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Abstract
This article is Part 17 of the author’s linear elastic glucose behavior study. It summarizes key conclusions from the 
first 16 segments of his research work regarding the data range of GH.p-modulus values [9 through 23]. 
 
This research report includes the following:
 
(1) The author’s personal data and GH.p-modulus values;
(2) The data and GH.p-modulus values of three US patients and two Myanmar patients;
(3) The low-bound and high-bound analysis from eight hypothetical standard cases of different carbs/sugar intake 
amounts and post-meal walking steps;
(4) The data with high quite GH.p-modulus values from a special investigation case using 285 egg meals with neu-
roscience influences. 
 
The following paragraphs describe his key variable definitions and mathematical operations of obtaining the 
GH.p-modulus: 
 
(1) Baseline PPG equals to 97% of fasting plasma glucose (FPG) value, or 97% * (weight * GH.f-Modulus). 
(2) Baseline PPG plus increased amount of PPG due to food, i.e., plus (carbs/sugar intake amount * GH.p-Modulus). 
(3) Baseline PPG plus increased PPG due to food, and then subtracts reduction amount of PPG due to exercise, i.e., 
minus (post-meal walking k-steps * 5). 
(4) The Predicted PPG equals to Baseline PPG plus the food influences, and then subtracts the exercise influences. 
 
The linear elastic glucose equation is: 
Predicted PPG = (0.97 * GH.f-modulus * Weight) +(GH.p-modulus * Carbs&sugar) - (post-meal walking k-steps * 
5) 
 
Where, 
(1) Incremental PPG = Predicted PPG - Baseline PPG + Exercise impact
(2) GH.f-modulus = FPG / Weight
(3) GH.p-modulus = Incremental PPG / Carbs intake
 
Therefore,
 
GH.p-modulus = (PPG - (0.97 * FPG) + (post-meal walking k-steps * 5)) / (Carbs&Sugar intake)
 
This study is a summarized report of the author’s previous 16 segments of research articles on linear elastic glucose 
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theory. He focuses on the GH.p-Modulus using four different data groups which cover patients of different nationali-
ties, varying time periods, comparison between pre-virus vs. COVID-19 periods, finger glucoses vs. sensor glucoses, 
hypothetical boundary analysis (upper bound and lower bound), and a special neuroscience study of egg meals to 
arrive at the following observed conclusion. 
 
In summary, the author presumes that most patients still having a reasonable normal lifestyles, their GH.p-Modulus 
value should be located between 1.0 and 6.0. In this study of linear elastic glucose theory, the GH.p-modulus indeed 
reflects the actual general health conditions and lifestyle details of a patient. 
 
Practical advice of GH.p-Modulus to patients 
(1) If you have a record for some of your glucoses, carbs/sugar intake amount, and post-meal walking steps, then you 
may use this equation to calculate your GH.p-Modulus: 

GH.p-Modulus = ((0.97*FPG) + (post-meal k-steps*5)) / (Carbs&sugar amount)

(2) If you don’t have your data stored, then you may apply the following suggestions: If your diabetes conditions is 
moderate (HbA1C ~7.0 & glucose ~150 mg/dL), then use 1.8 to 2.2 for your GH.p-Modulus; and if your diabetes 
conditions is more serious (HbA1C >8.0 & glucose >180 mg/dL), then use 2.5 to 3.3 for your GH.p-Modulus. 

(3) Normally, the GH.p-Modulus should be within 1.5 to 2.5; however, if you want to be more conservative in predict-
ing your PPG, then you may use the GH.p-Modulus greater than 3.0 in the following equation: 

Predicted PPG = (0.97 * FPG) + (GH.p-Modulus * carbs& sugar) - (post-meal walking k-steps * 5) 

Introduction 
This article is Part 17 of the author’s linear elastic glucose behavior 
study. It summarizes key conclusions from the first 16 segments of 
his research work regarding the data range of GH.p-modulus val-
ues [9, 23]. 
 
This research report includes the following:
 
1.	 The author’s personal data and GH.p-modulus values;
2.	 The data and GH.p-modulus values of three US patients and 

two Myanmar patients;
3.	 The low-bound and high-bound analysis from eight hypothet-

ical standard cases of different carbs/sugar intake amounts 
and post-meal walking steps;

4.	 The data with quite high GH.p-modulus values from a special 
investigation case using 285 egg meals with neuroscience in-
fluences.  

 
Methods 
Background
To learn more about the author’s GH-Method: math-physical med-
icine (MPM) methodology, readers can refer to his article to under-
stand his developed MPM analysis method in [1]. 
 
Stress, Strain, & Young’s Modulus
Prior to his medical research work, he was an engineer in the vari-
ous fields of structural engineering (aerospace, naval defense, and 
earthquake engineering), mechanical engineering (nuclear power 
plant equipments, and computer-aided-design), and electronics en-
gineering (computers, semiconductors, and software robot). 
 
The following excerpts come from the internet public domain, in-
cluding Google and Wikipedia: 
 
“Strain - ε:

Strain is the "deformation of a solid due to stress" - change in di-
mension divided by the original value of the dimension - and can 
be expressed as
ε = dL / L 
where
ε = strain (m/m, in/in)
dL = elongation or compression (offset) of object (m, in)
L = length of object (m, in)
 
Stress - σ:
Stress is force per unit area and can be expressed as
σ = F / A 
where
σ = stress (N/m2, lb./in2, psi)
F = applied force (N, lb.)
A = stress area of object (m2, in2)
 
Stress includes tensile stress, compressible stress, shearing stress, 
etc. 
 
E, Young's modulus:
It can be expressed as:
E = stress / strain
 = σ / ε
 = (F / A) / (dL / L) 
where
E = Young's Modulus of Elasticity (Pa, N/m2, lb/in2, psi) was 
named after the 18th-century English physicist Thomas Young. 
 
Elasticity
Elasticity is a property of an object or material indicating how it 
will restore it to its original shape after distortion. A spring is an 
example of an elastic object - when stretched, it exerts a restoring 
force which tends to bring it back to its original length. 
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Plasticity 
When the force is going beyond the elastic limit of material, it is 
into a “plastic’ zone which means even when force is removed, the 
material will not return back to its original state (Figure 1)

Figure 1:  The author’s case of 3 different time periods and 2 dif-
ferent glucose measuring devices.

Based on various experimental results, the following table lists 
some of Young’s modulus associated with different materials:
 
Nylon: 2.7 GPa
Concrete: 17-30 GPa
Glass fibers: 72 GPa
Copper: 117 GPa
Steel: 190-215 GPa
Diamond: 1220 GPa
 
Young’s modules in the above table are ranked from soft material 
(low E) to stiff material (higher E).”
 
Professor James Andrews taught the author strength of materi-
als and linear elasticity at the University of Iowa and Professor 
Norman Jones taught him nonlinear and dynamic plastic behav-
iors of structures at Massachusetts Institute of Technology. These 
two great academic mentors provided him with the foundational 
knowledge to understand these two important subjects in engineer-
ing. 
 
Highlights of Linear Elastic Glucose Theory
Here is the step-by-step explanation for the predicted PPG equa-
tion using linear elastic glucose theory as described in [9, 24]: 
 
1.	 Baseline PPG equals to 97% of FPG value, or 97% * (weight 

* GH.f-Modulus). 
2.	 Baseline PPG plus increased amount of PPG due to food, i.e., 

plus (carbs/sugar intake amount * GH.p-Modulus). 
3.	 Baseline PPG plus increased PPG due to food, and then sub-

tracts reduction amount of PPG due to exercise, i.e., minus 
(post-meal walking k-steps * 5). 

4.	 The Predicted PPG equals to Baseline PPG plus the food in-
fluences, and then subtracts the exercise influences. 

 
The Linear Elastic Glucose Equation is 

Predicted PPG = (0.97 * GH.f-modulus * Weight) + (GH.p-mod-
ulus * Carbs&sugar) - (post-meal walking k-steps * 5) 
 
Where
1.	 Incremental PPG = Predicted PPG - Baseline PPG + Exer-

cise impact
2.	 GH.f-modulus = FPG / Weight
3.	 GH.p-modulus = Incremental PPG / Carbs intake
 
Therefore,
 
GH.p-modulus = (PPG - (0.97 * FPG) + (post-meal walking 
k-steps * 5)) / (Carbs&Sugar intake)
 
By using this linear equation, a diabetes patient only needs the 
input data of body weight, carbs & sugar intake amount, and post-
meal walking steps in order to calculate the predicted PPG value 
without obtaining any measured glucose data.
 
In early 2014, the author came up with the analogy between theory 
of elasticity and plasticity and the severity of his diabetes condi-
tions when he was developing his mathematical model of metabo-
lism using topology concept and finite element method.
 
On 10/14/2020, by utilizing the concept of Young’s modulus with 
stress and strain, which was taught in engineering schools, he ini-
tiated and engaged this linear elastic glucose behaviors research. 
The following paragraphs describe his research findings at differ-
ent stages:
1.	 He discovered that there is a “pseudo-linear” relationship ex-

isting between carbs & sugar intake amount and incremental 
PPG amount. Based on this finding, he defined the first glu-
cose coefficient of GH.p-modulus for PPG. 

2.	 Similar to Young’s modulus relating to stiffness of engineer-
ing inorganic materials, he found that the GH.p-modulus is 
dependent upon the patient’s severity level of diabetes, i.e., 
the patient’s glucose sensitivity on carbs/sugar intake amount, 
which reflects this patient’s health state of liver cells and pan-
creatic beta cells. 

3.	 Comparable to GH.p-modulus for PPG, in 2017, he uncov-
ered a similar pseudo-linear relationship existing between 
weight and FPG with high correlation coefficient of above 
90%. Therefore, he defined the second glucose coefficient of 
GH.f-modulus as the FPG value divided by the weight val-
ue. This GH.f-modulus is related to the severity of combined 
chronic diseases, including both obesity and diabetes. More 
than 33 million Americans, about 1 in 10, have diabetes, and 
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approximately 90% to 95% of them have type 2 diabetes 
(T2D), where 86% also have problems with being overweight 
or obese. In other words, 7.7% to 8.2 % of the US population 
or 25 to 27 million Americans have issues with both obesity 
and diabetes. 

4.	 He inserted these two glucose coefficients of GH.p-modulus 
and GH.f-modulus, into the predicted PPG equation to re-
move the burden of collecting measured glucoses by patients.

 
5.	 By experimenting and calculating many predicted PPG val-

ues over a variety of time length from different diabetes pa-
tients with different health conditions, he finally revealed that 
GH.p-modulus seems to be “near-constant” or “pseudo-lin-
earized” over a short period of 3 to 4 months. This short 
period is compatible with the known lifespan of human red 
blood cells, which are living organic cells. This is quite dif-
ferent from the engineering inorganic materials, such as steel 
or concrete which can last for an exceptionally long period 
of time. The same conclusion was observed using his month-
ly GH.p-modulus data during the COVID-19 period in 2020 
when his lifestyle became routine and stabilized. 

6.	 He used three US clinical cases during the 2020 COVID-19 
period to delve into the hidden characteristics of the physi-
cal parameters and their biomedical relationships. More im-
portantly, through the comparison study in Part 7, he found 
explainable biomedical interpretations of his two defined glu-
cose coefficients of GH.p-modulus and GH.f-modulus. 

7.	 He conducted a PPG boundary analysis by discovering a low-
er bound and an upper bound of predicted PPG values for 
eight hypothetical standard cases and three US specific clini-
cal cases. The derived numerical values of these two boundar-
ies make sense from a biomedical viewpoint and also matched 
the situations of the three US clinical cases. He conducted two 
extreme stress tests, i.e., increasing carbs/sugar intake amount 
to 50 grams per meal and boosting post-meal walking steps to 
5k after each meal, to examine the impacts on the lower bound 
and upper bound of PPG values. 

8.	 Based on six international clinical cases, he further explored 
the influences from the combination of obesity and diabetes. 
Using a “lifestyle medicine” approach, he offered recommen-
dations to reduce their PPG from 130-150 mg/dL down to be-
low 120 mg/dL via reducing carbs/sugar intake and increasing 
exercise level in walking. 

9.	 Based on his neuroscience research work using both 126 solid 
eggs and 159 liquid eggs with an extremely low carbs/sugar 
intake amount of ~2.5 grams, producing two totally differ-
ent sets of PPG data and waveforms based on neurosciences 
viewpoint. He has also identified a different set of much high-
er values for GH.p-modulus from the exceptionally low carbs/

sugar intake of egg meals. Even though this egg neuroscience 
research results can be served as a special boundary case, it 
has also further proven that the GH.p-modulus is influenced 
directly by the human brain and nervous system. 

10.	 He compared the above two egg meals results, including PPG 
values and glucose coefficients, in particular the GH.p-mod-
ulus, against the total results of his 2,843 meals. He discov-
ered the vast differences of GH.p-modulus magnitudes and 
also learned the tight relationship between GH.p-modulus 
value and carbs/sugar intake amount. By distinguishing the 
GH.p-modulus results from the special boundary cases of 12.7 
for liquid egg meals and 20.7 for solid egg meals, his general 
GH.p-modulus values from his 2,843 total meals are 2.1 using 
finger PPG and 3.4 using sensor PPG. 

11.	 He used his 365 egg meal data from his neurosciences re-
search papers to further calculate detailed variations of their 
associated GH.p-modulus.

12.	 He applied the linear elastic glucose theory to formulate cer-
tain guidelines as a part of his practical “lifestyle medicine” 
approach for the family medicine branch. 

13.	 He calculates three GH.p-modulus values, 1.8, 2.2, and 1.8, 
for three different periods, i.e., pre-virus period, COVID-19 
period, and total period, respectively. This data range of be-
tween 1.8 to 2.2 matches with his observed personal lifestyle 
and acquired biomedical knowledge through his medical re-
search work during the past 9 years. 

14.	 He calculates two GH.p-modulus values, 2.0 and 3.3, for two 
different measured glucoses, i.e., finger-piercing measured 
glucoses and CGM sensor collected glucoses, respectively. 
This GH.p-Modulus difference between 2.0 and 3.3 mainly 
reflects the average sensor PPG value is 17% higher than the 
average finger PPG value.

 
 
Results 
Figures 1, 2, 3 and 4 show the calculated GH.p-Modulus values 
based on different input data of FPG, PPG, Carbs/sugar intake 
amount, and post-meal walking steps for the following four differ-
ent data groups with a variety of situations: 
1.	 The author’s personal data and GH.p-modulus values;
2.	 The data and GH.p-modulus values of three US patients and 

two Myanmar patients;
3.	 The low-bound and high-bound analysis from eight hypothet-

ical standard cases of different carbs/sugar intake amounts 
and post-meal walking steps;

4.	 The data with quite high GH.p-modulus values from a special 
investigation case using 285 egg meals with neuroscience in-
fluences.
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Figure 2: Clinic cases of 3 US and 2 Myanmar patients

Figure 3: 8 Hypothetical standard cases to study upper-bound and 
lower-bound of GH.p-Modulus

Figure 4: Special case of quite high GH.p-Modulus values from 
285 egg experimental meals to demonstrate the brain and neu-
ro-scientific influences on GH.p-Modulus

Here again is the step-by-step explanation for the predicted PPG 
equation: 
 
(1) Baseline PPG equals to 97% of FPG value, or 97% * (weight 
* GH.f-Modulus). 
(2) Baseline PPG plus increased amount of PPG due to food, i.e., 
plus (carbs/sugar intake amount * GH.p-Modulus). 
(3) Baseline PPG plus increased PPG due to food, and then sub-
tracts reduction amount of PPG due to exercise, i.e., minus (post-
meal walking k-steps * 5). 
(4) The Predicted PPG equals to Baseline PPG plus the food influ-
ences, and then subtracts the exercise influences. 
 
The linear elastic glucose equation is:
 
Predicted PPG = (0.97 * GH.f-modulus * Weight) +(GH.p-modu-
lus * Carbs&sugar) - (post-meal walking k-steps * 5) 
 
Where
(1) Incremental PPG = Predicted PPG - Baseline PPG + Exercise 
impact
(2) GH.f-modulus = FPG / Weight
(3) GH.p-modulus = Incremental PPG / Carbs intake
 
Therefore,
 
GH.p-modulus = (PPG - (0.97 * FPG) + (post-meal walking 
k-steps * 5)) / (Carbs&Sugar intake)
 
The following is the list of the GH.p-Modulus values for the four 
groups in the form of (low-end of GH.p, and high-end of GH.p): 
 
Group 1, the author: 	 (1.8, 3.3)
Group 2, clinical cases: (1.0, 3.6)
Group 3, standard cases: (2.0, 6.0)
Group 4, neuroscience: (13, 21)
 
Figure 1 depicts the data analysis results from the author himself. 
Using three different time periods, it shows the GH.p data range of 
1.8 to 2.2. However, if using two different glucose measurement 
devices, it depicts the GH.p data range of 2.0 for finger glucoses 
and 3.3 for sensor glucoses. Group 1 has a GH.p data range be-
tween 1.8 and 3.3. 
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Figure 2 reflects the data analysis results from three US patients 
and two Myanmar patients. Group 2 with five different patients 
have a GH.p data range between 1.0 and 3.6. 
 
Figure 3 illustrates the data analysis results from eight “hypothet-
ical standard cases” with different amounts of carbs/sugar intake 
and post-meal exercise. Group 3 with the eight hypothetical stan-
dard cases have a GH.p data range between 2.0 and 6.0. 
 
Figure 4 represents the data analysis results from 285 “neurosci-
ence investigation meals” having the same food ingredients of 
one large egg with an extremely low carbs/sugar intake amount of 
0.76 gram from egg alone for each meal while always maintain-
ing ~4.3k post-meal walking steps. These 285 experimental results 
show that solid egg meals (135 mg/dL at peak PPG) is 31 mg/
dL higher than liquid egg meals (104 mg/dL at peak PPG). This 
strange and unique physical phenomenon cannot be explained 
clearly or satisfactorily using the traditional knowledge of internal 
medicine and food nutrition. It is a result from the biomedical neu-
ral communication model between the brain and internal organs, 
specifically stomach, intestine, liver, and pancreas. The calculated 
values of GH.p-Modulus in Group 4 is 12.7 for liquid egg meals 
and 20.7 for solid egg meals. Therefore, Group 4 of the special 
neuroscience experiment indeed demonstrates a special case of 
high-end GH.p-Modulus values. 
 
The GH.p-modulus value coordinates with a patient’s weight, 
FPG, PPG, carbs/sugar intake, and post-meal exercise that fluctu-
ates within a reasonable numerical range. When the author com-
bines the results from Groups 1, 2, and 3, he obtains a data range 
for GH.p-Modulus values between 1.0 and 6.0.  
 
Conclusions 
This study is a summarized report of the author’s previous 16 
segments of research articles on linear elastic glucose theory. He 
focuses on the GH.p-Modulus using four different data groups 
which cover patients of different nationalities, varying time pe-
riods, comparison between pre-virus vs. COVID-19 periods with 
different lifestyles, finger glucoses vs. sensor glucoses, hypotheti-
cal boundary analysis (upper bound and lower bound), and a spe-
cial neuroscience study of 285 egg meals to arrive at the following 
observed conclusion [1-24]. 
 
In summary, the author presumes that most patients having a rea-
sonable normal lifestyles, their GH.p-Modulus value should be lo-
cated between 1.0 and 6.0. In this study, the GH.p-modulus indeed 
reflects the actual general health conditions and lifestyle details 
of a patient.  
 
Practical Advice of GH.p-Modulus to Patients 
(1) If you have a record for some of your glucoses, carbs/sugar 
intake amount, and post-meal walking steps, then you may use this 
equation to calculate your GH.p-Modulus: 

GH.p-Modulus = ((0.97*FPG) + (post-meal k-steps*5)) / 
(Carbs&sugar amount)

(2) If you don’t have your data stored, then you may apply the 
following suggestions: If your diabetes conditions is moderate 

(HbA1C ~7.0 & glucose ~150 mg/dL), then use 1.8 to 2.2 for your 
GH.p-Modulus; and if your diabetes conditions is more serious 
(HbA1C >8.0 & glucose >180 mg/dL), then use 2.5 to 3.3 for your 
GH.p-Modulus. 

(3) Normally, the GH.p-Modulus should be within 1.5 to 2.5; how-
ever, if you want to be more conservative in predicting your PPG, 
then you may use the GH.p-Modulus greater than 3.0 in the fol-
lowing equation: 

Predicted PPG = (0.97 * FPG) + (GH.p-Modulus * carbs& sug-
ar) - (post-meal walking k-steps * 5) 
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