines. To ensure thorough coverage 
of relevant literature, this review employed primary queries 
and sub-queries, with the primary queries targeting broad 
research themes and sub-queries allowing for a deeper 
investigation within those themes.

A total of 21 databases were selected, each specializing in 

peer-reviewed content relevant to the thematic areas under 
investigation. The following key databases were utilized: 
ACS Publications: 2 times, AIP: 1 time, APS: 2 times, 
Annual Reviews: 1 time, Cambridge Core: 1 time, Emerald: 
8 times, ICI: 1 time, IDEAS: 2 times, IEEE Xplore: 10 times, 
IOPscience: 2 times, JSTOR: 1 time, MDPI: 47 times, NIH: 
9 times, Nature: 1 time, PLOS ONE: 1 time, PhilPapers: 1 
time, Royal Society Publishing: 1 time, SAGE: 1 time, 
Science Direct: 47 times, Springer: 26 times, arXiv: 14 times.

The identification process began with the formulation of 
179 primary queries and 62 sub-queries, resulting in 241 total 
queries across the three research cycles. These queries 
targeted a wide range of identification terms, 435 in total, 
which can be further categorized in the following segments.
Table 1 displays a detailed thematic categorization of the 
identification terms used in this study.

Figure 1: PRISMA 2020 Flow Diagram for Systematic Reviews. 
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research at hand. However, the authors mention the following 
considerations:
1. If possible, the number of records found in each database or 
registration searched should be reported rather than the total.
2. The number of excluded records (either manually or 
automatically) should be indicated.

This systematic review follows the PRISMA framework to ensure 
a transparent and replicable review process. The study, conducted 
from 2018 to 2024, involved three research cycles, each focusing 
on distinct, overarching thematic units:
1. BPM: Focusing on optimization through modeling, quality 
standards, and data-driven decision-making.
2. Econophysics and Financial Networks: Integrating complex 
systems theory and machine learning within economic and ethical 
contexts.
3. Thermodynamics, Entropy, and Information Theory: Their 
applications in industrial settings, complex systems, and 
interdisciplinary scientific advancements.

Each research cycle was designed to assess whether a convergence 
of ideas could be identified across the literature, spanning multiple 

disciplines. To ensure thorough coverage of relevant literature, 
this review employed primary queries and sub-queries, with the 
primary queries targeting broad research themes and sub-queries 
allowing for a deeper investigation within those themes. 

A total of 21 databases were selected, each specializing in peer-
reviewed content relevant to the thematic areas under investigation. 
The following key databases were utilized: ACS Publications: 
2 times, AIP: 1 time, APS: 2 times, Annual Reviews: 1 time, 
Cambridge Core: 1 time, Emerald: 8 times, ICI: 1 time, IDEAS: 
2 times, IEEE Xplore: 10 times, IOPscience: 2 times, JSTOR: 1 
time, MDPI: 47 times, NIH: 9 times, Nature: 1 time, PLOS ONE: 1 
time, PhilPapers: 1 time, Royal Society Publishing: 1 time, SAGE: 
1 time, Science Direct: 47 times, Springer: 26 times, arXiv: 14 
times.

The identification process began with the formulation of 179 
primary queries and 62 sub-queries, resulting in 241 total queries 
across the three research cycles. These queries targeted a wide 
range of identification terms, 435 in total, which can be further 
categorized in the following segments. Table 1 displays a detailed 
thematic categorization of the identification terms used in this 
study.

Category Terms
Business and Management Concepts Business analytics, Actionable guidelines, Adoption of change, Agent-based models (ABM), Automated 

planning, Balanced Scorecard, BPM (Business Process Management), BPMN (Business Process Modeling 
Notation), Business excellence models, Business process modeling, Business process performance, Business 
process re-engineering, Capability maturity model integration, Change adoption, Change agents, Efficient 
business processes, Future business process management capabilities, Integrating process management, Process-
aware information systems, Process models, Quality awards, Quality measurement, Quality requirements, Re-
engineering, Reversibility, SIPOC, Systematic literature review, Unified BPM methodologies, Use cases, Value 
chain processes, Value network.

Corporate Excellence and Strategies ASQ, Baldrige criteria, Corporate communication, Competitive advantage, Firm performance, Kaplan, Key 
performance indicators (KPIs), Management, Management theory, Market efficiency, Performance excellence, 
Porter models, Porter's value chain framework, Quality standards, Scientific management, TQM literature 
review.

Artificial Intelligence, Machine 
Learning, and Informatics

Artificial Intelligence (AI), Machine learning (ML), Deep learning, Convolutional Neural Networks (CNN), 
Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Neural networks, Simulation 
algorithms, Simulation-based estimations.
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Informatics and Data Bioinformatics, Medical informatics, Nursing informatics, Neuroinformatics, Urban informatics, Data analysis, 
Data science, Data uncertainty, Information systems, Future ERP, Software engineering language selection, 
Industrial Internet of Things (IIoT).

Entropy, Thermodynamics, and Physics Aleatoric, Barrow entropy, Basic concepts of classical thermodynamics, Bayesian inference, Boltzmann, 
Boltzmann entropy, Boltzmann equation, Carnot cycle, Clausius, Diffusion entropy, Disorder, Entanglement 
entropy, Entropic uncertainty relation, Entropy, Entropy economics, Entropy growth, Entropy maximization, 
Entropy measures, Entropy research, Equilibrium for a low-density gas, First law of thermodynamics, Finite-
time thermodynamic process, Gibbs and Boltzmann entropy, Gibbs free energy, H-theorem, Irreversible entropy 
production, Landauer’s principle, Maximum entropy, Modified cosmology, Renyi entropy, Residual entropy, 
Second law of thermodynamics, Shannon entropy, Statistical entropy, Statistical mechanics, Thermodynamic 
entropy, Third law of thermodynamics, Transfer entropy, Von Neumann entropy.

Classical and Modern Physics A mathematical theory of communication, Alan Turing legacy, Brillouin, Classical mechanics, Claude Shannon, 
Coalescence processes, Confined quantum systems, Conservation of information, Contributions of Shewhart 
and Deming, Crystallization, Diffusion rate, Einstein, Heisenberg, Hilbert space, Irreversibility, Ising model, 
Jaynes, Josiah Willard, Joule, Mayer, Quantum cosmology, Quantum mechanics, Rudolf Clausius, Symmetry, 
Thomson.

Statistical and Mathematical Modeling Abductive theory, Algorithmic complexity, Bayesian inference, Complex methods, Complex networks, 
Complex systems, Complexity economics, Comparative research, Comparative study, Continuous stochastic 
volatility models, Decision models, Determinism, Dynamic controllability, Dynamical stability, Fat-tailed 
distributions, Fractional cumulative residual entropy, Geometry, Geostatistical models, Granger causality, 
Macroscopic behavior, Mathematical modeling, Multivariate probability density, Network analysis, Network 
structure, Probabilities, Probability, Stochastic processes, Temporal process modeling.

Information Theory and Entropy Information dynamics, Information entropy system model, Information gain, Information governance, 
Information theory, Entropy measures, Shannon entropy, Negentropy.

Econophysics and Financial Systems Economic complexity, Econophysics, Financial economics, Financial inclusion, Financial networks, Financial 
system networks, Physics of financial networks, Risk, Portfolio allocation.

Decision-Making and Management Decision models, Decision support systems, DebtRank, Delphi study, MCDM (Multi-Criteria Decision 
Making), TOPSIS, PDCA.

Technological Innovations Industry 3.5, 4.0, 5.0, Industrial revolution, Lean Philosophy, Circular value chain, Renewable energy resources, 
Digital transformation.

Category Terms
Process and System Improvements BPMN (Business Process Modeling Notation), Event processing, Process-oriented systems, Re-engineering, 

iBPM (Intelligent BPM), Integration, Techniques.
Communication Models and Theories A mathematical theory of communication, Communication, Interactive communication, Message transmission, 

Corporate communication.
Information and Knowledge A priori knowledge, Application research, Application scenarios, Bibliometric analysis, Information theory, 

Information systems, Knowledge-based systems.
Philosophical and Ethical Concepts Ethical challenges, Ethical concerns, Ethical interventions, Ethics in technology, Philosophical frameworks, 

Philosophy of economics, Philosophy of physics, Scientific pluralism, Scientific revolution, Scientific method, 
Scientific transformations.

Historical and Legacy Contributions Alan Turing legacy, Contributions of Shewhart and Deming, Historical evolution, Historical interpretation, 
History of management, History of thermodynamics, Michael Porter, Robert Batterman, Rudolf Clausius, 
Eugene Stanley, Jaynes, Rosario Nunzio Mantegna, Taylorism.

Health Systems and Models COVID-19 pandemic, Epidemiological models, Healthcare informatics, Biosystems, Biocomplexity.
Miscellaneous Concepts and Theories Chapman–Jouguet condition, Constantino Tsallis, Field theories, Glasses, Historical overview, Micro-founded 

approach, Operating organized systems, Social influence dynamics, Sociophysics, Synchronization.

Table 1: Thematic Categorization of Identification Terms for PRISMA-Based Research.

2.2 Inclusion, Exclusion, Screening, and Eligibility Criteria
 At the identification stage, a total of 16,101 records were retrieved 
from the selected databases. To ensure that this systematic review 
focused on entropy-based BPM applications, studies were included 
if they met at least one of the following criteria:

Inclusion Criteria: Records were considered if they were peer-

reviewed articles, review papers, or studies that directly addressed 
the research themes, such as the deployment of entropy metrics 
in BPM optimization, the application of statistical physics 
methodologies and entropy in complex systems such as economic 
networks, proposed a novel interdisciplinary framework linking 
entropy with BPM modeling. Furthermore, literature that was 
purely descriptive, lacking any synthesized theoretical contribution 
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with potential implementation in BPM, was deprioritized to ensure 
that the review provided a combined and critical perspective on 
research trends, rather than simply summarizing existing studies.

Exclusion Criteria: Records were excluded if they did not contain 
relevant keywords, were non-English, were not suitable peer-
reviewed types (e.g., conference abstracts or non-academic 
publications), were irrelevant to the core themes of the study, or 
were duplicates. Specifically, 1,221 records were excluded for 
missing relevant keywords when a narrowing down of the scope 
was necessary, 72 non-English records were removed to focus on 
English-language publications, 10,172 records were excluded for 
being inappropriate peer-reviewed types, and 3,708 records were 
excluded for irrelevance to the study’s main themes. Additionally, 
34 duplicate records were removed manually.

In total, 15,207 records were excluded before the screening stage, 
substantially reducing the initial pool of potential sources. Details 
on the exclusion and inclusion criteria can be found in Table 2. 
During the screening phase, a total of 894 records were assessed 
for relevance based on their alignment with the predefined thematic 
units and their contribution to the overarching research objectives. 
Two levels of exclusion criteria were applied. First, 251 records 

were removed for thematic irrelevance. Second, 417 records 
were excluded due to redundant or overlapping content already 
captured in other sources. As a result, 668 records were excluded 
at this stage, refining the pool to studies that met both thematic and 
methodological relevance thresholds. A key procedural nuance 
in this phase involved the deliberate classification of citations, 
particularly regarding their formal inclusion under the PRISMA 
framework. Specifically, twelve sources were excluded from 
the core dataset due to non-conformity with inclusion criteria. 
However, these works were retained as contextual references due 
to their conceptual value in framing foundational perspectives and 
supporting the theoretical constructs within the thematic analysis 
[32,33,40,62-70]. 

Additionally, to enhance transparency in the development of 
thematic insights, a cross-referencing mechanism was applied. 
For example, the concept introduced in [71]. is discussed in 
more depth on page 13 of [72]. offering readers a traceable 
trajectory of the idea’s evolution. This cross-referencing approach 
reinforced the analytical continuity of the review while preserving 
methodological rigor. During the eligibility phase, a closer 
examination was conducted on 226 records that had passed the 
initial screening. 

Criteria Details Auxiliary Information
Missing Keywords H-Theorem, ASQ, Alan Turing, BPM life cycle, Baldrige, Bibliometric analysis, Biocomplexity, Boltzmann entropy, Coalescence 

processes, Continuum informatics, DMAIC, Deming, Deming cycle, Deming prize, EFQM, Eco-informatics, Embedding, Empirical 
study, Enterprise applications, Financial, Financial networks, Granger, Group transfer entropy, Guidelines, ISO, Industrial revolutions, 
Informatics, Information dynamics, Japan, Juran, M. Porter, Nursing informatics, Ohno, PDCA, Philosophical, Process, Review, 
Shannon, Shingo, Survey, Systematic literature review, Ten principles of good BPM, Understandable BPMN, Use cases, Automated 
planning, Business analytics, Dynamic controllability, Modeling.

Appropriate 
Publication Type

Articles, Articles Compiled into Handbooks or Book Chapters, Entry, Journal Articles, Journals, Research Articles, Review Articles.

Relevant Scope Applied Software Computing, Artificial Intelligence, Author: Schinckus, Big Data, Business, Chemistry and Earth Sciences, Computer 
Science, Cosmology, Decision Sciences, Earth Sciences, Econometrics and Finance, Economics, Engineering, History and Philosophical 
Foundations of Physics, Information Technology, Management, Managerial Accounting, Mathematics, Networks, Philosophy, Philosophy 
of Science, Physics, Physics and Astronomy, Quantitative Finance, Research and Analysis Methods, Software Engineering, Statistical 
physics and dynamical systems, Statistics, Statistics for Engineering, Thermodynamics

Table 2: Inclusion and Exclusion Criteria Details.

However, 11 records could not be retrieved due to issues with 
their Digital Object Identifiers (DOIs). Further exclusions were 
made based on specific criteria: 6 records were excluded due to 
retractions, 5 were excluded because of errata published after 
their initial release, and 13 were excluded for relying on small 
datasets that limited the generalizability of their conclusions. In 
total, 24 records were excluded, leaving 191 records eligible for 
the systematic review.

2.3 Data Extraction, Query Formulation, and Synthesis 
Framework
Following the eligibility stage, data extraction was conducted on 
the remaining 191 records. Key information, including the relevant 
database, query and sub-query numbers, identification terms, total 
records found, database hits that aligned with the inclusion criteria 
or lacked exclusion criteria, and the number of records selected for 

screening, was extracted, and categorized according to the three 
primary thematic units mentioned before.

To systematically incorporate entropy-based research, studies 
were categorized by their application in BPM, econophysics, and 
information theory. Shannon entropy was examined for quantifying 
uncertainty in BPM, Tsallis entropy for modeling non-extensive 
systems in econophysics, and Rényi entropy for complexity 
analysis in business decision-making. This classification helped 
identify patterns in entropy applications, ensuring both theoretical 
insights and empirical implementations were systematically 
analyzed.

These records were deemed to be the most relevant and reliable, 
meeting all eligibility criteria established in the earlier stages. The 
PRISMA process ensured that the systematic review was grounded 
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PRISMA Data Summary
Identification Databases searched 21

Records found in databases 16.101
Records excluded due to missing keywords 1.221
Non-English records excluded 72
Records excluded (inappropriate publication 
type)

10.172

Records excluded (irrelevant scope) 3.708
Duplicates (removed manually) 34
Total records removed before screening 15.207

Screening Records screened 894
Records excluded (irrelevant information) 251
Records excluded (duplicate information) 417
 Total records excluded in screening 668

Eligibility Records sought for retrieval 226
Records not retrieved (DOI issues) 11
Records assessed for eligibility 215
Records excluded (retracted articles) 6
Records excluded (errata published) 5
Records excluded (small datasets) 13
 Total records excluded in eligibility 24

Included  Records included in review  191

in a robust methodological approach, meticulously filtering records 
through various layers of scrutiny to achieve the highest standards 
of research quality.

The search strategy used can be described as a segmentation 
strategy. The emphasis was on the use of well-defined identification 
terms and exclusion criteria to narrow down the search results, 
ensuring only relevant records are selected for further screening. 
This approach focuses on refining the search in two stages: (1) 
Pre-Screening: removing records not meeting all of the inclusion 
criteria, and (2) Detailed Screening: Removing records for meeting 
all the exclusion criteria for in-depth review.

Structured Boolean operators (AND, OR) were used in stages 1 
and 2 for each query to ensure a thorough retrieval of relevant 
studies. For instance, query 2, which may be retrieved at the 
repository website indicated in “Data Availability and Ethical 
Considerations”, was conducted on Science Direct to explore use 
cases and process management in technology-assisted applications. 
The search string included the terms: industrial internet of things, 
IoT, integrating process management, system, architecture, event 
processing, use cases, integration, application scenarios, and 
BPM, yielding 20 records. By filtering for research papers, 4 were 
excluded, leaving 16. Since research papers were needed for their 
in-depth, peer-reviewed analyses, theoretical frameworks, and case 
studies—critical for understanding complex technical fields—the 
initial 16 publications were skimmed on a surface level. However, 

to focus more precisely on use cases and process management, a 
sub-query (2b) was performed, filtering for the term “use cases,” 
which reduced the results to 1. Thus, query number 2 becomes 2a 
and the sub-query becomes 2b (1 primary query and 1 sub-query 
totaling to 2 queries). This remaining result passed the PRISMA 
process and was eventually included in the systematic review as 
the relevant citation [15].

The process starts with defining relevant the relevant identification 
terms (ID Terms) and running the query in a database. Even though 
the queries presented at the repository are in chronological order, 
searches on other databases for the same ID Terms which did not 
yield any useful results were not included in this table to avoid 
extensive tables which would confuse the reader. This process, 
overall, ensured that only highly relevant information would be 
presented in this review. Essentially, this review’s segmentation 
strategy involves breaking down search results by specific 
publication inclusion criteria such as filtering for relevance to 
certain academic disciplines (e.g., business, management, and 
accounting). This approach allowed for both extremely broad 
searches and specific, nuanced searches that captured detailed 
aspects of each theme. Furthermore, synonyms and variants were 
included throughout this process to ensure completeness (e.g., 
Artificial Intelligence vs. Machine Intelligence, AI). To construct 
the PRISMA flowchart, it was essential to summarize the data in a 
clear and concise manner, as presented in Table 3.

Table 3: Prisma Data Summary
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Beyond its role in ensuring systematic screening, the PRISMA 
framework also facilitates identifying major research gaps in 
the interdisciplinary use of entropy-based models in BPM. By 
categorizing exclusions and inclusions, the flowchart highlights 
areas where entropy-driven BPM applications are underexplored, 
suggesting potential future research directions in manage-rial 

science, business analytics, and decision theory. For clarity, the 
“records found in databases” refers to the total number of records 
retrieved after applying the exclusion criteria, encompassing 
all records that were not excluded as well as those that met the 
inclusion criteria.

Figure 2: PRISMA 2020 Flow Diagram.

Beyond its role in ensuring systematic screening, the 
PRISMA framework also facilitates identifying major 
research gaps in the interdisciplinary use of entropy-based 
models in BPM. By categorizing exclusions and 
inclusions, the flowchart highlights areas where entropy-
driven BPM applications are underexplored, suggesting 
potential future research directions in manage-rial science, 
business analytics, and decision theory. For clarity, the 
“records found in databases” refers to the total number of 

records retrieved after applying the exclusion criteria, 
encompassing all records that were not excluded as well 
as those that met the inclusion criteria.

Additionally, the categorization of records by database 
is detailed in Fig. 2, which depicts the PRISMA flowchart 
used in this systematic review. Detailed information on 
the frequency of each database's usage and the number of 
records retrieved for publications included in the review is 
provided in Table 4.
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Additionally, the categorization of records by database is detailed 
in Fig. 2, which depicts the PRISMA flowchart used in this 
systematic review. Detailed information on the frequency of 

each database's usage and the number of records retrieved for 
publications included in the review is provided in Table 4.

Details Auxiliary Information
Databases and 
Searches per Database

ACS Publications: 2 times, AIP: 1 time, APS: 2 times, Annual Reviews: 1 time, Cambridge Core: 1 time, Emerald: 8 
times, ICI: 1 time, IDEAS: 2 times, IEEE Xplore: 10 times, IOPscience: 2 times, JSTOR: 1 time, MDPI: 47 times, NIH: 9 
times, Nature: 1 time, PLOS ONE: 1 time, PhilPapers: 1-time, Royal Society Publishing: 1 time, SAGE: 1 time, Science 
Direct: 47 times, Springer: 26 times, arXiv: 14 times.

Databases and 
Records per Database

ACS Publications: 2 records, AIP: 1 record, APS: 167 records, Annual Reviews: 14 records, Cambridge Core: 837 records, 
Emerald: 89 records, ICI: 33 records, IDEAS: 9 records, IEEE Xplore: 1124 records, IOPscience: 16 records, JSTOR: 313 
records, MDPI: 208 records, NIH: 49 records, Nature: 7 records, PLOS ONE: 30 records, PhilPapers: 15 records, Royal 
Society Publishing: 1 record, SAGE: 2 records, Science Direct: 10405 records, Springer: 2743 records, arXiv: 36 records

Table 4: Data Extraction and Synthesis Process
2.4 Data Availability, Ethical Considerations, and Synthesis 
Approach
All data associated with this systematic review, including the 
raw search queries, and data extraction forms have been depos-
ited in a publicly available repository [https://www.dropbox.
com/scl/fi/66entykq9s1oas6ypsbmb/Prisma-QueryTables.xlsx-
?rlkey=3n8e2md3xzf1euf5i3t38esb0&st=d7jbzh1t&dl=0]. The 
accession numbers for the data will be available upon request to 
ensure full transparency and reproducibility of the review’s find-
ings. It should be noted that up until the publication of this review 
certain query results in the databases will yield more results since 
new papers are published daily. Lastly, this review did not involve 
any intervention ARY studies involving humans or animals; thus, 
ethical approval was not required.

Given the nature of this systematic literature review, the analysis 
primarily focused on qualitative synthesis. Studies were grouped 
based on thematic units, including BPM, Econophysics, Theory of 
Complex Systems and Entropy and Information Theory. The goal 
was to identify recurring patterns, themes, gaps in the literature, 
and a potential convergence of diverse scientific fields pertinent to 
the scope of this review.

A meta-analysis was not conducted due to the diverse methodologies 
and out-comes across the selected studies. However, a structured 
narrative synthesis was used to summarize the key findings. No 
formal bibliometric or citation analysis was per-formed, as the 
scope of this review was to assess the content and findings of the 
included studies rather than their citation impact or publication 
trends.
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By using a structured approach, the PRISMA framework enabled 
the systematic review to narrow down a vast amount of literature 
from various databases, arriving at a final body of research that 
was both comprehensive and relevant to the subject areas under 
investigation. The process, from identification through inclusion, 
ensured that the data supporting this review was carefully curated 
and highly reliable, contributing to a well-founded analysis of the 
selected topics.

3. Review Findings
3.1 Systemic Foundations Of Business Process Management: 
Toward An Info physical Perspective
BPM encompasses coordinated activities within an organization 
aimed at defining, implementing, measuring, and improving 
processes to achieve specific goals [1]. It functions as a structured 
framework for transforming organizational processes [73]. Through 
the SIPOC model (Supplier, Input, Process, Output, Customer), 
processes are understood as procedures converting inputs into 
deliverables [2]. Standardized BPM frameworks are particularly 
vital for organizations adhering to quality benchmarks like EFQM 
or ISO standards [74]. A comprehensive BPM system enhances 
clarity and uniformity in operations, fostering consistency and 
long-term customer loyalty [75].

The BPM life cycle typically includes (re)design, implementation/
configuration, operation, and control phases [3]. These stages 
align with cybernetic principles, incorporating feedback loops and 
iterative modeling. During the (re)design phase, a process model 
is created, followed by system integration during implementation/
configuration. Design flaws tend to cause non-recurring issues, 
requiring structural changes, while recurring issues often stem 
from execution errors [4]. Execution errors can lead to extreme 
operational variations, especially where end-to-end processes are 
absent, as seen in product development and customer engagement 
contexts [34]. BPM interventions are reviewed using the PDCA 
(Plan, Do, Check, Act) model. Well-aligned processes contribute 
significantly to customer satisfaction and sustainability [5].

With digital transformation, BPM increasingly incorporates 
structured information flows [6]. This review adopts two 
classification systems to map execution diversity. The first, based 
on classical BPM theory, categorizes processes by the availability 
of execution information: static, structured with ad hoc exceptions, 
semi-structured, unstructured with fragments, and fully unstructured 
[76]. Static processes are fully optimized pre-execution; others 
vary in flexibility and definition, with unstructured processes often 
lacking explicit sequential articulation.

The second classification, drawn from Process-Aware Information 
Systems (PAIS), defines three process types: peer to peer, person 
to application, and application to application [71,72]. Peer-to-peer 
processes involve high human interaction, as seen in platforms 
like Meta and X. Person-to-application processes integrate users 
with software, aiming for seamless functionality. Application-
to-application processes operate autonomously. However, clear 
boundaries rarely exist—real-world workflows often span these 

categories.

Complex process management involves strategic decision-making 
shaped by systems dynamics and entropy concepts [77,19]. 
Though an established set of ten BPM principles exists [7], for this 
review, they are distilled into four interconnected domains:
1. Value Creation: Processes across areas such as HR and finance 
aim to create stakeholder value [8].
2. Process Optimization: Effective design and maturity assessment 
are critical, with IT integration enhancing stability [78,9].
3. Process Standardization: Consistent practices improve efficiency 
and reduce costs [74].

Effective Management: Managing processes requires managing 
procedures. BPM overlaps with governance and project 
management disciplines [2,79]. Mere design or standards are 
insufficient—execution management is essential for continuous 
improvement [80].

3.3 Evolutionary Paradigms In Business Process Management: 
From Quality To Epistemics and Technology
BPM has evolved through diverse methodologies and conceptual 
frameworks aimed at improving process execution, oversight, 
and evaluation [81]. While pinpointing definitive historical 
milestones is difficult due to the density and complexity of past 
developments—especially around events like World War II—
scholars broadly identify three major paradigms in BPM: quality 
control, epistemic management, and information technology.

The quality control paradigm originates in the early 20th century 
with F. W. Taylor’s scientific management theory, inspired by A. 
Smith's advocacy for task specialization [82]. W. A. Shewhart and 
W. E. Deming further advanced the field by introducing statistical 
methods for process control [83-87]. After WWII, the American 
Society for Quality (ASQ) was founded to consolidate wartime 
improvements [10], with J. M. Juran becoming a central figure 
[88]. Japanese manufacturers, influenced by Deming, adopted 
quality-focused practices, giving rise to lean methodologies 
through leaders like S. Shingo and T. Ohno [89]. The dominance 
of Total Quality Management (TQM) in the 1970s eventually gave 
way to Six Sigma, notably adopted by Motorola in the late 1980s 
[89]. Lean Six Sigma was institutionalized by ASQ in the early 
2000s and is now standard in companies like Walmart, Amazon, 
and Costco [90]. This evolution also encompassed innovations like 
the Capability Maturity Model (CMM), targeting software quality 
[91].

The epistemic management paradigm, building on Taylor's 
foundation was further shaped by Juran’s analysis of postwar 
production inefficiencies and his conceptualization of quality 
costs [89]. In the 1980s, M. Porter introduced the concept of 
value chains, repositioning internal processes as sources of 
strategic differentiation [92]. His theories remain highly influential 
particularly in light of global competitive pressures and declining 
profit margins [93,94]. A major shift occurred in the early 1990s 
with Kaplan and Norton’s introduction of the Balanced Scorecard 
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(BSC), aligning operational measures with strategic objectives 
[95]. The BSC framework remains relevant today, with growing 
scholarly interest [95].

The information technology paradigm gained momentum with 
the development of Business Process Re-engineering (BPR) 
by M. Hammer and J. Champy [11,96]. BPR challenged the 
dominance of TQM in the 1990s by advocating for technology-
driven transformation, although its high failure rate tempered its 
early promise [97]. Today, BPM platforms and enterprise resource 
planning (ERP) systems aim to mitigate complexity by enabling 
process-based architectures that enhance business performance 
[98]. Contemporary BPM practices, now integrated within 
traditional information systems [6], are increasingly influenced by 
emerging technologies such as blockchain, artificial intelligence, 
and big data which offer both disruption and opportunity for inter-
organizational process evolution [84–87].

By tracing these three paradigms—quality control, epistemic 
management, and information technology—this review presents 
a historical and conceptual map of BPM's evolution, highlighting 
how intellectual streams and technological shifts have shaped 
contemporary practices.

3.4 Business Process Modeling And Metrics: Methods, Lan-
guages, And Entropic Evaluation
Business Process Modeling (BPMo) refers both to the frameworks 
aligning process systems with institutional quality standards such 
as EFQM and to the methodologies—like Business Process Model 
and Notation (BPMN)—used to visually depict processes more 
clearly than text-based descriptions [12,98,99]. BPMo facilitates 
system-level assessments across multiple dimensions, such as 
process efficiency and efficacy in academic and applied settings 
temporal constraints run-time limitations and links between 
business and financial performance [13, 100-102].

Modeling, in this context, structures process systems for 
downstream integration. Since the early days of computing, 
process modeling languages (BPMLs) have supported BPM. The 
earliest modeling attempt using generic notation is attributed to A. 
Turing in 1949 [14]. Use cases further demonstrate how modeling 
tools simulate real-world processes via event-driven diagnostics 
and execution assessments [15].

Two widely used BPMLs—Event-driven Process Chains (EPC) 
[103] and BPMN—integrate well with Petri nets, ERP platforms, 
and broader enterprise modeling systems [1,3,12,101]. EPC 
remains foundational in platforms like ARIS and SAP, with 
hundreds of embedded models focusing on data, functions, and 
organizational logic [103]. BPMN, standardized by the Object 
Management Group, has evolved into BPMN 2.0, which includes 
an extension mechanism to accommodate diverse modeling goals 
[104]. Recent studies introduced BEBoP, the first open-source tool 
able to verify 34 of 50 BPMN 2.0 modeling guidelines. BPMN 
2.0 currently supports over 80% of features prioritized by BPM 
decision-makers, underscoring its dominance in both academia 

and industry [105,106].

Nonetheless, selecting the right BPML often defaults to user 
familiarity rather than alignment with process goals [106]. 
Successful BPM initiatives depend heavily on the rationale behind 
their implementation [107]. Without well-defined objectives tied 
to the BPM life cycle and principles organizations risk misaligned 
models that fail to improve measurable performance [3]. 
Fragmentation of tools across teams further complicates strategic 
alignment [107].

To evaluate process outcomes, metrics such as time, cost, and 
quality are essential [16]. Time-based KPIs include lead time 
and synchronization, while costing frameworks like Activity-
Based Costing (ABC) and Resource Consumption Accounting 
(RCA) are now integrable into BPMN 2.0 [39]. Quality metrics 
differ for knowledge-intensive processes and must be tailored 
accordingly [108]. Yet, selecting meaningful KPIs is a complex 
task with improvements dependent on the proper interpretation of 
performance gaps[109]. Strategic modeling increasingly involves 
AI integration and real-time, process-oriented analytics.

Recent advancements in computational resources enable 
the use of entropy-based metrics to capture uncertainty 
and complexity in business processes. Shannon entropy 
[17,18,20,21,26,27,31,36,45,50] quantifies execution variability, 
while Tsallis entropy allows for the modeling of non-extensive and 
non-linear systems. These models link with econophysics, where 
entropy describes business inefficiencies and systemic fluctuations 
[20,21,31,36,50].

Entropy increases as execution scenarios approach uniform 
distribution, and logical complexity corresponds to structural 
gateway diversity [110]. Shannon entropy measures uncertainty 
in discrete process execution [18,20,31,45], while Tsallis 
entropy captures non-extensive variability [21,26–27,36,50]. 
These augment traditional KPIs by adding dynamic indicators of 
variability. For instance, links high process entropy to increased 
unpredictability and planning difficulty, whereas demonstrates that 
lowering entropy enhances efficiency [33]. Similarly, shows how 
entropy improves performance monitoring and can be adapted for 
BPM optimization [42].

Understanding information entropy, or Shannon entropy, is crucial 
for process variability modeling [18,111]. It is defined as:

where Η(X) is entropy, xi represents possible process states, and 
P(xi ) is their probability. Entropy increases with state distribution 
uniformity and is measured in bits when using base-2 logarithms. 
As such, entropy provides a robust metric for capturing the 
uncertainty inherent in modern BPM environments.

3.5 Interdisciplinary Infusions Into Econophysics: From Big 
Data To Epistemic Convergence
To develop a cohesive theoretical model, it is necessary to syn-

quality standards such as EFQM [99], and to the 
methodologies—like Business Process Model and 
Notation (BPMN)—used to visually depict processes 
more clearly than text-based descriptions [12]. BPMo 
facilitates system-level assessments across multiple 
dimensions, such as process efficiency and efficacy in 
academic and applied settings [100], temporal constraints 
[101], run-time limitations [102], and links between 
business and financial performance [13].

Modeling, in this context, structures process systems for 
downstream integration. Since the early days of 
computing, process modeling languages (BPMLs) have 
supported BPM. The earliest modeling attempt using 
generic notation is attributed to A. Turing in 1949 [14]. 
Use cases further demonstrate how modeling tools 
simulate real-world processes via event-driven diagnostics 
and execution assessments [15].

Two widely used BPMLs—Event-driven Process 
Chains (EPC) [103] and BPMN—integrate well with Petri 
nets, ERP platforms, and broader enterprise modeling 
systems [1,3,12,101]. EPC remains foundational in 
platforms like ARIS and SAP, with hundreds of embedded 
models focusing on data, functions, and organizational 
logic [103]. BPMN, standardized by the Object 
Management Group, has evolved into BPMN 2.0, which 
includes an extension mechanism to accommodate diverse 
modeling goals [104]. Recent studies [105] introduced 
BEBoP, the first open-source tool able to verify 34 of 50 
BPMN 2.0 modeling guidelines. BPMN 2.0 currently 
supports over 80% of features prioritized by BPM 
decision-makers, underscoring its dominance in both 
academia and industry [106].

Nonetheless, selecting the right BPML often defaults to 
user familiarity rather than alignment with process goals 
[106]. Successful BPM initiatives depend heavily on the 
rationale behind their implementation [107]. Without 
well-defined objectives tied to the BPM life cycle and
principles [7], organizations risk misaligned models that 
fail to improve measurable performance [3]. 
Fragmentation of tools across teams further complicates 
strategic alignment [107].

To evaluate process outcomes, metrics such as time, 
cost, and quality are essential [16]. Time-based KPIs 
include lead time and synchronization, while costing 
frameworks like Activity-Based Costing (ABC) and 
Resource Consumption Accounting (RCA) are now 
integrable into BPMN 2.0 [39]. Quality metrics differ for 
knowledge-intensive processes and must be tailored 
accordingly [108]. Yet, selecting meaningful KPIs is a 
complex task [109], with improvements dependent on the 
proper interpretation of performance gaps. Strategic 
modeling increasingly involves AI integration and real-
time, process-oriented analytics.

Recent advancements in computational resources enable 
the use of entropy-based metrics to capture uncertainty 

and complexity in business processes. Shannon entropy 
[17,18,20,21,26,27,31,36,45,50] quantifies execution 
variability, while Tsallis entropy allows for the modeling 
of non-extensive and non-linear systems. These models 
link with econophysics, where entropy describes business 
inefficiencies and systemic fluctuations [20,21,31,36,50].

Entropy increases as execution scenarios approach 
uniform distribution, and logical complexity corresponds 
to structural gateway diversity [110]. Shannon entropy 
measures uncertainty in discrete process execution 
[18,20,31,45], while Tsallis entropy captures non-
extensive variability [21,26–27,36,50]. These augment 
traditional KPIs by adding dynamic indicators of 
variability. For instance, [32] links high process entropy 
to increased unpredictability and planning difficulty, 
whereas [33] demonstrates that lowering entropy enhances 
efficiency. Similarly, [42] shows how entropy improves 
performance monitoring and can be adapted for BPM 
optimization.

Understanding information entropy, or Shannon 
entropy, is crucial for process variability modeling 
[18,111]. It is defined as:

𝛨𝛨(𝑋𝑋) = ∑  𝑛𝑛
𝑖𝑖=1 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑢𝑢(𝑥𝑥𝑖𝑖) = −𝐾𝐾∑  𝑛𝑛

𝑖𝑖=1 𝑃𝑃(𝑥𝑥𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃(𝑥𝑥𝑖𝑖), (1)

where 𝛨𝛨(𝑋𝑋) is entropy, 𝑥𝑥𝑖𝑖 represents possible process states, 
and 𝑃𝑃(𝑥𝑥𝑖𝑖) is their probability. Entropy increases with state 
distribution uniformity and is measured in bits when using 
base-2 logarithms. As such, entropy provides a robust metric 
for capturing the uncertainty inherent in modern BPM 
environments.

DD.. IINNTTEERRDDIISSCCIIPPLLIINNAARRYY  IINNFFUUSSIIOONNSS  IINNTTOO  
EECCOONNOOPPHHYYSSIICCSS::  FFRROOMM  BBIIGG  DDAATTAA  TTOO  EEPPIISSTTEEMMIICC  
CCOONNVVEERRGGEENNCCEE

To develop a cohesive theoretical model, it is necessary 
to synthesize diverse epistemological and methodological 
approaches by identifying how insights from one domain 
address limitations in another [19]. Interdisciplinary 
integration—especially between physics, information 
science, and social sciences—has shown to enhance 
innovation and problem-solving [112].

The convergence of managerial and physical sciences 
mirrors patterns observed in financial economics and 
social systems. Four key dimensions—big data statistics, 
norm-challenging frameworks, academic momentum, and 
epistemological convergence—reveal how 
interdisciplinary pathways evolve.

B. Mandelbrot’s work on market irregularities 
influenced E. F. Fama, who applied probability theory and 
martingales to model efficient markets [113]. Financial 
data exhibit non-Gaussian properties and power-law 
behaviors [114], prompting adoption of entropy-based 
models like Tsallis entropy to better address volatility and 
systemic risk [20], [26], [31], [45]. High-frequency 
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thesize diverse epistemological and methodological approaches 
by identifying how insights from one domain address limitations 
in another [19]. Interdisciplinary integration—especially between 
physics, information science, and social sciences—has shown to 
enhance innovation and problem-solving [112].

The convergence of managerial and physical sciences mirrors pat-
terns observed in financial economics and social systems. Four key 
dimensions—big data statistics, norm-challenging frameworks, 
academic momentum, and epistemological convergence—reveal 
how interdisciplinary pathways evolve.

A. Mandelbrot’s work on market irregularities influenced E. F. 
Fama, who applied probability theory and martingales to mod-
el efficient markets [113]. Financial data exhibit non-Gaussian 
properties and power-law behaviors prompting adoption of entro-
py-based models like Tsallis entropy to better address volatility 
and systemic risk [20,26,31,45,114],. High-frequency trading and 
big data analytics now uncover patterns previously undetectable, 
reshaping financial modeling [115]. 
	
B. Stylized facts in economics—macro-regularities unexplained 
by micro-level theory—can be interpreted using the multiple real-
izability argument, which acknowledges heterogeneity at the agent 
level [116]. This resonates with nature’s layered complexity across 
different observation scales [117]. Adaptive simulations offer mi-
cro-foundations for macro-patterns and deep learning holds poten-
tial to refine these behavioral models further [118].

Econophysics has matured into a well-established academic field, 
extending from finance to energy and environmental economics 
[47]. Growth in academic programs, peer-reviewed publications, 
and research output has fostered interdisciplinary education [119]. 
A bibliometric analysis of econophysics from 2000 to 2019 identi-
fied clusters of collaboration and highlighted foundational studies 
on time series, market crashes, and global network dynamics [48]. 
Self-citations were prominent early but declined, with physics as 
the dominant contributor, followed by economics. Network sci-
ence and sociophysics are also gaining traction in curricula, though 
connecting theoretical models to social complexities remains a key 
challenge [120].

Recent work integrates statistical physics with economics, social 
systems, and network analysis [121-124], yet struggles persist in 
modeling long-range dependencies in markets and information 
flows. Entropy-based models may offer a more generalizable 
framework. The use of phase transition theory and renormalization 
group techniques to explain market scaling marked a turning point 
in the field’s development [125].

Statistical mechanics, long applied to thermodynamic systems, 
now serves as a tool to understand macro-level patterns emerging 
from micro-level heterogeneity [20]. Since the early 2000s, apply-
ing these principles to social systems has been both promising and 
contentious [126,127]. Thermodynamics has influenced neoclassi-
cal economic theory for over 150 years and today, the explosion of 

social data opens new opportunities for entropy-based modeling in 
sociology, economics, and organizational behavior [20,128].

3.6 Interdisciplinary Info Physics and The Foundations of En-
tropic Bpm
Econophysics, as defined by Mantegna and Stanley, is the applica-
tion of physical science methodologies to economic problems [47]. 
Its origins trace back to Mandelbrot’s pioneering work on fractal 
geometry, revealing self-similarity in complex systems across dis-
ciplines including physics, biology, and finance [49,129]. Built on 
analogical reasoning, econophysics applies statistical mechanics 
and thermodynamics to economic data, enhancing our understand-
ing of market dynamics with research collaborations marking its 
growth as a high-impact, interdisciplinary science [48,130].

Econophysical insights are increasingly embedded in practical 
domains. Physicists contribute to trading and financial analytics, 
applying modeling expertise to volatility and risk management 
[131,132]. Markets exhibit statistical properties like non-Gaussian 
distributions and scale invariance [20,31,36,50]. In this context, 
Tsallis entropy has become a core methodological tool, modeling 
non-extensive dynamics and systemic irregularities in financial 
systems [26,27,36,50].

Sociophysics, a conceptual sibling of econophysics, uses statistical 
physics principles to analyze group behavior, opinion dynamics, 
and knowledge diffusion [120,133,134]. It focuses on social inter-
actions and decision-making using models derived from empirical 
and network-based data. While econophysics relies on quantitative 
financial data, sociophysics extends this to broader societal behav-
iors. Integration of these fields—alongside leadership and behav-
ioral theories—offers new opportunities for holistic socio-eco-
nomic modeling [125].

Network science, another integral pillar, studies complexity using 
mathematical and computational models [135]. Statistical physics 
has significantly contributed to this field by enabling geometric 
deep learning and quantum-informed structures for communica-
tion systems [136]. Proximity-based networks in econophysics 
facilitate modeling of interactions such as loans and ownerships 
and network studies now encompass tasks like clustering, link pre-
diction, and information flow analysis [137].

Quantized information systems treat network operators as statis-
tical ensembles, allowing density matrix construction for measur-
ing complexity via von Neumann entropy [138]. In bio-networks, 
Rényi and Tsallis entropy help assess robustness and self-organi-
zation phenomena, including social and financial networks [139]. 
Granger causality and association networks are crucial in mac-
roeconomic modeling, often requiring exhaustive testing due to 
the exponential growth in node combinations [140,141]. Filtering 
techniques, such as minimum spanning trees, enhance interpret-
ability and efficiency of financial networks with empirical roots in 
interdisciplinary studies led by physicists [36,142,143, [144].
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Informatics serves as a critical foundation for “infophysical” 
thinking. In fields like medical informatics, data governance and 
AI-enhanced diagnostics address diagnostic variance [145–147]. 
Similarly, bioinformatics leverages data-intensive computation to 
detect nuanced patterns in biological data [148,149]. Informatics 
also reshapes social disciplines—urban informatics being a prime 
example—through participatory and ethically grounded smart 
systems [150,151]. In managerial contexts, informatics supports 
continuum thinking in complex data governance environments 
[46,152].

Info physics emerges at the intersection of BPM, statistical phys-
ics, and information theory. While the term is not yet standard-
ized, this systematic review proposes info physics as a conceptual 
framework for entropy-driven optimization of business processes. 
Grounded in information entropy, data compression, thermody-
namics, and statistical mechanics [18,67,111]. it seeks to model 
the efficiency and flow of information across structured systems. 
This lens offers a novel view of process complexity, enabling im-
provements in BPM systems through entropy-based metrics and 
physical modeling techniques.

Entropy generalization further supports this integration. Organi-
zational systems can be viewed thermodynamically as open sys-
tems subject to stochastic variability [9,44]. Metrics like Kull-
back-Leibler, transfer entropy, and Rényi entropy enable signal 
filtering, dynamic structure detection, and systemic risk analysis 
in financial markets [20]. These approaches extract meaning from 
noisy environments by isolating high-influence interactions.

Moreover, Granger causality—originally developed for econo-
metrics—has been generalized in physics and shown to align with 
transfer entropy in Gaussian conditions, underscoring its interdis-
ciplinary applicability [153–155]. Georgescu-Roegen’s thermo-
dynamic view of economics connects energy irreversibility with 
resource constraints and challenges to sustainable growth [50]. 
This entropic interpretation frames economics as a non-reversible 
system in constant degradation, reinforcing entropy’s central role 
in long-term planning.

Recent applications of entropy include cryptocurrency market 
dynamics stock prediction and pandemic-induced fluctuations 
contributing to an expanded scope for econophysics [21-24,156]. 
While power-law distributions reveal enduring volatility, tradi-
tional Lévy models fail to fully explain these effects [25]. A deeper 
microscopic-to-macroscopic analysis—bridging fluctuations with 
emergent patterns—remains essential.

Ultimately, info physics proposes a cross-disciplinary framework 
for modeling information-rich, entropy-sensitive environments 
such as BPM systems. By uniting managerial science with phys-
ics, it supports innovations in predictability, resource allocation, 
and systemic resilience—foundational goals for 21st-century busi-
ness process design.

3.7 The Involutional Nexus Of Entropy: From Physical Roots 
To Informational Systems
The concept of entropy emerged during the Industrial Revolution 
through studies of heat-work conversion and energy dissipation. 
While energy conservation was firmly established R. Clausius 
redefined heat flow in cyclic processes, introducing entropy to 
explain irreversible transformations [157,158]. Pioneers like 
Watt and Carnot refined heat engines, while Joule and Mayer 
advanced mechanical energy theory under significant skepticism 
[159–162]. These developments shaped the foundation of modern 
thermodynamics and statistical mechanics.

Entropy quantifies the energy in a system that is unavailable for 
useful work [26]. Thermodynamically, it reflects disorder and 
the number of possible microscopic configurations of particles in 
isolated, closed, or open systems with nonequilibrium definitions 
presenting ongoing challenges [163,164]. Clausius described 
entropy as a measure of energy degradation, later expanded to 
chemical reactions and molecular energy distributions [165–168]. 
Modern literature frames entropy across three interpretations: as 
a physical property, a measure of information generation, and a 
statistical inference tool [169].

Clausius’s foundational laws of thermodynamics encapsulated 
entropy’s role in natural progression: “The energy of the world 
is constant; the entropy of the world tends toward a maximum” 
[68]. His reinterpretation of Carnot’s reversible cycle laid the 
groundwork for entropy’s broader application extending from 
equilibrium thermodynamics to real-world irreversible processes 
[43], [37,43,170171]. Today, entropy underpins analyses in 
cosmology life sciences geophysics chemistry and social science 
domains including economics linguistics, and organizational 
management [9,23,26,28,38,41, 172–179].

Yet, entropy’s application across disciplines introduces conceptual 
fragmentation—particularly between thermodynamic, statistical, 
and informational definitions [26]. A unified view is needed, 
especially for integrating entropy into systems like BPM where 
complexity, uncertainty, and variability intersect.

Entropy’s universality lies in its foundational invariance. 
Boltzmann and Gibbs formalized this with statistical mechanics, 
introducing core relations such as:

where S is entropy, kB is Boltzmann’s constant, and W the number of 
microstates [167,180]. Entropy is grounded in universal principles 
that apply across disciplines, independent of the specific statistical 
framework or physical composition of matter [167]. It emerges 
from the probabilistic structure of natural processes and reflects 
the system's uncertainty and disorder. Its validity, regardless 
of methodology, depends on consistency with foundational 
theoretical constructs [181–183].

Boltzmann, expanding on Maxwell's molecular dynamics, 
provided a statistical basis for thermodynamics by linking 

prime example—through participatory and ethically 
grounded smart systems [150], [151]. In managerial 
contexts, informatics supports continuum thinking in 
complex data governance environments [46], [152].

Infophysics emerges at the intersection of BPM, 
statistical physics, and information theory. While the term 
is not yet standardized, this systematic review proposes 
infophysics as a conceptual framework for entropy-driven 
optimization of business processes. Grounded in 
information entropy, data compression, thermodynamics, 
and statistical mechanics [18], [67], [111], it seeks to 
model the efficiency and flow of information across 
structured systems. This lens offers a novel view of 
process complexity, enabling improvements in BPM 
systems through entropy-based metrics and physical 
modeling techniques.

Entropy generalization further supports this integration. 
Organizational systems can be viewed thermodynamically 
as open systems subject to stochastic variability [9], [44]. 
Metrics like Kullback-Leibler, transfer entropy, and Rényi 
entropy enable signal filtering, dynamic structure 
detection, and systemic risk analysis in financial markets 
[20]. These approaches extract meaning from noisy 
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Moreover, Granger causality—originally developed for 
econometrics—has been generalized in physics and shown 
to align with transfer entropy in Gaussian conditions, 
underscoring its interdisciplinary applicability [153]–
[155]. Georgescu-Roegen’s thermodynamic view of 
economics connects energy irreversibility with resource 
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entropic interpretation frames economics as a non-
reversible system in constant degradation, reinforcing 
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market dynamics [21], stock prediction [22], [23], and 
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expanded scope for econophysics [24]. While power-law 
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microscopic-to-macroscopic analysis—bridging 
fluctuations with emergent patterns—remains essential.

Ultimately, infophysics proposes a cross-disciplinary 
framework for modeling information-rich, entropy-
sensitive environments such as BPM systems. By uniting 
managerial science with physics, it supports innovations 
in predictability, resource allocation, and systemic 
resilience—foundational goals for 21st-century business 
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The concept of entropy emerged during the Industrial 
Revolution through studies of heat-work conversion and 

energy dissipation. While energy conservation was firmly 
established [157], R. Clausius redefined heat flow in 
cyclic processes, introducing entropy to explain 
irreversible transformations [158]. Pioneers like Watt and
Carnot refined heat engines, while Joule and Mayer 
advanced mechanical energy theory under significant 
skepticism [159]–[162]. These developments shaped the 
foundation of modern thermodynamics and statistical 
mechanics.

Entropy quantifies the energy in a system that is 
unavailable for useful work [26]. Thermodynamically, it 
reflects disorder and the number of possible microscopic 
configurations of particles in isolated, closed, or open 
systems [163], with nonequilibrium definitions presenting 
ongoing challenges [164]. Clausius described entropy as a 
measure of energy degradation, later expanded to 
chemical reactions and molecular energy distributions 
[165]–[168]. Modern literature frames entropy across 
three interpretations: as a physical property, a measure of 
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[169].

Clausius’s foundational laws of thermodynamics 
encapsulated entropy’s role in natural progression: “The 
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management [9], [23], [26], [28], [38], [41], [176]–[179].
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Entropy’s universality lies in its foundational 
invariance. Boltzmann and Gibbs formalized this with 
statistical mechanics, introducing core relations such as:

𝑆𝑆 = 𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙,                                      (2)

where 𝑆𝑆 is entropy, 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, and 𝑊𝑊 the 
number of microstates [167], [180]. Entropy is grounded in 
universal principles that apply across disciplines, 
independent of the specific statistical framework or physical 
composition of matter [167]. It emerges from the 
probabilistic structure of natural processes and reflects the 
system's uncertainty and disorder. Its validity, regardless of 
methodology, depends on consistency with foundational 
theoretical constructs [181]–[183].
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macroscopic phenomena to microscopic states [69]. The number 
of configurations—or statistical weight—available to a microstate 
is expressed as:

where N is the total number of particles and Ni is the number of 
particles in each state i [181]. Entropy is then calculated as: 

This equation links entropy to the count of microscopic 
arrangements, showing that disorder grows with configurational 
complexity [182]–[186].

Jaynes generalized this view using information theory, defining 
entropy over a probability distribution: 

Here, pi represents the probability of being in microstate i, and  
H is the expected uncertainty across all states [184]. This bridges 
physical entropy and information entropy by treating disorder as 
an outcome of probabilistic distributions. Those probabilities can 
be modeled by the Boltzmann distribution: 

In this expression, εi is the energy of microstate i, θ is the system’s 
absolute temperature, and the denominator ensures normalization. 
It formalizes how systems favor lower-energy states as temperature 
decreases [185]. Assuming all Ω microstates are equally probable—
i.e., pi=1⁄Ω—the entropy reduces to: 

This is the well-known Boltzmann entropy formula, derived 
from the principle of equal a priori probabilities and showing that 
entropy increases with the logarithm of the number of accessible 
microstates [186–189].

Ultimately, Boltzmann and Gibbs demonstrated that entropy 
reflects the statistical nature of macroscopic phenomena. Their 
work established entropy as a unifying concept across physics 
and information theory, explaining why systems evolve toward 
states of maximum disorder—the most statistically probable 
configurations [190].

3.8 Entropy, Information, And Uncertainty: Toward A Unified 
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Recent research confirms that information entropy plays a 
foundational role in modeling complexity, structure, and 
uncertainty across disciplines. In colloidal systems, entropy alone 
can drive self-organization without energetic input [191]. In 
biomolecular environments, it governs non-equilibrium dynamics 
while in risk management, it enables quantitative approaches to 
uncertainty [30]. These examples reinforce entropy’s function 
as a cross-cutting analytical tool—but also expose divergent 
assumptions in its interpretation.

Shannon's communication theory reframed entropy as a 
probabilistic measure of uncertainty, echoing thermodynamic 
formulations [192]. By quantifying limits in signal transmission 
and modeling noise, Shannon established upper bounds for reliable 
communication [193,194]. His use of Maxwell’s demon metaphor 
illustrated how knowledge modifies system behavior. Yet, the 
parallel between Shannon’s and Boltzmann’s equations—though 
mathematically elegant—rests on a conceptual ambiguity: are 
these entropies truly interchangeable, or merely analogous? [31].

Boltzmann’s entropy, which quantifies microstate multiplicity 
is often equated to information entropy, yet this equivalence 
is not straightforward. Brillouin’s negentropy argument—that 
information is negative entropy—attempted to resolve Maxwell’s 
demon paradox but introduced a problematic inversion: thermal 
entropy cannot be negative, and transmitted information 
must remain physically realizable [195,196]. This unresolved 
contradiction underscores deeper issues with equating physical 
and semantic domains.

Landauer’s principle addressed this by grounding information 
in thermodynamic irreversibility: erasing one bit produces heat, 
quantified by: 

where Ξ is the number of bits lost [197,198]. This bridges abstract 
computation and physical entropy, reinforcing the materiality 
of information. Jaynes extended this logic, interpreting entropy 
as missing microstate information and linking macroscopic 
thermodynamic laws with probabilistic models [199]. Though 
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both known values and entropy as uncertainty suggesting a 
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entropy—but only within a bounded interpretive frame [200,201]. 
Finally, if entropy and information are indeed entangled, they 
must obey reciprocal laws not just within a system, but across its 
interface with the environment. The conservation of total entropy-
information has been proposed at a cosmological scale but this 
remains more metaphysical than empirical—highlighting the need 
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For binary systems, such as N relay circuits with two states each, 
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Boltzmann, expanding on Maxwell's molecular dynamics, 
provided a statistical basis for thermodynamics by linking 
macroscopic phenomena to microscopic states [69]. The 
number of configurations—or statistical weight—available to 
a macrostate is expressed as:
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where 𝑁𝑁 is the total number of particles and 𝑁𝑁𝑖𝑖 is the number
of particles in each state 𝑖𝑖 [181]. Entropy is then calculated 
as:

𝑆𝑆 = 𝑘𝑘𝐵𝐵 ln(𝑁𝑁! ∏𝑁𝑁𝑖𝑖!⁄ ).                              (4)

This equation links entropy to the count of microscopic 
arrangements, showing that disorder grows with 
configurational complexity [182]–[186].

Jaynes generalized this view using information theory, 
defining entropy over a probability distribution:
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Here, 𝑝𝑝𝑖𝑖 represents the probability of being in microstate 𝑖𝑖, 
and  𝐻𝐻 is the expected uncertainty across all states [184]. 
This bridges physical entropy and information entropy by 
treating disorder as an outcome of probabilistic distributions.
Those probabilities can be modeled by the Boltzmann 
distribution:
In this expression, 𝜀𝜀𝑖𝑖 is the energy of microstate 𝑖𝑖, 𝜃𝜃 is the 
system’s absolute temperature, and the denominator ensures 
normalization. It formalizes how systems favor lower-energy 
states as temperature decreases [185]. Assuming all 𝛺𝛺
microstates are equally probable—i.e., 𝑝𝑝𝑖𝑖 = 1 𝛺𝛺⁄ —the 
entropy reduces to:
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= 𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙. (7)

This is the well-known Boltzmann entropy formula, derived 
from the principle of equal a priori probabilities and showing 
that entropy increases with the logarithm of the number of 
accessible microstates [187]–[189].

Ultimately, Boltzmann and Gibbs demonstrated that 
entropy reflects the statistical nature of macroscopic 
phenomena. Their work established entropy as a unifying 
concept across physics and information theory, explaining 
why systems evolve toward states of maximum disorder—
the most statistically probable configurations [190].
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Recent research confirms that information entropy plays a 
foundational role in modeling complexity, structure, and 

uncertainty across disciplines. In colloidal systems, entropy 
alone can drive self-organization without energetic input 
[191]. In biomolecular environments, it governs non-
equilibrium dynamics [29], while in risk management, it 
enables quantitative approaches to uncertainty [30]. These 
examples reinforce entropy’s function as a cross-cutting 
analytical tool—but also expose divergent assumptions in its 
interpretation.

Shannon's communication theory reframed entropy as a 
probabilistic measure of uncertainty, echoing thermodynamic 
formulations [192]. By quantifying limits in signal 
transmission and modeling noise, Shannon established upper 
bounds for reliable communication [193], [194]. His use of 
Maxwell’s demon metaphor illustrated how knowledge 
modifies system behavior. Yet, the parallel between 
Shannon’s and Boltzmann’s equations—though 
mathematically elegant—rests on a conceptual ambiguity: 
are these entropies truly interchangeable, or merely 
analogous? [31]

Boltzmann’s entropy, which quantifies microstate 
multiplicity [195], is often equated to information entropy, 
yet this equivalence is not straightforward. Brillouin’s 
negentropy argument—that information is negative 
entropy—attempted to resolve Maxwell’s demon paradox but 
introduced a problematic inversion: thermal entropy cannot 
be negative, and transmitted information must remain 
physically realizable [196]. This unresolved contradiction 
underscores deeper issues with equating physical and 
semantic domains.

Landauer’s principle addressed this by grounding 
information in thermodynamic irreversibility: erasing one bit 
produces heat, quantified by:
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where 𝛯𝛯 is the number of bits lost [197], [198]. This bridges 
abstract computation and physical entropy, reinforcing the 
materiality of information. Jaynes extended this logic, 
interpreting entropy as missing microstate information and 
linking macroscopic thermodynamic laws with probabilistic 
models [26], [27], [199]. Though not equivalent, 
thermodynamic and informational entropy can be expressed 
in the same units, such as bits [45].

Critically, this unification remains epistemological, not 
ontological. Layzer argued that total system information 
includes both known values and entropy as uncertainty 
[200], suggesting a complementary relationship. 
Knowledge acquisition reduces entropy—but only within 
a bounded interpretive frame [201]. Finally, if entropy and 
information are indeed entangled, they must obey 
reciprocal laws not just within a system, but across its 
interface with the environment. The conservation of total 
entropy-information has been proposed at a cosmological 
scale [202], [203], but this remains more metaphysical 
than empirical—highlighting the need for rigorous 
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macroscopic phenomena to microscopic states [69]. The 
number of configurations—or statistical weight—available to 
a macrostate is expressed as:
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This equation links entropy to the count of microscopic 
arrangements, showing that disorder grows with 
configurational complexity [182]–[186].

Jaynes generalized this view using information theory, 
defining entropy over a probability distribution:
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Here, 𝑝𝑝𝑖𝑖 represents the probability of being in microstate 𝑖𝑖, 
and  𝐻𝐻 is the expected uncertainty across all states [184]. 
This bridges physical entropy and information entropy by 
treating disorder as an outcome of probabilistic distributions.
Those probabilities can be modeled by the Boltzmann 
distribution:
In this expression, 𝜀𝜀𝑖𝑖 is the energy of microstate 𝑖𝑖, 𝜃𝜃 is the 
system’s absolute temperature, and the denominator ensures 
normalization. It formalizes how systems favor lower-energy 
states as temperature decreases [185]. Assuming all 𝛺𝛺
microstates are equally probable—i.e., 𝑝𝑝𝑖𝑖 = 1 𝛺𝛺⁄ —the 
entropy reduces to:
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This is the well-known Boltzmann entropy formula, derived 
from the principle of equal a priori probabilities and showing 
that entropy increases with the logarithm of the number of 
accessible microstates [187]–[189].

Ultimately, Boltzmann and Gibbs demonstrated that 
entropy reflects the statistical nature of macroscopic 
phenomena. Their work established entropy as a unifying 
concept across physics and information theory, explaining 
why systems evolve toward states of maximum disorder—
the most statistically probable configurations [190].
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foundational role in modeling complexity, structure, and 

uncertainty across disciplines. In colloidal systems, entropy 
alone can drive self-organization without energetic input 
[191]. In biomolecular environments, it governs non-
equilibrium dynamics [29], while in risk management, it 
enables quantitative approaches to uncertainty [30]. These 
examples reinforce entropy’s function as a cross-cutting 
analytical tool—but also expose divergent assumptions in its 
interpretation.

Shannon's communication theory reframed entropy as a 
probabilistic measure of uncertainty, echoing thermodynamic 
formulations [192]. By quantifying limits in signal 
transmission and modeling noise, Shannon established upper 
bounds for reliable communication [193], [194]. His use of 
Maxwell’s demon metaphor illustrated how knowledge 
modifies system behavior. Yet, the parallel between 
Shannon’s and Boltzmann’s equations—though 
mathematically elegant—rests on a conceptual ambiguity: 
are these entropies truly interchangeable, or merely 
analogous? [31]

Boltzmann’s entropy, which quantifies microstate 
multiplicity [195], is often equated to information entropy, 
yet this equivalence is not straightforward. Brillouin’s 
negentropy argument—that information is negative 
entropy—attempted to resolve Maxwell’s demon paradox but 
introduced a problematic inversion: thermal entropy cannot 
be negative, and transmitted information must remain 
physically realizable [196]. This unresolved contradiction 
underscores deeper issues with equating physical and 
semantic domains.

Landauer’s principle addressed this by grounding 
information in thermodynamic irreversibility: erasing one bit 
produces heat, quantified by:
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where 𝛯𝛯 is the number of bits lost [197], [198]. This bridges 
abstract computation and physical entropy, reinforcing the 
materiality of information. Jaynes extended this logic, 
interpreting entropy as missing microstate information and 
linking macroscopic thermodynamic laws with probabilistic 
models [26], [27], [199]. Though not equivalent, 
thermodynamic and informational entropy can be expressed 
in the same units, such as bits [45].

Critically, this unification remains epistemological, not 
ontological. Layzer argued that total system information 
includes both known values and entropy as uncertainty 
[200], suggesting a complementary relationship. 
Knowledge acquisition reduces entropy—but only within 
a bounded interpretive frame [201]. Finally, if entropy and 
information are indeed entangled, they must obey 
reciprocal laws not just within a system, but across its 
interface with the environment. The conservation of total 
entropy-information has been proposed at a cosmological 
scale [202], [203], but this remains more metaphysical 
than empirical—highlighting the need for rigorous 
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Here, 𝑝𝑝𝑖𝑖 represents the probability of being in microstate 𝑖𝑖, 
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This bridges physical entropy and information entropy by 
treating disorder as an outcome of probabilistic distributions.
Those probabilities can be modeled by the Boltzmann 
distribution:
In this expression, 𝜀𝜀𝑖𝑖 is the energy of microstate 𝑖𝑖, 𝜃𝜃 is the 
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This is the well-known Boltzmann entropy formula, derived 
from the principle of equal a priori probabilities and showing 
that entropy increases with the logarithm of the number of 
accessible microstates [187]–[189].

Ultimately, Boltzmann and Gibbs demonstrated that 
entropy reflects the statistical nature of macroscopic 
phenomena. Their work established entropy as a unifying 
concept across physics and information theory, explaining 
why systems evolve toward states of maximum disorder—
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transmission and modeling noise, Shannon established upper 
bounds for reliable communication [193], [194]. His use of 
Maxwell’s demon metaphor illustrated how knowledge 
modifies system behavior. Yet, the parallel between 
Shannon’s and Boltzmann’s equations—though 
mathematically elegant—rests on a conceptual ambiguity: 
are these entropies truly interchangeable, or merely 
analogous? [31]

Boltzmann’s entropy, which quantifies microstate 
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negentropy argument—that information is negative 
entropy—attempted to resolve Maxwell’s demon paradox but 
introduced a problematic inversion: thermal entropy cannot 
be negative, and transmitted information must remain 
physically realizable [196]. This unresolved contradiction 
underscores deeper issues with equating physical and 
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abstract computation and physical entropy, reinforcing the 
materiality of information. Jaynes extended this logic, 
interpreting entropy as missing microstate information and 
linking macroscopic thermodynamic laws with probabilistic 
models [26], [27], [199]. Though not equivalent, 
thermodynamic and informational entropy can be expressed 
in the same units, such as bits [45].

Critically, this unification remains epistemological, not 
ontological. Layzer argued that total system information 
includes both known values and entropy as uncertainty 
[200], suggesting a complementary relationship. 
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a macrostate is expressed as:
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𝑆𝑆 = 𝑘𝑘𝐵𝐵 ln(𝑁𝑁! ∏𝑁𝑁𝑖𝑖!⁄ ).                              (4)

This equation links entropy to the count of microscopic 
arrangements, showing that disorder grows with 
configurational complexity [182]–[186].

Jaynes generalized this view using information theory, 
defining entropy over a probability distribution:
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Here, 𝑝𝑝𝑖𝑖 represents the probability of being in microstate 𝑖𝑖, 
and  𝐻𝐻 is the expected uncertainty across all states [184]. 
This bridges physical entropy and information entropy by 
treating disorder as an outcome of probabilistic distributions.
Those probabilities can be modeled by the Boltzmann 
distribution:
In this expression, 𝜀𝜀𝑖𝑖 is the energy of microstate 𝑖𝑖, 𝜃𝜃 is the 
system’s absolute temperature, and the denominator ensures 
normalization. It formalizes how systems favor lower-energy 
states as temperature decreases [185]. Assuming all 𝛺𝛺
microstates are equally probable—i.e., 𝑝𝑝𝑖𝑖 = 1 𝛺𝛺⁄ —the 
entropy reduces to:
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This is the well-known Boltzmann entropy formula, derived 
from the principle of equal a priori probabilities and showing 
that entropy increases with the logarithm of the number of 
accessible microstates [187]–[189].

Ultimately, Boltzmann and Gibbs demonstrated that 
entropy reflects the statistical nature of macroscopic 
phenomena. Their work established entropy as a unifying 
concept across physics and information theory, explaining 
why systems evolve toward states of maximum disorder—
the most statistically probable configurations [190].
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Recent research confirms that information entropy plays a 
foundational role in modeling complexity, structure, and 

uncertainty across disciplines. In colloidal systems, entropy 
alone can drive self-organization without energetic input 
[191]. In biomolecular environments, it governs non-
equilibrium dynamics [29], while in risk management, it 
enables quantitative approaches to uncertainty [30]. These 
examples reinforce entropy’s function as a cross-cutting 
analytical tool—but also expose divergent assumptions in its 
interpretation.

Shannon's communication theory reframed entropy as a 
probabilistic measure of uncertainty, echoing thermodynamic 
formulations [192]. By quantifying limits in signal 
transmission and modeling noise, Shannon established upper 
bounds for reliable communication [193], [194]. His use of 
Maxwell’s demon metaphor illustrated how knowledge 
modifies system behavior. Yet, the parallel between 
Shannon’s and Boltzmann’s equations—though 
mathematically elegant—rests on a conceptual ambiguity: 
are these entropies truly interchangeable, or merely 
analogous? [31]

Boltzmann’s entropy, which quantifies microstate 
multiplicity [195], is often equated to information entropy, 
yet this equivalence is not straightforward. Brillouin’s 
negentropy argument—that information is negative 
entropy—attempted to resolve Maxwell’s demon paradox but 
introduced a problematic inversion: thermal entropy cannot 
be negative, and transmitted information must remain 
physically realizable [196]. This unresolved contradiction 
underscores deeper issues with equating physical and 
semantic domains.

Landauer’s principle addressed this by grounding 
information in thermodynamic irreversibility: erasing one bit 
produces heat, quantified by:
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Knowledge acquisition reduces entropy—but only within 
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frameworks like infophysics to operationalize these 
analogies.

Shannon’s foundational contribution to information 
theory introduced entropy as a probabilistic measure of 
information content and uncertainty [67]. The total 
information 𝐼𝐼 transmitted from a finite source with 𝑀𝑀
possible messages is given by:

𝐼𝐼 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑀𝑀).                                       (9)

For binary systems, such as 𝑁𝑁 relay circuits with two 
states each, the information capacity becomes:

𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2(2𝑁𝑁) = 𝑁𝑁.                       (10)
This binary abstraction laid the groundwork for digital 
encoding and system-level quantification.

Shannon entropy is defined as the average uncertainty per 
symbol, formalized in parallel to Boltzmann’s entropy:

where 𝑝𝑝𝑖𝑖 denotes the probability of observing symbol 𝑖𝑖 [26], 
[27], [204], [205]. Building on this, Cumulative Residual 
Entropy (CRE) has emerged as a refinement for non-
parametric datasets, particularly in finance and risk [206]. 
Unlike Shannon entropy, CRE is concave, nonlinear, and 
sensitive to historical dependencies—ideal for modeling 
fractional-order and heavy-tailed data distributions. This 
connects to residual entropy in physical systems, such as 
imperfect crystals at near-zero temperature, where disorder 
persists despite minimized energy [207], [208].

The degradation of a binary message—where parts of the 
sequence are lost or altered—serves as a useful analogy for 
rising entropy. Just as corrupted information increases 
uncertainty, residual entropy describes persistent disorder in 
physical systems like imperfect crystals, even at low energy 
states [207], [208].

This analogy supports the broader categorization of 
entropy into three major forms: thermal, residual, and 
informational. As Popovic and others explain [70], these 
categories differ in context and units—joules per kelvin in 
material sciences, bits in information theory—but share a 
probabilistic foundation [209], [210]. Each form expresses 
how uncertainty or disorder evolves within different types of 
systems.

Rather than focusing on formal equations, what matters is 
the conceptual bridge: entropy consistently reflects the limits 
of structure and predictability. Whether modeling energy 
dispersion, structural imperfection, or communication loss, 
entropy highlights the dynamics of systems moving toward 
less ordered states.

This trifold view creates a common ground for 
interdisciplinary integration. It also builds the theoretical 
foundation for applying entropy to BPM, where managing 

variability, unpredictability, and informational degradation is 
increasingly critical.

HH.. EEMMPPIIRRIICCAALL  FFOOUUNNDDAATTIIOONNSS  AANNDD  AANNAALLOOGGIICCAALL  
EEXXTTEENNSSIIOONNSS  OOFF  IINNFFOORRMMAATTIIOONN  EENNTTRROOPPYY  IINN BBPPMM

The systematic review conducted through the PRISMA 
framework reveals that the concept of process information 
entropy emerged well before 2018, with its foundational 
application in BPM environments presented by Jung in 2008 
[32]. This early study assessed task execution uncertainty by 
quantifying entropy in control-flow constructs, thereby 
offering a mathematical lens for improving workflow 
scheduling and resource assignment.

Subsequent advancements formalized entropy’s use in 
capturing process variability and control-flow uncertainty, 
providing metrics tailored to dynamic environments [33]. 
These studies marked a shift from conceptual application to 
performance-oriented BPM design.

Entropy-based clustering and resource optimization, as 
implemented in real-world healthcare settings [40], pushed 
this further. By leveraging process mining to predict task 
preferences and optimize allocation, the Multi-Criteria 
Resource Recommendation (MCRR) method outperformed 
heuristic and learning-based approaches. This confirmed 
entropy's utility in balancing workloads and enhancing 
process efficiency.

Beyond BPM-specific models, broader empirical research 
has demonstrated entropy’s relevance in organizational 
processes. A bibliometric analysis spanning 980 articles [9] 
linked entropy not only to accounting and decision-making 
structures but also to organizational communication and 
cultural flow—suggesting entropy operates beyond formal 
process frameworks.

A notable example from educational systems during the 
COVID-19 crisis illustrates entropy's practical influence. In a 
study on real-time online courses across Greater China [211], 
entropy was used to describe uncertainty stemming from 
fragmented digital delivery. By reducing this entropy—
through improved integration across platforms—educational 
outcomes and resource allocation improved. While not BPM 
in name, the process-oriented nature of this entropy reduction 
is structurally analogous.

Likewise, an entropy-weighted model for real-time mobile 
device performance used a combination of time series data 
and the TOPSIS method to improve user experience and 
responsiveness [42]. Entropy enabled more accurate signal 
weighting and dynamic adaptation, demonstrating its role in 
optimizing responsiveness under variability.

These cases support a broader inference through analogical 
induction: if entropy-based methodologies have succeeded in 
systems characterized by dynamic flows and resource 
constraints, then their application in BPM is not only 
plausible but theoretically justified [212], [213]. Though this 
reasoning is not deductively certain, it presents a robust 
framework for exploring entropy's translational potential.

𝑆𝑆 = −𝐾𝐾∑ 𝑝𝑝𝑖𝑖𝑛𝑛
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informational. As Popovic and others explain [70], these 
categories differ in context and units—joules per kelvin in 
material sciences, bits in information theory—but share a 
probabilistic foundation [209], [210]. Each form expresses 
how uncertainty or disorder evolves within different types of 
systems.

Rather than focusing on formal equations, what matters is 
the conceptual bridge: entropy consistently reflects the limits 
of structure and predictability. Whether modeling energy 
dispersion, structural imperfection, or communication loss, 
entropy highlights the dynamics of systems moving toward 
less ordered states.

This trifold view creates a common ground for 
interdisciplinary integration. It also builds the theoretical 
foundation for applying entropy to BPM, where managing 

variability, unpredictability, and informational degradation is 
increasingly critical.

HH.. EEMMPPIIRRIICCAALL  FFOOUUNNDDAATTIIOONNSS  AANNDD  AANNAALLOOGGIICCAALL  
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The systematic review conducted through the PRISMA 
framework reveals that the concept of process information 
entropy emerged well before 2018, with its foundational 
application in BPM environments presented by Jung in 2008 
[32]. This early study assessed task execution uncertainty by 
quantifying entropy in control-flow constructs, thereby 
offering a mathematical lens for improving workflow 
scheduling and resource assignment.

Subsequent advancements formalized entropy’s use in 
capturing process variability and control-flow uncertainty, 
providing metrics tailored to dynamic environments [33]. 
These studies marked a shift from conceptual application to 
performance-oriented BPM design.

Entropy-based clustering and resource optimization, as 
implemented in real-world healthcare settings [40], pushed 
this further. By leveraging process mining to predict task 
preferences and optimize allocation, the Multi-Criteria 
Resource Recommendation (MCRR) method outperformed 
heuristic and learning-based approaches. This confirmed 
entropy's utility in balancing workloads and enhancing 
process efficiency.

Beyond BPM-specific models, broader empirical research 
has demonstrated entropy’s relevance in organizational 
processes. A bibliometric analysis spanning 980 articles [9] 
linked entropy not only to accounting and decision-making 
structures but also to organizational communication and 
cultural flow—suggesting entropy operates beyond formal 
process frameworks.

A notable example from educational systems during the 
COVID-19 crisis illustrates entropy's practical influence. In a 
study on real-time online courses across Greater China [211], 
entropy was used to describe uncertainty stemming from 
fragmented digital delivery. By reducing this entropy—
through improved integration across platforms—educational 
outcomes and resource allocation improved. While not BPM 
in name, the process-oriented nature of this entropy reduction 
is structurally analogous.

Likewise, an entropy-weighted model for real-time mobile 
device performance used a combination of time series data 
and the TOPSIS method to improve user experience and 
responsiveness [42]. Entropy enabled more accurate signal 
weighting and dynamic adaptation, demonstrating its role in 
optimizing responsiveness under variability.

These cases support a broader inference through analogical 
induction: if entropy-based methodologies have succeeded in 
systems characterized by dynamic flows and resource 
constraints, then their application in BPM is not only 
plausible but theoretically justified [212], [213]. Though this 
reasoning is not deductively certain, it presents a robust 
framework for exploring entropy's translational potential.

𝑆𝑆 = −𝐾𝐾∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖 ,         (11)
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This binary abstraction laid the groundwork for digital encoding 
and system-level quantification.

Shannon entropy is defined as the average uncertainty per symbol, 
formalized in parallel to Boltzmann’s entropy: 

where pi denotes the probability of observing symbol i [26, 
27,204,205]. Building on this, Cumulative Residual Entropy 
(CRE) has emerged as a refinement for non-parametric datasets, 
particularly in finance and risk [206]. Unlike Shannon entropy, CRE 
is concave, nonlinear, and sensitive to historical dependencies—
ideal for modeling fractional-order and heavy-tailed data 
distributions. This connects to residual entropy in physical systems, 
such as imperfect crystals at near-zero temperature, where disorder 
persists despite minimized energy [207,208].

The degradation of a binary message—where parts of the sequence 
are lost or altered—serves as a useful analogy for rising entropy. 
Just as corrupted information increases uncertainty, residual 
entropy describes persistent disorder in physical systems like 
imperfect crystals, even at low energy states [207,208].

This analogy supports the broader categorization of entropy 
into three major forms: thermal, residual, and informational. As 
Popovic and others explain these categories differ in context and 
units—joules per kelvin in material sciences, bits in information 
theory—but share a probabilistic foundation [209,210]. Each form 
expresses how uncertainty or disorder evolves within different 
types of systems.

Rather than focusing on formal equations, what matters is the 
conceptual bridge: entropy consistently reflects the limits of 
structure and predictability. Whether modeling energy dispersion, 
structural imperfection, or communication loss, entropy highlights 
the dynamics of systems moving toward less ordered states.

This trifold view creates a common ground for interdisciplinary 
integration. It also builds the theoretical foundation for applying 
entropy to BPM, where managing variability, unpredictability, and 
informational degradation is increasingly critical.

3.9 Empirical Foundations And Analogical Extensions Of In-
formation Entropy In Bpm
The systematic review conducted through the PRISMA framework 
reveals that the concept of process information entropy emerged 
well before 2018, with its foundational application in BPM 
environments presented by Jung in 2008 [32]. This early study 
assessed task execution uncertainty by quantifying entropy in 
control-flow constructs, thereby offering a mathematical lens for 
improving workflow scheduling and resource assignment.

Subsequent advancements formalized entropy’s use in capturing 
process variability and control-flow uncertainty, providing metrics 
tailored to dynamic environments [33]. These studies marked a 

shift from conceptual application to performance-oriented BPM 
design.

Entropy-based clustering and resource optimization, as 
implemented in real-world healthcare settings pushed this further. 
By leveraging process mining to predict task preferences and 
optimize allocation, the Multi-Criteria Resource Recommendation 
(MCRR) method outperformed heuristic and learning-based 
approaches. This confirmed entropy's utility in balancing 
workloads and enhancing process efficiency.

Beyond BPM-specific models, broader empirical research has 
demonstrated entropy’s relevance in organizational processes. 
A bibliometric analysis spanning 980 articles linked entropy not 
only to accounting and decision-making structures but also to 
organizational communication and cultural flow—suggesting 
entropy operates beyond formal process frameworks [9].

A notable example from educational systems during the COVID-19 
crisis illustrates entropy's practical influence. In a study on real-time 
online courses across Greater China entropy was used to describe 
uncertainty stemming from fragmented digital delivery[211]. 
By reducing this entropy—through improved integration across 
platforms—educational outcomes and resource allocation 
improved. While not BPM in name, the process-oriented nature of 
this entropy reduction is structurally analogous.

Likewise, an entropy-weighted model for real-time mobile device 
performance used a combination of time series data and the 
TOPSIS method to improve user experience and responsiveness 
[42]. Entropy enabled more accurate signal weighting and dynamic 
adaptation, demonstrating its role in optimizing responsiveness 
under variability.

These cases support a broader inference through analogical 
induction: if entropy-based methodologies have succeeded in 
systems characterized by dynamic flows and resource constraints, 
then their application in BPM is not only plausible but theoretically 
justified [212,213]. Though this reasoning is not deductively 
certain, it presents a robust framework for exploring entropy's 
translational potential.

Foundational studies and align entropy with BPM’s core tenets—
uncertainty reduction, resource optimization, and execution 
clarity. Other studies reinforce entropy’s adaptability in real-
time environments[9,32,33,40,42,211]. Together, they establish 
a coherent bridge between empirical implementations and BPM-
specific design logic.

This review thus situates information entropy not just as a borrowed 
metaphor, but as a measurable, operational construct with tested 
utility. It lays the groundwork for further inquiry into how entropy 
can help manage risk, variability, and optimization in increasingly 
complex business processes.

frameworks like infophysics to operationalize these 
analogies.

Shannon’s foundational contribution to information 
theory introduced entropy as a probabilistic measure of 
information content and uncertainty [67]. The total 
information 𝐼𝐼 transmitted from a finite source with 𝑀𝑀
possible messages is given by:

𝐼𝐼 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑀𝑀).                                       (9)

For binary systems, such as 𝑁𝑁 relay circuits with two 
states each, the information capacity becomes:

𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2(2𝑁𝑁) = 𝑁𝑁.                       (10)
This binary abstraction laid the groundwork for digital 
encoding and system-level quantification.

Shannon entropy is defined as the average uncertainty per 
symbol, formalized in parallel to Boltzmann’s entropy:

where 𝑝𝑝𝑖𝑖 denotes the probability of observing symbol 𝑖𝑖 [26], 
[27], [204], [205]. Building on this, Cumulative Residual 
Entropy (CRE) has emerged as a refinement for non-
parametric datasets, particularly in finance and risk [206]. 
Unlike Shannon entropy, CRE is concave, nonlinear, and 
sensitive to historical dependencies—ideal for modeling 
fractional-order and heavy-tailed data distributions. This 
connects to residual entropy in physical systems, such as 
imperfect crystals at near-zero temperature, where disorder 
persists despite minimized energy [207], [208].

The degradation of a binary message—where parts of the 
sequence are lost or altered—serves as a useful analogy for 
rising entropy. Just as corrupted information increases 
uncertainty, residual entropy describes persistent disorder in 
physical systems like imperfect crystals, even at low energy 
states [207], [208].

This analogy supports the broader categorization of 
entropy into three major forms: thermal, residual, and 
informational. As Popovic and others explain [70], these 
categories differ in context and units—joules per kelvin in 
material sciences, bits in information theory—but share a 
probabilistic foundation [209], [210]. Each form expresses 
how uncertainty or disorder evolves within different types of 
systems.

Rather than focusing on formal equations, what matters is 
the conceptual bridge: entropy consistently reflects the limits 
of structure and predictability. Whether modeling energy 
dispersion, structural imperfection, or communication loss, 
entropy highlights the dynamics of systems moving toward 
less ordered states.

This trifold view creates a common ground for 
interdisciplinary integration. It also builds the theoretical 
foundation for applying entropy to BPM, where managing 

variability, unpredictability, and informational degradation is 
increasingly critical.
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The systematic review conducted through the PRISMA 
framework reveals that the concept of process information 
entropy emerged well before 2018, with its foundational 
application in BPM environments presented by Jung in 2008 
[32]. This early study assessed task execution uncertainty by 
quantifying entropy in control-flow constructs, thereby 
offering a mathematical lens for improving workflow 
scheduling and resource assignment.

Subsequent advancements formalized entropy’s use in 
capturing process variability and control-flow uncertainty, 
providing metrics tailored to dynamic environments [33]. 
These studies marked a shift from conceptual application to 
performance-oriented BPM design.

Entropy-based clustering and resource optimization, as 
implemented in real-world healthcare settings [40], pushed 
this further. By leveraging process mining to predict task 
preferences and optimize allocation, the Multi-Criteria 
Resource Recommendation (MCRR) method outperformed 
heuristic and learning-based approaches. This confirmed 
entropy's utility in balancing workloads and enhancing 
process efficiency.

Beyond BPM-specific models, broader empirical research 
has demonstrated entropy’s relevance in organizational 
processes. A bibliometric analysis spanning 980 articles [9] 
linked entropy not only to accounting and decision-making 
structures but also to organizational communication and 
cultural flow—suggesting entropy operates beyond formal 
process frameworks.

A notable example from educational systems during the 
COVID-19 crisis illustrates entropy's practical influence. In a 
study on real-time online courses across Greater China [211], 
entropy was used to describe uncertainty stemming from 
fragmented digital delivery. By reducing this entropy—
through improved integration across platforms—educational 
outcomes and resource allocation improved. While not BPM 
in name, the process-oriented nature of this entropy reduction 
is structurally analogous.

Likewise, an entropy-weighted model for real-time mobile 
device performance used a combination of time series data 
and the TOPSIS method to improve user experience and 
responsiveness [42]. Entropy enabled more accurate signal 
weighting and dynamic adaptation, demonstrating its role in 
optimizing responsiveness under variability.

These cases support a broader inference through analogical 
induction: if entropy-based methodologies have succeeded in 
systems characterized by dynamic flows and resource 
constraints, then their application in BPM is not only 
plausible but theoretically justified [212], [213]. Though this 
reasoning is not deductively certain, it presents a robust 
framework for exploring entropy's translational potential.

𝑆𝑆 = −𝐾𝐾∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖 ,         (11)
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4. Discussion
4.1 Systemic Foundations Of Bpm: Toward an Info physical 
Perspective
This review synthesizes BPM with complexity theory, information 
entropy, and foundational principles from physics to propose a 
structured and adaptive process management model. Standardized 
BPM frameworks are shown to improve consistency and 
efficiency, while emerging technologies such as blockchain, AI, 
and big data further extend BPM's relevance in addressing complex 
organizational challenges [1,2,5, 85–87].

Shannon’s information entropy offers a quantitative lens 
for evaluating process variability, enriching traditional KPI 
systems by capturing dynamic behaviors [17,32,40,110]. Its 
practical applications in healthcare settings demonstrate that 
entropy metrics can support optimal workload distribution and 
resource management [40]. Furthermore, Popovic’s tripartite 
classification—thermal, residual, and informational entropy—
offers a conceptual basis for understanding process variability in 
BPM [70].

Interdisciplinary perspectives from econophysics and statistical 
mechanics contribute models that sharpen BPM's applicability in 
complex social and economic systems [20,47,49,121]. Collectively, 
these findings support a framework that leverages entropy to 
improve operational predictability and efficiency in sectors marked 
by high variability, such as healthcare [17,32,33,40].

4.2 Evaluation Of The Working Hypothesis
Hypothesis: The central hypothesis of this review suggests that 
integrating BPM with entropy-based metrics forms a cohesive 
managerial framework that enhances process efficiency by 
embedding structured, physics-informed methodologies. This 
was examined through a PRISMA-guided systematic review [51], 
drawing from both theoretical and empirical sources. The evidence 
confirms a synergistic potential between BPM and entropy models 
for optimizing processes and enhancing decision-making.

Validation and Falsification Criteria: Information entropy 
introduces quantifiable means for addressing process uncertainty 
in structured business environments [74,107]. Its ability to 
measure variability allows decision-makers to assess and 
reduce unpredictability in scheduling and resource distribution 
[17,32,110]. Empirical data further shows that lower entropy levels 
correlate with improved operational efficiency, as seen in mobile 
device performance models and healthcare BPM scenarios [33,48]. 
The evidence affirms the hypothesis: entropy-enhanced BPM 
constitutes a viable, scalable framework for managing uncertainty 
and complexity across domains. Insights from econophysics and 
statistical mechanics further reinforce its theoretical robustness 
and cross-domain applicability [20,28,126,178].

LEMMA 1. This lemma synthesizes the findings and conceptu-
ally anchors the proposed framework.
Literary evidence across BPM and information entropy reveals a 
converging pattern. When interpreted through inductive reasoning, 

this pattern supports the integration of both fields under the 
metaparadigm of managerial infophysics.

This lemma synthesizes the empirical and theoretical convergence, 
indicating that managerial infophysics—defined as a unified 
framework that bridges entropy metrics with BPM—offers both 
conceptual and applied utility [214].

Emergent Research Questions and Expected Outcomes: Au-
tomated BPM can significantly enhance process alignment and 
resource optimization, paving the way for more agile business 
architectures [15]. Likewise, econophysical modeling in finance 
provides novel tools for evaluating risk, improving systemic resil-
ience [215,216]. 

In tandem, advanced statistical methodologies enhance entropy-
based frameworks, particularly in analyzing uncertainty-prone 
environments and social dynamics [144]. From these intersections, 
three research questions and their corresponding outcomes are 
proposed:
•	 ERQ1: How can industry-specific BPM frameworks enhance 

synchronization and reduce organizational fragmentation?
•	 EEO1: Such frameworks are expected to improve consistency 

and efficiency across verticals by aligning fragmented 
operations.

•	 ERQ2: In what ways can automation in BPM reduce manual 
interventions and improve process accuracy?

•	 EEO2: Automation leads to optimal resource use, increased 
accuracy, and a more responsive BPM infrastructure.

•	 ERQ3: How can econophysical risk models and statistical 
analysis of intraday data deepen our understanding of 
organizational behavior?

•	 EEO3: These models can yield improved financial resilience 
and more granular insights into social systems, benefiting 
both strategic and operational planning.

Mplications And Future Outlook Of Entropy-Integrated Bpm
Using the PRISMA framework, this review outlines BPM’s 
evolution across disciplines and its integration with entropy-
driven approaches. Core principles—value creation, optimization, 
standardization, and effective management—emerged alongside 
paradigms like quality control, epistemic management, and 
IT innovations, including TQM, Six Sigma, and ERP systems 
[217–219]. Languages like BPMN and historical-data-based 
probabilistic models support managing structural complexity and 
predicting process uncertainty [217–219].

Transdisciplinary integration, particularly through entropy, 
strengthens BPM by applying universal laws of energy and 
uncertainty to structured operations [33,215,220–222]. Yet, 
entropy remains underutilized strategically [223]. Foundational 
obstacles and limited conceptual clarity hinder its organizational 
integration. Structural inefficiencies caused by organizational 
entropy reinforce BPM’s relevance in managing variability 
[17,18,32,33,40,107,110].
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Challenges include fragmented modeling tools, OR-join 
ambiguities, and limited human-centered frameworks [224-230]. 
Real-time data processing via Digital Process Twins (DPTs) 
shows promise for performance monitoring but raises issues of 
computational cost and scalability [15,216,231]. Methodological 
inconsistencies and definitional fragmentation remain barriers in 
knowledge-intensive sectors while entropy-based KPIs introduce 
complexity bottlenecks [109, 231–234, 235,236].

Emerging fields like econophysics and sociophysics offer 
predictive modeling tools to assess market dynamics, risk, and 
urban behavior [47,237–240]. Post-2008 critiques of conventional 
economics prompted cross-disciplinary interest in agent-based 
macro-dynamics though challenges in modeling intention limit 
physics-style coarse-graining in social systems [49,144,241–243].

To future-proof BPM within the managerial info physics paradigm, 
this review proposes the following postulations:
Context-Specific Adaptation: BPM should reflect industry-
specific and organizational cultures.
Competency Development: Establish governance structures and 
performance metrics.
Stakeholder-Centric Design: Foster adoption through active 
participant engagement.
Technological Compatibility: Balance system customization and 
integration cost-effectively.
Continuous Evolution: Embed feedback mechanisms for 
adaptability and resilience.

These postulations support the transition of BPM into a dynamic, 
entropy-informed framework that is equipped to manage 
uncertainty, foster innovation, and optimize resource allocation 
across complex systems.

Future Research Trajectories And Limitations In Entropy-
Informed Bpm
The intersection of BPM and information entropy reveals 
considerable opportunities for advancing predictive modeling and 
adaptive process design. Notably, entropy-driven frameworks can 
enhance dynamic decision-making and evaluate organizational 
change preemptively through models that incorporate analytics, 
machine learning, and complexity theory [244-246]. These 
adaptive models, grounded in interdisciplinary synthesis, can 
quantify process predictability, optimize resource allocation, and 
manage complexity using entropy-based computational tools [247, 
248].

Modern BPM systems must support explorative capabilities 
alongside operational stability. Explorative BPM—emphasizing 
external trend detection and innovation—aligns naturally 
with managerial info physics by broadening traditional BPM 
scopes [216,228]. Methodologies integrating IIoT-driven data 
and Complex Event Processing (CEP) may improve real-time 
execution, automation, and decision-making [15]. However, 
practical frameworks for Explorative BPM remain underdeveloped 
[216,249].

Entropy-informed BPM also invites the development of 
performance metrics rooted in probabilistic reasoning, which 
can reduce inefficiencies through blockchain-based information 
resilience [250-255]. Research should address known tool 
limitations and embed human-system interaction into standardized 
BPM frameworks [230]. This includes balancing innovation 
with process reliability and developing fractal or complexity-
driven models for social systems particularly relevant to smart 
manufacturing [256–261].

Although the conceptual underpinnings of managerial info physics 
are strong, practical implementation remains nascent. Future 
efforts should focus on real-time entropy modeling tools and 
refining methods for empirical testing [258].

The scalability and generalizability of entropy-integrated BPM 
face several challenges. While conceptually robust, entropy’s 
practical deployment across sectors demands deeper empirical 
support [9,262]. BPM tools often lack adaptability for high-
variability environments and struggle to model uncertainty, 
particularly in industries with dynamic, human-influenced 
processes [17,32,33,71,72,74, 81,107,110].

The internal focus of traditional BPM constrains innovation and 
limits responsiveness to external environmental shifts [216]. As 
PAIS and hyper-automation evolve, scalability pressures mount, 
particularly as manual tasks increase system complexity and 
cognitive load [263]. Rigid legacy frameworks frequently fail 
to align with modern manufacturing and digital transformation 
demands [264].

Moreover, entropy’s value as a measure of process unpredictability 
remains under-leveraged, partly due to methodological 
inconsistencies and measurement complexities [33,206,265]. 
Traditional BPM systems also tend to prioritize individual 
components over systemic coherence, hampering holistic cross-
organizational process governance.

Finally, data scarcity and abstract modeling constraints present 
methodological limitations. The empirical quantification of 
organizational entropy remains difficult while static BPM 
approaches overlook emergent uncertainty dimensions 
[266,267]. Adapting to digital transformation requires real-time 
responsiveness and robust metric standardization [255]. Without 
durable implementation frameworks, tools become obsolete, 
and hyper-automation may increase systemic fragility unless 
BPM evolves toward more adaptive, entropy-sensitive models 
[231,266].

5. Conclusion
This systematic review initially aimed to explore the convergence 
of econophysics and managerial science. However, during 
the research process, it became evident that the integration of 
information entropy necessitated a broader theoretical scope, 
prompting the inclusion of informatics as a bridging discipline 
between physics and information science. Following early 
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dissemination of preliminary results at the 33rd European 
Conference on Operational Research the study’s scope and title 
were refined to better reflect its interdisciplinary breadth [268].

Anchored in the PRISMA methodology, this review evaluated both 
in-scope and select out-of-scope works for contextual significance. 
Drawing a parallel with physical systems—where homogeneous 
states in equilibrium and heterogeneous systems in quasi-stationary 
states are both of interest—BPM is proposed here as a framework 
for examining open, dynamic, and complex systems through the 
analytical lens of information entropy.

Using analogical induction as a methodological guide, this work 
proposes interdisciplinary connections grounded in precedent. This 
approach, while lacking deductive certainty, supports hypothesis 
formation by applying established theories in novel contexts, 
exemplified historically through the transfer of thermodynamic 
and biological models into economics and [269].

A core contribution of this review is the substantiation of entropy-
based metrics in BPM. Originally used to quantify uncertainty 
in thermodynamics and information theory, entropy now shows 
promise in quantifying execution uncertainty and variability within 
business workflows [270]. Developing a formal tool to empirically 
measure execution entropy would provide a unified and scalable 
method to identify inefficiencies and enhance predictability in 
high-variability sectors.

However, conceptual misapplications of entropy remain common. 
Clarifying the distinctions between thermodynamic, residual, and 
informational entropy is essential [177]. Among these, information 
entropy—while rooted in communication theory—emerges as the 
most versatile, with applications spanning biomolecular systems, 
risk analysis, and process.

The review also identifies entropy as a bridge between theoretical 
modeling and strategic decision-making, applicable in evaluating 
system complexity, density, and cohesiveness in BPM [204]. 
Moreover, the emergence of cognitive weight models and 
resource-alignment strategies based on entropy further underlines 
its practical potential [6,270].

Econophysics continues to contribute theoretical tools for 
understanding systemic dynamics, though its integration into 
BPM remains underdeveloped [125]. Meanwhile, advances in 
simulation and process mining present opportunities to improve 
training and execution models by connecting event data with 
entropy-based metrics [163,269].

Importantly, entropy also influences organizational culture and 
responsiveness. By quantifying systemic variability, it offers 
a framework for aligning resource flexibility with customer-
centric strategies, enabling firms to respond more effectively to 
volatile environments [38,41,132]. Managerial infophysics, as 
proposed, unifies these insights into a metaparadigm that interprets 
processes as interrelated systems, emphasizing outputs, dialectical 

interactions, and the role of managerial cognition in shaping 
organizational evolution.

While Shannon entropy remains the prevailing model in BPM 
literature, recent developments in econophysics and financial 
modeling suggest that q-Tsallis entropy—used in modeling non-
Gaussian distributions and long-range dependencies—could extend 
the theoretical and practical reach of BPM [20,271–274]. Though 
underrepresented in BPM-specific studies, its demonstrated 
applicability in risk assessment and volatility modeling presents a 
compelling direction for future research.

Ultimately, managerial info physics is proposed as a metaparadigm 
that conceptualizes business processes through the lens of 
systemic interconnectivity and informational dynamics. While its 
empirical validation remains limited, this framework provides a 
novel epistemological foundation for advancing BPM as both a 
theoretical construct and an adaptive management tool in complex, 
data-driven environments.
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