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A solution of the Third Order Homogeneous Equations
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Construction and characteristics of the hyper-exponential

functions
The form of hyper-exponential functions of n-order

exph((x; f (x))
n: order.
J: the number of seed.
x: variable.

f(X): any function that is defined in an interval that contains zero.

xXJ
Jj!

Seed (x; j) = (j=0,1,2,3..n-1)

The seed of a hyper-exponential function means the first term of

the series.
The most important characteristic is as _follows.
y = exph (x; f (x))

dy
o =f(x)y
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The characteristics are as follows.

vo(x) = exphj(x; g(x))

d2
L0 _ gowe)
and
vy (x) = exphi(x; g(x))
d*vy(x)
L2 = o ()
and

The Wronskian is 1.
vo(x) vi(x)

vp(x) vl vo()V)(x) — v (v =1

A solution of the Third Order Homogeneous Equations
1 show a solution of the following differential equation with variable
coefficients A(x), B(x) and C(x).

X €R,
A(x), B(x), C(x)eR

A(x), B(x) and C(x): any differentiable function that is defined in an
interval that contains zero.

Y+ A"+ By + Cxy=0---O

Definition of hyper-exponential functions of second-order

X, g(x)eR
k=1

Kppy () = fo fo dx? g(x) x ky (%)

exphi(x; g(0) = Y k(@)
i=0

and
kO =X

K1 (2) = [0 fo dx? g(x) x k; (x)

exphi(x g(x) = )y (x)
j=0

1 set
XER
u(x) = exphj(x; f(x)) = exp {f Ji€3) dx}
0
vo(x) = exphf(x; g(x))
v1(x) = exphi(x; g(x))
1 set

h(x):any differentiable function that is defined in an interval
that contains zero.

ko =1
k,-+1(x)=f;{uvl f; u lwoh(x)k; (x)dx — uv, fox u v h(x)k; (x)dx}dx

y= ; ki(x) =1+ ; J:{uvlfo u lwoh(x)k; (x)dx — uv, J:u‘lvlh(x)ki (x)dx} dx

Suppose that the right hand side of Q) is uniformly convergent.
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i=0

y' = f(x); {uvl f:u‘lvoh(x)ki (x)dx — uv, J:u‘lvlh(x)ki (x)dx} 2

’X‘lhk,- dx — ’x‘lhk,- d
+Zﬂ{uvlj;u voh(x)k; (x)dx uvnfou v h(x)k; (x) x}

3.
- Zo(vlvo —vgvy) (ki (x) 4
y'=fx)y + Z {u vy f:u’lvﬂh(x)ki (xX)dx —u vy J:u’lvlh(x)ki (x)dx} 3.

i=0
Y =F@Y @Y

+ f(x) Z {u vy f:u’lvoh(x)ki (x)dx —uv, J:u’lvlh(x)kl— (x)dx} +g(x)y 6.
i=0

+ ) @i v~ v vDR@k ()

Y = F@Y + @Y+ O - F@Y}+g@y +h@y
¥ =2f)y" +{f()* = f(x)— g}y —h@x)y=0 ——-@

From(1) and 3)

A (x) =-2f (x)
B(x)=f(x)’-f"(x)-g(x)
C (x) =-h(x)
From the above
A
fx) =- %
2 ’
g =2 A gy
h(x) = —-C(x)

@is one of the solutions of @
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