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Abstract
This review article aims to provide an in-depth analysis of a wide range of analytical methods used for solving ordinary 
differential equations (ODEs). ODEs are fundamental in numerous scientific and engineering disciplines, making the 
development, and understanding of effective solution techniques crucial. We explore various approaches, including 
the Adomian decomposition method, homotopy perturbation method, homotopy analysis method, variational iteration 
method, Daftardar-Jafari method, successive approximation method, power series method, and modified Adomian 
decomposition method. Each method is discussed in terms of its principles, applications, advantages, limitations, 
and computational considerations. This comprehensive overview will serve as a valuable resource for researchers, 
practitioners, and students interested in solving ODEs.
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1. Introduction
In the vast landscape of mathematical problem-solving, ordinary 
differential equations (ODEs) stand as stalwart sentinels, guarding 
the gateway to understanding dynamic systems in the natural and 
engineering sciences. These mathematical entities possess an 
unparalleled ubiquity, offering an elegant language to describe 
phenomena that evolve over time. From the gentle sway of a 
pendulum to the convoluted behavior of stock market dynamics, 
ODEs are the thread that weaves together the narrative of change 
and evolution. However, while ODEs serve as unifying elements 
in the scientific tableau, their analytical solutions often prove to 
be enigmatic, complex, and elusive. It is here that the alchemy 
of mathematical methods and algorithms comes to the forefront, 
providing the enchanted keys to unlock the secrets held within 
these equations. In this profound exploration, we embark on a 
journey through the intricacies of ODE solving, shedding light 
on eight remarkable techniques that have emerged as formidable 
tools in the hands of mathematicians, scientists, and engineers: 
the Adomian Decomposition Method, Homotopy Perturbation 
Method, Homotopy Analysis Method, Variational Iteration 
Method, Daftardar-Jafari Method, Successive Approximation 
Method, Power Series Method, and Modified Adomian 
Decomposition Method [1-3].

The challenges posed by ODEs are as diverse as the systems they 
represent. Whether we are studying the thermal dynamics of a 
reactor, predicting the spread of infectious diseases, or analyzing 

the intricate patterns of population growth, ODEs present us with 
a kaleidoscope of mathematical conundrums. Each method we 
explore in this comprehensive review is a testament to human 
ingenuity and an indispensable instrument to decipher these 
puzzles. As we delve into this intricate world, it is essential to 
recognize that these methods are not merely abstract constructs 
confined to the realms of academia. They are formidable allies, 
standing at the vanguard of scientific progress. The Adomian 
Decomposition Method, with its power to break complex 
equations into solvable components, has found applications in 
fields as diverse as quantum mechanics and fluid dynamics. The 
Homotopy Perturbation Method, born from the concept of "small 
parameter," has enabled the analytical exploration of nonlinear 
ODEs, delivering insights into chaos theory and chaotic systems. 
The Homotopy Analysis Method, rooted in homotopy theory, 
provides a versatile approach to unravel the intricate dynamics 
of ODEs and has been employed to analyze heat conduction in 
composite materials and biomechanical systems [4-6].

The Variational Iteration Method, with its emphasis on variational 
principles, has brought forth an elegant avenue to approximate 
solutions for ODEs, making significant contributions in problems 
involving nonlinear phenomena. The Daftardar-Jafari Method, a 
rising star in the realm of ODE solving, leverages the concept of 
Laplace transform to tackle various nonlinear problems, finding 
applications in fluid dynamics and heat transfer. The Successive 
Approximation Method, as its name suggests, employs iterative 
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techniques to approximate solutions, offering a robust approach 
for a wide range of ODEs. The Power Series Method, a classic 
technique, unfolds ODEs into power series expansions, allowing 
us to tackle a multitude of problems with precision. Lastly, the 
Modified Adomian Decomposition Method builds upon the 
foundations of its predecessor to enhance convergence and 
efficiency, rendering it a valuable tool in various scientific 
domains [7,8].

The sheer breadth of these methods is a testament to the 
intricate nature of ODEs and the diversity of problems they 
encapsulate. As we traverse the landscape of ODE-solving 
methodologies in this article, we aim not only to demystify 
their inner workings but also to provide practical insights into 
their applications across a spectrum of disciplines Whether you 
are a seasoned mathematician seeking to expand your arsenal 
of problem-solving techniques, a curious scientist yearning to 
explore the boundaries of mathematical modeling, or a dedicated 
student embarking on a journey of mathematical discovery, 

this article serves as your guide. Together, we will navigate 
the labyrinthine world of ODEs, revealing the riches hidden 
within and empowering you to wield these analytical methods 
and algorithms with mastery and precision. Join us on this 
intellectual odyssey as we embark on a comprehensive review of 
these remarkable tools, unearthing their secrets and harnessing 
their power to unveil the mysteries of the natural world [9-11].

In the subsequent sections, we delve into the details of each 
method, presenting a comprehensive analysis of their principles, 
applications, computational aspects, and relative merits. By the 
end of this review, readers will have gained a deep appreciation 
for the rich landscape of analytical tools available for unraveling 
the intricate dynamics encapsulated within ordinary differential 
equations. Before we begin reviewing these methods, we must 
know the general formula of the differential equation that can be 
solved by these methods. General Form of a nonhomogeneous 
First-Order Nonlinear ordinary differential equation
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𝒴𝒴(𝒳𝒳) = ∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛 #(3)  

 

and the nonlinear term 𝒩𝒩(𝒴𝒴) be equated to an infinite series of polynomials 

𝒩𝒩(𝒴𝒴) = ∑  
∞

𝑛𝑛=0
𝒜𝒜𝑛𝑛, #(4)  

where 

𝒜𝒜𝑛𝑛 = 1
𝑛𝑛!

𝑑𝑑𝑛𝑛

𝑑𝑑𝜆𝜆𝑛𝑛 ,𝐹𝐹(∑𝑖𝑖=0
𝑛𝑛  𝜆𝜆𝑖𝑖𝒴𝒴𝑖𝑖)-𝜆𝜆=0,  𝑛𝑛 = 0,1,2, ⋯ 

where 𝒜𝒜𝑛𝑛 are the Adomian polynomials. Substituting Eq. (3) and Eq. (4) into Eq. (2) gives 

∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛 = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1 (∑  

∞

𝑛𝑛=0
 𝒜𝒜𝑛𝑛) . #(5)  

The various components 𝒴𝒴𝑛𝑛 of the solution 𝒴𝒴 can be easily determined by using the recursive relation 

𝒴𝒴0  = 𝜓𝜓 + ℒ−1(𝑔𝑔(𝒳𝒳)),
𝒴𝒴𝑘𝑘+1  = −ℒ−1(𝒜𝒜𝑘𝑘), 𝑘𝑘 ⩾ 0.#

(6)   

Thus, the approximate solution of Eq. (1) is given by  

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0 + 𝒴𝒴1 + 𝒴𝒴2 + 𝒴𝒴3 + ⋯ = ∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛. #(7)  

 

 

 

2.2 Modified Adomian Decomposition Method (MADM) [13]. 

Consider the following First-Order nonlinear ordinary differential equation, 

ℒ(𝒴𝒴(𝒳𝒳)) + 𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 𝑔𝑔(𝒳𝒳), #(8)  

with initial condition 𝒴𝒴(0) = 𝜓𝜓. By using the algorithm of ADM, we get 

2.2 Modified Adomian Decomposition Method (MADM) [13].
Consider the following First-Order nonlinear ordinary differential equation,

 

 
 
 

∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛 = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1 (∑  

∞

𝑛𝑛=0
 𝒜𝒜𝑛𝑛) . #(9)  

 

The modified Adomian decomposition method (MADM) applies a slight modification to ADM, such that it splits 𝑔𝑔(𝒳𝒳) into 

two parts: 𝑔𝑔(𝒳𝒳) = 𝑔𝑔1(𝒳𝒳) + 𝑔𝑔2(𝒳𝒳) as follows: 

𝒴𝒴0(𝒳𝒳)  = 𝜓𝜓 + ℒ−1(𝑔𝑔1(𝒳𝒳)),
𝒴𝒴1(𝒳𝒳)  = ℒ−1(𝑔𝑔2(𝒳𝒳)) − ℒ−1(𝒜𝒜𝑘𝑘),

𝒴𝒴𝑘𝑘+1(𝒳𝒳)  = −ℒ−1(𝒜𝒜𝑘𝑘),  𝑘𝑘 ≥ 1.
#(10)   

Thus, the approximate solution of Eq. (8) is given by  

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0 + 𝒴𝒴1 + 𝒴𝒴2 + 𝒴𝒴3 + ⋯ = ∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛. #(11)  

 

 

2.3 Variational Perturbation Method (VIM) [14] 

 

Consider the following First-Order nonlinear ordinary differential equation, 

ℒ(𝒴𝒴(𝒳𝒳)) + 𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 𝑔𝑔(𝒳𝒳), #(12)  

  

with initial condition 𝒴𝒴(0) = 𝜓𝜓.The variational iteration method presents a correction functional for Eq. (12) in the form 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝒴𝒴𝑛𝑛(𝒳𝒳) + ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(13)  

  

where 𝜆𝜆 is a general Lagrange multiplier, which can be identified optimally via the variational theory, and 𝒴̃𝒴𝑛𝑛 is a restricted 

variation which means 𝛿𝛿𝒴̃𝒴𝑛𝑛 = 0. 

Make the variation of Eq. (13), we have  

𝛿𝛿𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝛿𝛿𝒴𝒴𝑛𝑛(𝒳𝒳) + 𝛿𝛿 ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(14)  

  

Since Eq. (12) is ordinary differential equation of first order, then 𝜆𝜆 = −1. 

Thus, 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝒴𝒴𝑛𝑛(𝒳𝒳) − ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(15)  

Consequently, the solution 

𝒴𝒴(𝒳𝒳) = lim
𝑛𝑛→∞

 𝒴𝒴𝑛𝑛(𝒳𝒳). #(16)  

  

 

 

2.4 Successive Approximation Method (SAM) [15] 

Consider the following First-Order nonlinear ordinary differential equation, 

 

 
 
 

∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛 = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1 (∑  

∞

𝑛𝑛=0
 𝒜𝒜𝑛𝑛) . #(9)  

 

The modified Adomian decomposition method (MADM) applies a slight modification to ADM, such that it splits 𝑔𝑔(𝒳𝒳) into 

two parts: 𝑔𝑔(𝒳𝒳) = 𝑔𝑔1(𝒳𝒳) + 𝑔𝑔2(𝒳𝒳) as follows: 

𝒴𝒴0(𝒳𝒳)  = 𝜓𝜓 + ℒ−1(𝑔𝑔1(𝒳𝒳)),
𝒴𝒴1(𝒳𝒳)  = ℒ−1(𝑔𝑔2(𝒳𝒳)) − ℒ−1(𝒜𝒜𝑘𝑘),

𝒴𝒴𝑘𝑘+1(𝒳𝒳)  = −ℒ−1(𝒜𝒜𝑘𝑘),  𝑘𝑘 ≥ 1.
#(10)   

Thus, the approximate solution of Eq. (8) is given by  

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0 + 𝒴𝒴1 + 𝒴𝒴2 + 𝒴𝒴3 + ⋯ = ∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛. #(11)  

 

 

2.3 Variational Perturbation Method (VIM) [14] 

 

Consider the following First-Order nonlinear ordinary differential equation, 

ℒ(𝒴𝒴(𝒳𝒳)) + 𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 𝑔𝑔(𝒳𝒳), #(12)  

  

with initial condition 𝒴𝒴(0) = 𝜓𝜓.The variational iteration method presents a correction functional for Eq. (12) in the form 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝒴𝒴𝑛𝑛(𝒳𝒳) + ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(13)  

  

where 𝜆𝜆 is a general Lagrange multiplier, which can be identified optimally via the variational theory, and 𝒴̃𝒴𝑛𝑛 is a restricted 

variation which means 𝛿𝛿𝒴̃𝒴𝑛𝑛 = 0. 

Make the variation of Eq. (13), we have  

𝛿𝛿𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝛿𝛿𝒴𝒴𝑛𝑛(𝒳𝒳) + 𝛿𝛿 ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(14)  

  

Since Eq. (12) is ordinary differential equation of first order, then 𝜆𝜆 = −1. 

Thus, 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝒴𝒴𝑛𝑛(𝒳𝒳) − ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(15)  

Consequently, the solution 

𝒴𝒴(𝒳𝒳) = lim
𝑛𝑛→∞

 𝒴𝒴𝑛𝑛(𝒳𝒳). #(16)  

  

 

 

2.4 Successive Approximation Method (SAM) [15] 

Consider the following First-Order nonlinear ordinary differential equation, 

2.3 Variational Perturbation Method (VIM) [14]
Consider the following First-Order nonlinear ordinary differential equation,
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∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛 = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1 (∑  

∞

𝑛𝑛=0
 𝒜𝒜𝑛𝑛) . #(9)  

 

The modified Adomian decomposition method (MADM) applies a slight modification to ADM, such that it splits 𝑔𝑔(𝒳𝒳) into 

two parts: 𝑔𝑔(𝒳𝒳) = 𝑔𝑔1(𝒳𝒳) + 𝑔𝑔2(𝒳𝒳) as follows: 

𝒴𝒴0(𝒳𝒳)  = 𝜓𝜓 + ℒ−1(𝑔𝑔1(𝒳𝒳)),
𝒴𝒴1(𝒳𝒳)  = ℒ−1(𝑔𝑔2(𝒳𝒳)) − ℒ−1(𝒜𝒜𝑘𝑘),

𝒴𝒴𝑘𝑘+1(𝒳𝒳)  = −ℒ−1(𝒜𝒜𝑘𝑘),  𝑘𝑘 ≥ 1.
#(10)   

Thus, the approximate solution of Eq. (8) is given by  

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0 + 𝒴𝒴1 + 𝒴𝒴2 + 𝒴𝒴3 + ⋯ = ∑  
∞

𝑛𝑛=0
𝒴𝒴𝑛𝑛. #(11)  

 

 

2.3 Variational Perturbation Method (VIM) [14] 

 

Consider the following First-Order nonlinear ordinary differential equation, 

ℒ(𝒴𝒴(𝒳𝒳)) + 𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 𝑔𝑔(𝒳𝒳), #(12)  

  

with initial condition 𝒴𝒴(0) = 𝜓𝜓.The variational iteration method presents a correction functional for Eq. (12) in the form 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝒴𝒴𝑛𝑛(𝒳𝒳) + ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(13)  

  

where 𝜆𝜆 is a general Lagrange multiplier, which can be identified optimally via the variational theory, and 𝒴̃𝒴𝑛𝑛 is a restricted 

variation which means 𝛿𝛿𝒴̃𝒴𝑛𝑛 = 0. 

Make the variation of Eq. (13), we have  

𝛿𝛿𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝛿𝛿𝒴𝒴𝑛𝑛(𝒳𝒳) + 𝛿𝛿 ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(14)  

  

Since Eq. (12) is ordinary differential equation of first order, then 𝜆𝜆 = −1. 

Thus, 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝒴𝒴𝑛𝑛(𝒳𝒳) − ∫  
𝒳𝒳

0
𝜆𝜆(𝜉𝜉) .ℒ𝒴̃𝒴𝑛𝑛(𝜉𝜉) + 𝒩𝒩𝒴̃𝒴𝑛𝑛(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)/ 𝑑𝑑𝑑𝑑, #(15)  

Consequently, the solution 

𝒴𝒴(𝒳𝒳) = lim
𝑛𝑛→∞

 𝒴𝒴𝑛𝑛(𝒳𝒳). #(16)  

  

 

 

2.4 Successive Approximation Method (SAM) [15] 

Consider the following First-Order nonlinear ordinary differential equation, 

2.4 Successive Approximation Method (SAM) [15]
Consider the following First-Order nonlinear ordinary differential equation,

 

ℒ(𝒴𝒴(𝒳𝒳)) + 𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 𝑔𝑔(𝒳𝒳) #(17)  

 

With initial condition 𝒴𝒴(0) = 𝜓𝜓. Applying ℒ−1 to both sides of Eq. (17) gives, 

𝒴𝒴(𝒳𝒳) = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1𝒩𝒩(𝒴𝒴) #(18)  

 

The successive approximation method consists of representing the solution of Eq. (17) as a sequence *𝒴𝒴𝑛𝑛+𝑛𝑛=0
∞ . The method 

introduces the recurrence relation  

𝒴𝒴(𝒳𝒳) = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1𝒩𝒩(𝒴𝒴) #(19)  

 

Where the zero approximation 𝒴𝒴0(𝒳𝒳) is an arbitrary real function. Several successive approximations 𝑢𝑢𝑛𝑛, 𝑛𝑛 ≥ 1 will be 

determined as. 

 

𝒴𝒴𝑛𝑛+1(𝒳𝒳) = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1𝒩𝒩(𝒴𝒴𝑛𝑛) #(20)  

 

And the solution computed as: 

𝒴𝒴(𝒳𝒳) = lim
𝑛𝑛→∞

 𝒴𝒴𝑛𝑛(𝒳𝒳). #(21)  

  

 

 

2.5 Homotopy Permutation Method (HPM) [16]  

To illustrate the basic idea of the homotopy perturbation method, we consider the following differential equation: 

𝒜𝒜(𝒴𝒴) − 𝑓𝑓(𝑟𝑟) = 0, 𝑟𝑟 ∈ Ω, #(22)  
where 𝒜𝒜 is a general differential operator, and 𝑓𝑓(𝑟𝑟) is a known analytical function. Suppose that 

𝒜𝒜(𝒴𝒴) = ℒ(𝒴𝒴) + 𝒩𝒩(𝒴𝒴). #(23)  

Therefore Eq. (22) can be rewritten as 

ℒ(𝒴𝒴) + 𝒩𝒩(𝒴𝒴) − 𝑓𝑓(𝑟𝑟) = 0. #(24)  

By the homotopy perturbation technique, we construct a homotopy 𝒱𝒱(𝑟𝑟, 𝓅𝓅): Ω × ,0,1- → ℝ which satisfies: 

ℋ(𝒱𝒱, 𝓅𝓅) = (1 − 𝓅𝓅),ℒ(𝒱𝒱) − ℒ(𝒴𝒴0)- + 𝓅𝓅,𝒜𝒜(𝒱𝒱) − 𝑓𝑓(𝑟𝑟)- = 0, #(25)  

or 

ℋ(𝒱𝒱, 𝓅𝓅) = ℒ(𝒱𝒱) − ℒ(𝒴𝒴0) + 𝓅𝓅ℒ(𝒴𝒴0) + 𝓅𝓅,𝒩𝒩(𝒱𝒱) − 𝑓𝑓(𝑟𝑟)- = 0, #(26)   

where 𝓅𝓅 ∈ ,0,1- is an embedding parameter and 𝒴𝒴0 is an initial approximation of Eq. (22) which satisfies the boundary 

conditions. Considering Eq. (26), we will have: 

ℋ(𝒱𝒱, 0) = ℒ(𝒱𝒱) − ℒ(𝒴𝒴0) = 0#(27)  
and 

ℋ(𝒱𝒱, 1) = 𝒜𝒜(𝒱𝒱) − 𝑓𝑓(𝑟𝑟) = 0#(28)   

According to the homotopy perturbation theory, we can first use the embedding parameter 𝓅𝓅 as a small parameter and assume 

that the solution of Eq. (26) can be written as a power series in 𝓅𝓅 : 

𝒱𝒱 = ∑  
∞

𝑛𝑛=0
𝓅𝓅𝑛𝑛𝒱𝒱𝑛𝑛 = 𝒱𝒱0 + 𝓅𝓅𝒱𝒱1 + 𝓅𝓅2𝒱𝒱2 + ⋯ ⋅ #(29)  
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introduces the recurrence relation  
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And the solution computed as: 

𝒴𝒴(𝒳𝒳) = lim
𝑛𝑛→∞

 𝒴𝒴𝑛𝑛(𝒳𝒳). #(21)  

  

 

 

2.5 Homotopy Permutation Method (HPM) [16]  

To illustrate the basic idea of the homotopy perturbation method, we consider the following differential equation: 

𝒜𝒜(𝒴𝒴) − 𝑓𝑓(𝑟𝑟) = 0, 𝑟𝑟 ∈ Ω, #(22)  
where 𝒜𝒜 is a general differential operator, and 𝑓𝑓(𝑟𝑟) is a known analytical function. Suppose that 

𝒜𝒜(𝒴𝒴) = ℒ(𝒴𝒴) + 𝒩𝒩(𝒴𝒴). #(23)  

Therefore Eq. (22) can be rewritten as 

ℒ(𝒴𝒴) + 𝒩𝒩(𝒴𝒴) − 𝑓𝑓(𝑟𝑟) = 0. #(24)  

By the homotopy perturbation technique, we construct a homotopy 𝒱𝒱(𝑟𝑟, 𝓅𝓅): Ω × ,0,1- → ℝ which satisfies: 

ℋ(𝒱𝒱, 𝓅𝓅) = (1 − 𝓅𝓅),ℒ(𝒱𝒱) − ℒ(𝒴𝒴0)- + 𝓅𝓅,𝒜𝒜(𝒱𝒱) − 𝑓𝑓(𝑟𝑟)- = 0, #(25)  

or 

ℋ(𝒱𝒱, 𝓅𝓅) = ℒ(𝒱𝒱) − ℒ(𝒴𝒴0) + 𝓅𝓅ℒ(𝒴𝒴0) + 𝓅𝓅,𝒩𝒩(𝒱𝒱) − 𝑓𝑓(𝑟𝑟)- = 0, #(26)   

where 𝓅𝓅 ∈ ,0,1- is an embedding parameter and 𝒴𝒴0 is an initial approximation of Eq. (22) which satisfies the boundary 

conditions. Considering Eq. (26), we will have: 

ℋ(𝒱𝒱, 0) = ℒ(𝒱𝒱) − ℒ(𝒴𝒴0) = 0#(27)  
and 

ℋ(𝒱𝒱, 1) = 𝒜𝒜(𝒱𝒱) − 𝑓𝑓(𝑟𝑟) = 0#(28)   

According to the homotopy perturbation theory, we can first use the embedding parameter 𝓅𝓅 as a small parameter and assume 

that the solution of Eq. (26) can be written as a power series in 𝓅𝓅 : 

𝒱𝒱 = ∑  
∞

𝑛𝑛=0
𝓅𝓅𝑛𝑛𝒱𝒱𝑛𝑛 = 𝒱𝒱0 + 𝓅𝓅𝒱𝒱1 + 𝓅𝓅2𝒱𝒱2 + ⋯ ⋅ #(29)  

and nonlinear terms can be decomposed as: 

2.5 Homotopy Permutation Method (HPM) [16] 
To illustrate the basic idea of the homotopy perturbation method, we consider the following differential equation:
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and 

ℋ(𝒱𝒱, 1) = 𝒜𝒜(𝒱𝒱) − 𝑓𝑓(𝑟𝑟) = 0#(28)   

According to the homotopy perturbation theory, we can first use the embedding parameter 𝓅𝓅 as a small parameter and assume 

that the solution of Eq. (26) can be written as a power series in 𝓅𝓅 : 
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𝓅𝓅𝑛𝑛𝒱𝒱𝑛𝑛 = 𝒱𝒱0 + 𝓅𝓅𝒱𝒱1 + 𝓅𝓅2𝒱𝒱2 + ⋯ ⋅ #(29)  

and nonlinear terms can be decomposed as: 

 

 
 
 

𝒩𝒩(𝒱𝒱) ∑  
∞

𝑛𝑛=0
𝓅𝓅𝑛𝑛ℋ𝑛𝑛(𝒱𝒱) = ℋ0 + 𝓅𝓅ℋ1 + 𝓅𝓅2ℋ2 + ⋯ , #(30)  

Where ℋ𝑛𝑛(𝒱𝒱) are called He’s polynomials that are given by 

ℋ𝑛𝑛 = 1
𝑛𝑛!

𝑑𝑑𝑛𝑛

𝑑𝑑𝓅𝓅𝑛𝑛 ,𝒩𝒩(∑𝑖𝑖=0
𝑛𝑛  𝓅𝓅𝑖𝑖𝒱𝒱𝑖𝑖)-𝓅𝓅=0,  𝑛𝑛 = 0,1,2, ⋯ 

Setting 𝓅𝓅 = 1 one have the approximation solution of Eq. (26) 

𝒴𝒴(𝒳𝒳) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝓅𝓅→1

 𝒱𝒱 = 𝒱𝒱0 + 𝒱𝒱1 + 𝒱𝒱2 + ⋯ . #(31)  

 

 

2.6 Homotopy Analysis Method (HAM) [17]   

Consider the following First-Order nonlinear ordinary differential equation,  

𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 0, #(32)  

where 𝒩𝒩 is anon linear operator, 𝒳𝒳 is independent variable and 𝒴𝒴 is an unknown function. By the HAM, we construct a 

homotopy which satisfies 

(1 − 𝓆𝓆) .ℒ(𝜓𝜓(𝒳𝒳, 𝓆𝓆) − y(𝒳𝒳))/ = 𝓆𝓆𝑕𝑕𝑕(𝒳𝒳)𝒩𝒩(𝜓𝜓(𝒳𝒳; 𝓆𝓆)), #(33)   

where 𝓆𝓆 ∈ ,0,1- is the embedding parameter, 𝑕𝑕 ≠ 0 is an auxiliary parameter, ℒ is an auxiliary linear operator, 𝜓𝜓(𝒳𝒳; 𝓆𝓆) is an 

unknown function, 𝒴𝒴0(𝒳𝒳) is initial guess of 𝒴𝒴(𝒳𝒳), and ℋ(𝒳𝒳) is anon-zero auxiliary function. 

At 𝓆𝓆 = 0 then, 

𝜓𝜓(𝒳𝒳; 0) = 𝒴𝒴0(𝒳𝒳). #(34)   

At 𝓆𝓆 = 1 then, 

𝜓𝜓(𝒳𝒳; 1) = 𝒴𝒴(𝒳𝒳). #(35)   

Expanding 𝜓𝜓(𝒳𝒳; 𝓆𝓆) in taylor series with respect to 𝓆𝓆 one has 

𝜓𝜓(𝒳𝒳; 𝓆𝓆) = 𝒴𝒴(𝒳𝒳) + ∑  
∞

𝑚𝑚=1
𝒴𝒴𝑚𝑚(𝒳𝒳)𝓆𝓆𝑚𝑚, #(36)  

where 

𝒴𝒴𝑚𝑚(𝒳𝒳) = 1
𝑚𝑚!

𝜕𝜕𝑚𝑚𝜓𝜓(𝒳𝒳;𝓆𝓆)
𝜕𝜕𝓆𝓆𝑚𝑚 |

𝓆𝓆=0
. #(37)   

The convergence of series Eq. (36) depends up on 𝑕𝑕 if it is convergent at 𝓆𝓆 = 1, one has 

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0(𝒳𝒳) + ∑  ∞
𝑚𝑚=1 𝒴𝒴𝑚𝑚(𝒳𝒳). #(38)   

Differentiating Eq. (33) 𝑚𝑚-times with respect to 𝓆𝓆 and then dividing them by 𝑚𝑚! and finally set 𝓆𝓆 = 0, we get 

ℒ,𝒴𝒴𝑚𝑚(𝒳𝒳) − 𝒳𝒳𝑚𝑚𝒴𝒴𝑚𝑚−1(𝒳𝒳)- = 𝑕𝑕𝑅𝑅𝑚𝑚(𝒴𝒴𝑚𝑚−1)#(39)  

where 

𝑅𝑅𝑚𝑚(𝒴𝒴𝑚𝑚−1) = 1
(𝑚𝑚 − 1)!  ∂𝑚𝑚−1

∂𝓆𝓆𝑚𝑚−1 𝒩𝒩(𝜓𝜓(𝒳𝒳; 𝓆𝓆)|𝓆𝓆=0#(40)  

and 

𝑋𝑋𝑚𝑚 = {0 𝑚𝑚 ⩽ 1
1 𝑚𝑚 > 1 #(41)  
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For any given nonlinear operator 𝒩𝒩, the term 𝑅𝑅𝑚𝑚(𝒴𝒴𝑚𝑚−1) can be easily expressed by Eq. (40). Thus, we can gain 

𝒴𝒴1(𝒳𝒳),𝒴𝒴2(𝒳𝒳),… by means of solving the linear high-order deformation Eq. (39) one after the other in order. The mth-order 

approximation of 𝒴𝒴(𝒳𝒳) is given by, 

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0 + 𝒴𝒴1 + 𝒴𝒴2 + 𝒴𝒴3 +⋯ =∑  
𝑚𝑚

𝑘𝑘=0
𝒴𝒴𝑘𝑘#(42)  

 

 

2.8 Series Solution Method (SSM)  [18] 

Consider the following First-Order nonlinear ordinary differential equation, 

ℒ(𝒴𝒴(𝒳𝒳)) +𝒩𝒩(𝒴𝒴(𝒳𝒳)) = 𝑔𝑔(𝒳𝒳) #(43)  

 

With initial condition 𝒴𝒴(0) = 𝜓𝜓. Applying L−1 to both sides of Eq. (47) gives, 

𝒴𝒴(𝒳𝒳) = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳) − ℒ−1𝒩𝒩(𝒴𝒴) #(44)  

Recall that the generic form of Taylor series at 𝒳𝒳 = 0 can be written as 

𝒴𝒴(𝒳𝒳) = ∑  
∞

𝑛𝑛=0
𝑎𝑎𝑛𝑛𝒳𝒳𝑛𝑛. #(45)  

We will assume that the solution 𝒴𝒴(𝒳𝒳) of Eq. (43) 

∑ 
∞

𝑛𝑛=0
𝑎𝑎𝑛𝑛𝒳𝒳𝑛𝑛 = 𝐺𝐺(𝒳𝒳) − ℒ−1𝒩𝒩 (∑  

∞

𝑛𝑛=0
𝑎𝑎𝑛𝑛𝒳𝒳𝑛𝑛) #(46)  

or for simplicity we use 

𝑎𝑎0 + 𝑎𝑎1𝒳𝒳 + 𝑎𝑎2𝒳𝒳2 +⋯ =  (𝐺𝐺(𝒳𝒳)) − ℒ−1𝒩𝒩(𝑎𝑎0 + 𝑎𝑎1𝒳𝒳 + 𝑎𝑎2𝒳𝒳2 +⋯) , #(47)  

where   is the Taylor series and 𝐺𝐺(𝒳𝒳) = 𝜓𝜓 + ℒ−1𝑔𝑔(𝒳𝒳). The Eq. (44) will be converted to a traditional integral in Eq. (45) or 

Eq. (46) where instead of integrating the nonlinear term 𝒩𝒩(𝒴𝒴), terms of the form 𝒳𝒳𝑛𝑛, 𝑛𝑛 ⩾ 0 will be integrated. Notice that 

because we are seeking series solution, then if 𝐺𝐺(𝒳𝒳) includes elementary functions such as trigonometric functions, 

exponential functions, etc., then Taylor expansions for functions involved in 𝐺𝐺(𝒳𝒳) should be used. We first integrate the right 

side of the integral in Eq. (46) or Eq. (47), and collect the coefficients of like powers of 𝒳𝒳. We next equate the coefficients of 

like powers of 𝒳𝒳 in both sides of the resulting equation to obtain a recurrence relation in 𝑎𝑎𝑗𝑗, 𝑗𝑗 ⩾ 0. Solving the recurrence 

relation will lead to a complete determination of the coefficients 𝑎𝑎𝑗𝑗, 𝑗𝑗 ⩾ 0. Having determined the coefficients 𝑎𝑎𝑗𝑗, 𝑗𝑗 ⩾ 0, the 

series solution follows immediately upon substituting the derived coefficients into Eq. (49). The exact solution may be 

obtained if such an exact solution exists. If an exact solution is not obtainable, then the obtained series can be used for 

numerical purposes. In this case, the more terms we determine, the higher accuracy level we achieve. 

 

2.9 Daftardar-Jafari Method (DJM) [19] 

Consider the following general functional equation: 

𝒴𝒴(𝒳𝒳) = 𝒩𝒩(𝒴𝒴(𝒳𝒳)) + 𝑓𝑓, #(48)  

where 𝒩𝒩 is a nonlinear operator from a Banach space 𝐵𝐵 → 𝐵𝐵 and 𝑓𝑓 is a known function. We are looking for a solution 𝒴𝒴 of 

Eq. (48) having the series form: 

𝒴𝒴 =∑  
∞

𝑖𝑖=0
𝒴𝒴𝑖𝑖. #(49)  

The nonlinear operator 𝒩𝒩 can be decomposed as  

For any given nonlinear operator 𝒩𝒩, the term 𝑅𝑅𝑚𝑚(𝒴𝒴𝑚𝑚−1) can be easily expressed by Eq. (40). Thus, we can gain 

𝒴𝒴1(𝒳𝒳),𝒴𝒴2(𝒳𝒳),… by means of solving the linear high-order deformation Eq. (39) one after the other in order. The mth-order 

approximation of 𝒴𝒴(𝒳𝒳) is given by, 

𝒴𝒴(𝒳𝒳) = 𝒴𝒴0 + 𝒴𝒴1 + 𝒴𝒴2 + 𝒴𝒴3 +⋯ =∑  
𝑚𝑚
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𝒴𝒴𝑘𝑘#(42)  
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With initial condition 𝒴𝒴(0) = 𝜓𝜓. Applying L−1 to both sides of Eq. (47) gives, 
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Recall that the generic form of Taylor series at 𝒳𝒳 = 0 can be written as 
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or for simplicity we use 

𝑎𝑎0 + 𝑎𝑎1𝒳𝒳 + 𝑎𝑎2𝒳𝒳2 +⋯ =  (𝐺𝐺(𝒳𝒳)) − ℒ−1𝒩𝒩(𝑎𝑎0 + 𝑎𝑎1𝒳𝒳 + 𝑎𝑎2𝒳𝒳2 +⋯) , #(47)  
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Eq. (46) where instead of integrating the nonlinear term 𝒩𝒩(𝒴𝒴), terms of the form 𝒳𝒳𝑛𝑛, 𝑛𝑛 ⩾ 0 will be integrated. Notice that 
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exponential functions, etc., then Taylor expansions for functions involved in 𝐺𝐺(𝒳𝒳) should be used. We first integrate the right 

side of the integral in Eq. (46) or Eq. (47), and collect the coefficients of like powers of 𝒳𝒳. We next equate the coefficients of 

like powers of 𝒳𝒳 in both sides of the resulting equation to obtain a recurrence relation in 𝑎𝑎𝑗𝑗, 𝑗𝑗 ⩾ 0. Solving the recurrence 

relation will lead to a complete determination of the coefficients 𝑎𝑎𝑗𝑗, 𝑗𝑗 ⩾ 0. Having determined the coefficients 𝑎𝑎𝑗𝑗, 𝑗𝑗 ⩾ 0, the 

series solution follows immediately upon substituting the derived coefficients into Eq. (49). The exact solution may be 

obtained if such an exact solution exists. If an exact solution is not obtainable, then the obtained series can be used for 

numerical purposes. In this case, the more terms we determine, the higher accuracy level we achieve. 
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𝒩𝒩 (∑  
∞

𝑖𝑖=0
 𝒴𝒴𝑖𝑖) = 𝒩𝒩(𝒴𝒴0) + ∑  

∞

𝑖𝑖=1
{𝒩𝒩 (∑  

𝑖𝑖

𝑗𝑗=0
 𝒴𝒴𝑗𝑗) − 𝒩𝒩 (∑  

𝑖𝑖−1

𝑗𝑗=0
 𝒴𝒴𝑗𝑗)} . #(50)  

From Eq. (49) and Eq. (50), Eq. (48) is equivalent to 

∑  
∞

𝑖𝑖=0
𝒴𝒴𝑖𝑖 = 𝑓𝑓 + 𝒩𝒩(𝒴𝒴0) + ∑  

∞

𝑖𝑖=1
{𝒩𝒩 (∑  

𝑖𝑖

𝑗𝑗=0
 𝒴𝒴𝑗𝑗) − 𝒩𝒩 (∑  

𝑖𝑖−1

𝑗𝑗=0
 𝒴𝒴𝑗𝑗)} . #(51)  

We define the recurrence relation: 

{
𝒴𝒴0 = 𝑓𝑓,
𝒴𝒴1 = 𝒩𝒩(𝒴𝒴0),
𝒴𝒴𝑚𝑚+1 = 𝒩𝒩(𝒴𝒴0 + ⋯ + 𝒴𝒴𝑚𝑚) − 𝒩𝒩(𝒴𝒴0 + ⋯ + 𝒴𝒴𝑚𝑚−1),  𝑚𝑚 = 1,2, …

#(52)  

 

Then 

(𝒴𝒴1 + ⋯ + 𝒴𝒴𝑚𝑚+1) = 𝒩𝒩(𝒴𝒴0 + ⋯ + 𝒴𝒴𝑚𝑚),  𝑚𝑚 = 1,2, … , #(53)  

 

and 

𝒴𝒴 = 𝑓𝑓 + ∑  
∞

𝑖𝑖=1
𝒴𝒴𝑖𝑖. #(54)  

 

 

3. Conclusion 

In this concise review, we've explored a variety of analytical methods for solving ordinary differential equations (ODEs). 

These methods are vital tools in science and engineering, offering precise solutions for a wide range of ODE problems. Key 

takeaways include: 

- Method Selection: The choice of method depends on the ODE's nature, complexity, and available conditions. 

- Accuracy vs. Complexity: There's a trade-off between accuracy and computational cost. 

- Broad Applications: These methods apply to various fields, from physics to economics. 

- Iterative Nature: Some methods use iterations, so understanding convergence is crucial. 

- Hybrid Approaches: Combining methods can enhance robustness and applicability. 

- Computational Resources: Consider available computational resources when choosing a method. 

Analytical methods remain essential, providing precise and interpretable solutions while complementing numerical techniques. 

Researchers, engineers, and students can use this review as a valuable reference for solving ODEs effectively. 
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