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Abstract
Due to incremental penetrations in distributed energy resources (DER)s over electrical distribution networks, there has 
been little quantitative analysis of uncertainty investigation beyond distributed resources performance, owing to the inherent 
nature of solar irradiation and wind blow, as well as the uncertain electrical demand and electric vehicle charging stations. 
All in all, uncertainty modeling of distribution network elements is an essential tool for performing probabilistic load 
flow (PLF) analysis beside understanding the probabilistic behavior of a power distribution network. Furthermore, the 
installation of DERs and capacitors can result in the enhancement of power factor, voltage profile and line losses reduction in 
power distribution networks. The sizing and location of DERs and capacitor unit should be optimal to maximize the benefits, 
hence optimal locating and allocating the capacity of DERs have a complete impact on the system losses in the distribution 
network. When DERs and capacitors are installed in a distribution system, it could impact three-phase short-circuit currents. 
Genetic Algorithm (GA) is applied to find the optimal place and size of DERs and capacitors considering the minimum three-
phase short-circuit current changes. The probability density functions (PDF) of total system losses and voltage deviation of 
the investigated network obtained from solving PLF by two methods of Monte Carlo simulation (MCS) and Hong’s two-point 
estimation method have been compared before and after optimal placement and sizing of distributed energy resources and 
capacitors. PLF and GA has been applied on IEEE 33-bus radial distribution system. The results obtained illustrate that 
voltage deviation and total system losses have been reduced while having minor changes in three-phase short-circuit current, 
finally the two-point estimation (TPM) method offers a time consuming way, having acceptable results.

Journal of Electrical Electronics Engineering
ISSN: 2834-4928 

Department of Electrical Engineering, Faculty of 
Electrical and Electronic Engineering, Technical and 
Vocational University (TVU), Tehran, Iran

Keywords: Probabilistic load flow, Wind, Photovoltaic, Electric vehicles, Distributed Energy Resources, Genetic Algorithm, Power 
Losses, Voltage deviation, DER placement, Capacitor placement.

1. Introduction
Renewable energies have a significant contribution to the 
development of distribution systems, since the inherent 
intermittent nature of wind blow and solar irradiations, the 
greater the penetration of renewable energy sources, the more 
probabilistic the nature of the power systems will be [1,2]. Power 
generation of renewable energy resources consist a great deal of 
uncertainties [24], therefore they impose many challenges for 
grids and their operators; so that the need for an accurate model 
that describes the stochastic nature of renewable generation is 
demanded, thus a comprehensive probabilistic tools in order to 
model such uncertainties for load flow analysis of the power 
system is vital [18]. It can inform system operators and planners 
about the potential for extreme events, helping them understand 
the probabilistic behavior of a power distribution network 
and develop contingency plans to minimize their impact. In a 
conventional power flow analysis, a known set of deterministic 
values will be considered for each input values like active power 
of generators and power demand of loads, thus the system will 

clearly be oblivious to the uncertainties of such input random 
variables; thus probabilistic methodologies and tools for power 
system analysis have been considered; This method is known 
as PLF. [3]. The use of PLF, will make the evaluation of 
system states variables by considering the probabilistic power 
generation of renewable energy resources and the probabilistic 
power demand of loads like EV charging stations, possible. PLF 
has become increasingly important with the growth of renewable 
energy sources and the need to integrate stochastic generation 
into power systems [23]. By the use of probability distributions, 
the probabilistic load flow quantifies the uncertainties [4]; MCS 
has been frequently used in probabilistic analyses to include a 
comprehensive model for uncertain outcomes [6]. Whilst, in 
distribution systems, the voltage magnitude at buses decreases 
when they get remote from the substation and the losses almost 
have huge amounts; According to mentioned literature almost 
13% of the total power generated is consumed as I2 R losses 
at the distribution network [12].  Renewable energy resources 
are also being used as distribution generation in distribution 
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power networks for grid reinforcement, reducing power losses 
and improving voltage profiles and load factors, which is known 
as on-site generation [13]. DERs generate electricity at or 
near its installation site, so that the use of this technology can 
reduce losses along the transmission lines and provide clean and 
reliable power. Therefore, it is clearly important to determine 
the most proper location and the amount of generation power 
of DERs [10,19]. Despite this, the utilization of capacitor banks 
(CB)s in electrical distribution networks, will consequence some 
benefits. In Location of buses where the capacitor banks should 
be placed is decided by fuzzy expert system by incorporating a 
set of rules into it, Candidate buses should found for capacitor 
placement using fuzzy system [7]. In a recent work, the swarm 
optimization algorithm has been chose, the Whale optimization 
Algorithm (WOA) in order to detect the optimal allocation and 
sizing of capacitors [5]. By determining the optimal installation 
location and the optimal capacity of the capacitors, it is possible 
to control power flow besides doing voltage profile management, 
power factor correction, improve system stability, and thereby 
reduction in active energy losses. The installation of DER 
resources and capacitor banks, can cause significant impacts on 
distribution networks, particularly the changes in magnitudes 
and directions of three-phase short circuit currents that may per 
se lead to false tripping or fail to trip over-current protection 
relays in the distribution system [11]. The DER placement is 
formulated as an optimization problem solved using the neuron-
genetic network in [9], moreover in [25] recommands an optimal 
placement and sizing of hybrid solar-wind distributed renewable 
energy resources using Particle Swarm optimization Algorithm; 
another study conducted in [26], has tested the performance of 
the Tiki Taka Algorithm and Archimedes optimization Algorithm 
, against the older Particle Swarm optimization, in solving the 
problem of optimal placement of DERs in distribution networks. 
In this paper Genetic Algorithm (GA) is used in order to perform 
optimization. GA is a heuristic approach used to determine 
the most proper location and capacity of DERs and CBs. The 
objective is to find locations that would lead to minimized losses 
and changes in three-phase short circuit currents and improved 
voltage profile across the network, while also meeting the power 
demand requirements of the customers.

2. Uncertainty and Modeling Network Elements 
Uncertainty modeling of distribution network elements is an 
essential step in performing PLF analysis in a power distribution 
network. In order to perform PLF analysis, the uncertain 
parameters of the distribution network, such as load demands and 
power generation of renewable-based DERs need to be modeled, 
using various probabilistic distributions. The mentioned 
uncertainty modeling is critical for capturing the variable 
operating points of distribution networks and reflecting them in 
the PLF analysis. Uncertainty modeling of distribution network 
elements can provide valuable insight into the probabilistic 
behavior of the distribution network under different scenarios, 
such as peak loads, penetration of renewable generations, and 
switching operations. The following elements are wind turbines, 
PV cells, EV charging stations and loads. 

2.1 Probabilistic Model of Wind Turbine (WT)  
The generated power of a WT depends on high level of 
uncertainties due to the variable wind speed that can be 

instantaneous, hourly, daily and seasonal in the site where they 
are installed; a probabilistic distribution for wind power output 
which is being commonly used, is the Weibull distribution, as 
it can capture the unique wind speed characteristics at each 
location, as given in Eq. (1) [22].

Where v is the wind speed in meter per second, and Cw and Kw  
are scale parameter in meter per second and the shape parameter 
of Weibull distribution respectively. The power generated by the 
turbine will be calculated through the wind speed samples using 
the following Eq. (2).

Where v is wind speed, Vci is cut-in wind speed , Vco is cut-out 
wind speed , and Vr is the measured speed of wind turbine in 
meter per second, PR is the nominal power of turbine in MW 
and A,B and C are the wind turbine related coefficients. 

2.2 Probabilistic Model of Photovoltaic Panels 
The generated power of a PV module highly depends on 
solar irradiance and ambient temperature of the site, which 
can change the behavior of power generation of solar panels. 
Several probabilistic distribution functions can be used in order 
to model and characterize these parameters [14-15], researchers 
of this work used normal distribution function to generate 
the probabilistic distribution function of solar irradiation and 
ambient heat temperature as given in Eq. (3). 

Where  PSTC, GSTC and Tr are the nominal power of photo voltaic 
cell, solar irradiation and ambient reference temperature in 
centigrade under standard conditions respectively, GING is 
the solar irradiation value, k is the temperature coefficient for 
maximum power, TC is the temperature surrounding the cell.

2.3 Probabilistic Model of EV Charging Station
In PLF analysis, a probabilistic modeling of electric vehicle (EV) 
charging stations is important to capture the stochastic behavior 
of EV charging demand. The Poisson distribution is often used 
to model the number of EVs charging at a specific location over 
a certain time interval, as it is a discrete probability distribution 
that considers the occurrence of an event in a given time period. 

The Poisson distribution can be used to model the arrival rate of 
EVs at charging stations, as well as the charging power for each 
EV. The charging demand power depends on variety of factors, 
such as battery capacity, charging rate, and state of charge. The 
utilization of charging stations can also be modeled using the 
Poisson distribution, which represents the probability that a 
charging station is available for charging as shown in Eq. (4).
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The mean and standard deviation of this distribution are λ 
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2.1.  Probabilistic model of wind turbine (WT)   

 The generated power of a WT depends on high level of 
uncertainties due to the variable wind speed that can be 
instantaneous, hourly, daily and seasonal in the site where 
they are installed; a probabilistic distribution for wind 
power output which is being commonly used, is the 
Weibull distribution, as it can capture the unique wind 
speed characteristics at each location, as given in Eq. (1) 
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Where v is the wind speed in meter per second, and    
and    are scale parameter in meter per second and the 
shape parameter of Weibull distribution respectively. The 
power generated by the turbine will be calculated through 
the wind speed samples using the following Eq. (2). 
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Where v is wind speed,     is cut-in wind speed ,     is 
cut-out wind speed , and    is the measured speed of wind 
turbine in meter per second, PR is the nominal power of 
turbine in MW and A,B and C are the wind turbine related 
coefficients.  

2.2.  Probabilistic model of photovoltaic panels  

      The generated power of a PV module highly depends 
on solar irradiance and ambient temperature of the site, 
which can change the behavior of power generation of 
solar panels. Several probabilistic distribution functions 
can be used in order to model and characterize these 
parameters [14-15], researchers of this work used normal 
distribution function to generate the probabilistic 
distribution function of solar irradiation and ambient heat 
temperature as given in Eq. (3).  
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Where      ,      and    are the nominal power of photo 
voltaic cell, solar irradiation and ambient reference 
temperature in centigrade under standard conditions 
respectively,      is the solar irradiation value, k is the 
temperature coefficient for maximum power,    is the 
temperature surrounding the cell. 

2.3.  Probabilistic model of EV charging station 

    In PLF analysis, a probabilistic modeling of electric 
vehicle (EV) charging stations is important to capture the 
stochastic behavior of EV charging demand. The Poisson 
distribution is often used to model the number of EVs 
charging at a specific location over a certain time interval, 
as it is a discrete probability distribution that considers the 
occurrence of an event in a given time period.  
The Poisson distribution can be used to model the arrival 
rate of EVs at charging stations, as well as the charging 
power for each EV. The charging demand power depends 
on variety of factors, such as battery capacity, charging 
rate, and state of charge. The utilization of charging 
stations can also be modeled using the Poisson 
distribution, which represents the probability that a 
charging station is available for charging as shown in Eq. 
(4). 
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Where v is wind speed,     is cut-in wind speed ,     is 
cut-out wind speed , and    is the measured speed of wind 
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The mean and standard deviation of this distribution are λ and 
√λ, respectively.

2.4 Load Probabilistic Model  
The load demand in deterministic models will be identified 
constant; Behavioral patterns of consumers will result in variable 
demand in each load bus. In probabilistic studies since load 
prediction is initially random, the normal distribution models 
are the most frequently used in order to describe the electric load 
prediction uncertainty of each bus using normal PDF as given 
in Eq. (5) [8].

Where μ and σ are the load’s mean and standard deviation.

3. Probabilistic Load Flow
PLF is a computational method, used to analyze power system 
behavior under uncertain and varying conditions, such as 
fluctuations of power generation of renewable energy resources 
and changes in load demands. Unlike deterministic load flow 
analysis, which assumes fixed values for these parameters, PLF 
takes into account the probabilistic nature of the parameters 
and computes the probability density function of the system 
variables [18].  A set of probabilistic methods are being used 
for PLF calculations, in this paper MCS and two-point estimate 
method (TPM) are being utilized. Since the input values are 
random, so that the output variables will definitely be random. In 
other words, in case of the existence of even an uncertain input 
variable, this results in the uncertainty of all output variables; 
then uncertain output may include probability distributions of 
voltage, power flow of branches, and other system variables at 
different sites and time intervals. While performing PLF by input 
random variables the probabilistic equations can be depicted as 
follows:

Where X is the input random variables vector which includes 
active and reactive powers of loads and generation units, etc., 
and Y is the vector of unknown variables of the network such as 
magnitudes and angles of voltages, power of slack bus, reactive 
powers of PV buses.

4. Deterministic Load Flow
In the following paper backward-forward sweep algorithm is 
used to evaluate the distribution networks deterministic load 
flow [16-17], (DLF), this method divides the feeder into sections 
and analyzes each section separately. The method starts with 
backward sweep analysis where the end nodes are analyzed first 
and the power flow is traced back to the source. This allows for 
the determination of voltages and currents for each section. The 
next step is the forward sweep analysis, where the calculations 

begin at the source and propagate through the network. The 
algorithm runs iteratively until a stable solution is reached. This 
method is more efficient for radial distribution networks where 
the number of lines is significantly fewer than the number of 
buses. It is also useful for analysis of large-scale distribution 
networks that have a considerable number of branches in a 
particular area. The backward forward sweep load flow analysis 
provides rapid calculation, accurate results, and requires less 
computational power compared to other iterative methods. 

5. Comparison of PLF and DLF
The main difference between PLF and deterministic load flow 
is in how they handle uncertainty in power system parameters; 
deterministic load flow assumes that all system parameters, such 
as load demand, generator output, and line impedances, can be 
accurately determined and are fixed. It then calculates the steady-
state behavior of the power system under these fixed conditions. 
This method is useful for analyzing power system operation 
under normal conditions, but it does not account for potential 
variations in the parameters that could occur due to factors such 
as weather, equipment failures, or changes in demand.

PLF, on the other hand, takes into account the probability 
distributions of the uncertain parameters and calculates their 
potential impact on the power system. PLF performs multiple 
simulations of the power system for a range of possible parameter 
values, generating a probability density function (PDF) for each 
system variable. 

In summary, while deterministic load flow provides a snapshot 
of the power system under specific fixed conditions, PLF offers 
a more comprehensive and probabilistic analysis that covers the 
ever-changing nature of power system parameters.

6. Monte Carlo Simulation
MCS is a combined random variables method based on 
simulation for solving load flow equations under the existence 
of uncertainties and probabilistic states; in addition, this method 
is mostly used under complex circumstances of the system like 
nonlinearity or having more than two uncertain parameters. 
MCS allows for the propagation of uncertainty through the 
distribution network model by generating random samples from 
the probability distributions of the uncertain parameters. These 
samples are then applied to the network model to calculate the 
load flow for each sample.

7. Two-Point Estimation Method (TPM)
Two-Point Estimation Method can be used in the PLF analysis to 
estimate the uncertainty associated with the load and generation 
in a power system. Hong's Two-Point Estimation Method is a 
deterministic method that calculates the minimum and maximum 
bounds of the input data and then takes the weighted average of 
these values to estimate the output variable from the probability 
distribution.

Once the minimum and maximum values are estimated, the 
average value can be calculated using Two-Point Estimation 
Method. This average value provides an estimate of the most 
likely level of load and generation in the power system, given 
the uncertainty associated with the input data [21].
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Where v is the wind speed in meter per second, and    
and    are scale parameter in meter per second and the 
shape parameter of Weibull distribution respectively. The 
power generated by the turbine will be calculated through 
the wind speed samples using the following Eq. (2). 
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Where v is wind speed,     is cut-in wind speed ,     is 
cut-out wind speed , and    is the measured speed of wind 
turbine in meter per second, PR is the nominal power of 
turbine in MW and A,B and C are the wind turbine related 
coefficients.  

2.2.  Probabilistic model of photovoltaic panels  

      The generated power of a PV module highly depends 
on solar irradiance and ambient temperature of the site, 
which can change the behavior of power generation of 
solar panels. Several probabilistic distribution functions 
can be used in order to model and characterize these 
parameters [14-15], researchers of this work used normal 
distribution function to generate the probabilistic 
distribution function of solar irradiation and ambient heat 
temperature as given in Eq. (3).  
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Where      ,      and    are the nominal power of photo 
voltaic cell, solar irradiation and ambient reference 
temperature in centigrade under standard conditions 
respectively,      is the solar irradiation value, k is the 
temperature coefficient for maximum power,    is the 
temperature surrounding the cell. 

2.3.  Probabilistic model of EV charging station 

    In PLF analysis, a probabilistic modeling of electric 
vehicle (EV) charging stations is important to capture the 
stochastic behavior of EV charging demand. The Poisson 
distribution is often used to model the number of EVs 
charging at a specific location over a certain time interval, 
as it is a discrete probability distribution that considers the 
occurrence of an event in a given time period.  
The Poisson distribution can be used to model the arrival 
rate of EVs at charging stations, as well as the charging 
power for each EV. The charging demand power depends 
on variety of factors, such as battery capacity, charging 
rate, and state of charge. The utilization of charging 
stations can also be modeled using the Poisson 
distribution, which represents the probability that a 
charging station is available for charging as shown in Eq. 
(4). 
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Where v is wind speed,     is cut-in wind speed ,     is 
cut-out wind speed , and    is the measured speed of wind 
turbine in meter per second, PR is the nominal power of 
turbine in MW and A,B and C are the wind turbine related 
coefficients.  

2.2.  Probabilistic model of photovoltaic panels  

      The generated power of a PV module highly depends 
on solar irradiance and ambient temperature of the site, 
which can change the behavior of power generation of 
solar panels. Several probabilistic distribution functions 
can be used in order to model and characterize these 
parameters [14-15], researchers of this work used normal 
distribution function to generate the probabilistic 
distribution function of solar irradiation and ambient heat 
temperature as given in Eq. (3).  
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temperature in centigrade under standard conditions 
respectively,      is the solar irradiation value, k is the 
temperature coefficient for maximum power,    is the 
temperature surrounding the cell. 

2.3.  Probabilistic model of EV charging station 

    In PLF analysis, a probabilistic modeling of electric 
vehicle (EV) charging stations is important to capture the 
stochastic behavior of EV charging demand. The Poisson 
distribution is often used to model the number of EVs 
charging at a specific location over a certain time interval, 
as it is a discrete probability distribution that considers the 
occurrence of an event in a given time period.  
The Poisson distribution can be used to model the arrival 
rate of EVs at charging stations, as well as the charging 
power for each EV. The charging demand power depends 
on variety of factors, such as battery capacity, charging 
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stations can also be modeled using the Poisson 
distribution, which represents the probability that a 
charging station is available for charging as shown in Eq. 
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The mean and standard deviation of this distribution are λ 
and √λ, respectively. 

2.4. Load probabilistic model   

     The load demand in deterministic models will be 
identified constant; Behavioral patterns of consumers will 
result in variable demand in each load bus. In probabilistic 
studies since load prediction is initially random, the 
normal distribution models are the most frequently used in 
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order to describe the electric load prediction uncertainty of 
each bus using normal PDF as given in Eq. (5) [8]. 
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where μ and σ are the load’s mean and standard deviation. 

3. Probabilistic load flow 

      PLF is a computational method, used to analyze power 
system behavior under uncertain and varying conditions, 
such as fluctuations of power generation of renewable 
energy resources and changes in load demands. Unlike 
deterministic load flow analysis, which assumes fixed 
values for these parameters, PLF takes into account the 
probabilistic nature of the parameters and computes the 
probability density function of the system variables [18].  
A set of probabilistic methods are being used for PLF 
calculations, in this paper MCS and two-point estimate 
method (TPM) are being utilized. Since the input values 
are random, so that the output variables will definitely be 
random. In other words, in case of the existence of even an 
uncertain input variable, this results in the uncertainty of 
all output variables; then uncertain output may include 
probability distributions of voltage, power flow of 
branches, and other system variables at different sites and 
time intervals. While performing PLF by input random 
variables the probabilistic equations can be depicted as 
follows: 

                                                                          (6) 

  [                      ]                                   (7) 

 

      Where X is the input random variables vector which 
includes active and reactive powers of loads and 
generation units, etc., and Y is the vector of unknown 
variables of the network such as magnitudes and angles of 
voltages, power of slack bus, reactive powers of PV buses. 

 

 

4. Deterministic load flow 

      In the following paper backward-forward sweep 
algorithm is used to evaluate the distribution networks 
deterministic load flow [16-17], (DLF), this method 
divides the feeder into sections and analyzes each section 
separately. The method starts with backward sweep 
analysis where the end nodes are analyzed first and the 
power flow is traced back to the source. This allows for 
the determination of voltages and currents for each 
section. The next step is the forward sweep analysis, 
where the calculations begin at the source and propagate 
through the network. The algorithm runs iteratively until a 
stable solution is reached. This method is more efficient 
for radial distribution networks where the number of lines 
is significantly fewer than the number of buses. It is also 

useful for analysis of large-scale distribution networks that 
have a considerable number of branches in a particular 
area. The backward forward sweep load flow analysis 
provides rapid calculation, accurate results, and requires 
less computational power compared to other iterative 
methods.  

5. Comparison of PLF and DLF 

      The main difference between PLF and deterministic 
load flow is in how they handle uncertainty in power 
system parameters; deterministic load flow assumes that 
all system parameters, such as load demand, generator 
output, and line impedances, can be accurately determined 
and are fixed. It then calculates the steady-state behavior 
of the power system under these fixed conditions. This 
method is useful for analyzing power system operation 
under normal conditions, but it does not account for 
potential variations in the parameters that could occur due 
to factors such as weather, equipment failures, or changes 
in demand. 
 PLF, on the other hand, takes into account the probability 
distributions of the uncertain parameters and calculates 
their potential impact on the power system. PLF performs 
multiple simulations of the power system for a range of 
possible parameter values, generating a probability density 
function (PDF) for each system variable.  
In summary, while deterministic load flow provides a 
snapshot of the power system under specific fixed 
conditions, PLF offers a more comprehensive and 
probabilistic analysis that covers the ever-changing nature 
of power system parameters. 
 

6. Monte Carlo simulation 

      MCS is a combined random variables method based on 
simulation for solving load flow equations under the 
existence of uncertainties and probabilistic states; in 
addition, this method is mostly used under complex 
circumstances of the system like nonlinearity or having 
more than two uncertain parameters. MCS allows for the 
propagation of uncertainty through the distribution 
network model by generating random samples from the 
probability distributions of the uncertain parameters. 
These samples are then applied to the network model to 
calculate the load flow for each sample. 

 

7.  Two-Point estimation method (TPM) 

     Two-Point Estimation Method can be used in the PLF 
analysis to estimate the uncertainty associated with the 
load and generation in a power system. Hong's Two-Point 
Estimation Method is a deterministic method that 
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where μ and σ are the load’s mean and standard deviation. 

3. Probabilistic load flow 

      PLF is a computational method, used to analyze power 
system behavior under uncertain and varying conditions, 
such as fluctuations of power generation of renewable 
energy resources and changes in load demands. Unlike 
deterministic load flow analysis, which assumes fixed 
values for these parameters, PLF takes into account the 
probabilistic nature of the parameters and computes the 
probability density function of the system variables [18].  
A set of probabilistic methods are being used for PLF 
calculations, in this paper MCS and two-point estimate 
method (TPM) are being utilized. Since the input values 
are random, so that the output variables will definitely be 
random. In other words, in case of the existence of even an 
uncertain input variable, this results in the uncertainty of 
all output variables; then uncertain output may include 
probability distributions of voltage, power flow of 
branches, and other system variables at different sites and 
time intervals. While performing PLF by input random 
variables the probabilistic equations can be depicted as 
follows: 
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Using Two-Point Estimation Method in PLF analysis helps to 
improve power system planning and operations by providing a 
more accurate estimate of the system conditions. The formulation 
of the proposed method is described as follows [27]:

Instead of each random variable, xl two certain variables of 
xl,1and xl,2 are inserted in the PLF equations, which are obtained 
using the following equation:

In which  ξl,1,  ξl,2  is the standard location of random variable, xl. 
The standard locations and weights of random variable of xl are 
computed by:

And

Where λl,3 denotes the skewness of the random variablexl:

Finally, the mean value and standard deviation of the outputs Y 
is obtained using the following equations:

8. Comparison of TPM and MCS Method
TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated with 
the load and generation in a power system. However, the two 
methods obviously differ in the approach they take to estimate 
the system variables.

Hong's TPM allows for a relatively quick and simple estimation 
process, making it more applicable for smaller power systems 
with fewer inputs. However, this method may underestimate 
the uncertainty associated with the input data since it relies on a 
limited range of input data.

MCS method provides a more accurate estimate of the output 
variables since it takes into account the full range of variability 
in the input data with several iterations to proceed to the final 
result. However, this method is computationally intensive, 
making it more appropriate for larger power systems with 
more inputs; furthermore, although the consequences of this 
method has an adequate accuracy but the major problem of this 

method is that the calculation process of this method is Time-
consuming. In PLF analysis, MCS method is often preferred 
because it provides more detailed and accurate representations 
of uncertain variables, such as the load and generation data. By 
considering the correlation between inputs, Monte Carlo method 
can generate probability distributions of output variables. Also, 
MCS method is particularly useful when dealing with a large 
amount of uncertain data.

However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables.

In conclusion, while both methods provide valuable contributions 
to PLF analysis, Monte Carlo method is often preferred for its 
statistical accuracy, while Hong's Two-Point Estimation Method 
is a useful diagnostic tool when time and computational resources 
are limited. The choice between the two methods depends on the 
size and complexity of the power system, the accuracy required 
and the availability of computational resources.

9. Fundamental of Genetic Optimization Algorithm
 The integration of DERs into distribution networks can improve 
system efficiency, reduce losses, and improve voltage profiles. 
In further, Capacitors in distribution networks are used to 
improve voltage regulation by reducing reactive power demand 
and consequently, mitigating voltage drops; however, locating 
the best placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization algorithms 
(GOAs) can be a useful tool for finding the optimal configuration 
of DERs and Capacitors in the distribution network, the 
objective is to find locations and power capacity values which 
the installation of DER and Capacitor would lead to maximum 
benefits such as reduced losses, improved voltage profile and 
improved reliability, as it may not be provided in a non-optimal 
situation.

GOAs are a type of optimization method that use the principles 
of genetics and natural selection to evolve a population of 
candidate solutions over a series of generations. In the context 
of placement and sizing of DERs and Capacitors, GOAs are 
used to look for the optimal configuration of DER and Capacitor 
locations and capacities based on a set of objective functions.  
Installing DERs and capacitors in a distribution system can 
cause changes in three-phase short-circuit currents. DERs can 
inject power to the distribution systems which can alter the 
short-circuit current levels. Capacitors, on the other hand, can 
help reduce short-circuit currents by improving the power factor 
of the system. changing the three-phase short-circuit current 
in a distribution system could require the protection relays to 
be reconfigured or adjusted to ensure proper operation. Thus, 
changes in the short-circuit current levels, such as those caused 
by the installation of DERs and capacitors, could impact the 
operation of protection relays; Therefore, when DERs and 
capacitors are installed, their impacts on the system including 
three-phase short-circuit currents should be considered and 
necessary adjustments should be made to ensure the system's 
stability and reliability, failure to consider such impacts could 
lead to stability and reliability issues in the system. In such 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
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where      denotes the skewness of the random variable 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause  

 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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and  
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where      denotes the skewness of the random variable 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
  : 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
  : 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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and  
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where      denotes the skewness of the random variable 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause  

 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
  : 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
  : 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause  

 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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and  
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where      denotes the skewness of the random variable 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
  : 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 

 
 

estimate of the most likely level of load and generation in 
the power system, given the uncertainty associated with 
the input data [21]. 
Using  Two-Point Estimation Method in PLF analysis 
helps to improve power system planning and operations by 
providing a more accurate estimate of the system 
conditions. The formulation of the proposed method is 
described as follows: 

Instead of each random variable,    two certain variables 
of     and      are inserted in the PLF equations, which are 
obtained using the following equation: 
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   is the standard location of random 
variable,   . The standard locations and weights of 
random variable of    are computed by: 
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where      denotes the skewness of the random variable 
  : 
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Finally, the mean value and standard deviation of the 
outputs Y is obtained using the following equations: 
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8. Comparison of TPM and MCS method 

TPM and MCS methods are both techniques used in PLF 
analysis in order to estimate the uncertainty associated 
with the load and generation in a power system. However, 
the two methods obviously differ in the approach they take 
to estimate the system variables. 
Hong's TPM allows for a relatively quick and simple 

estimation process, making it more applicable for smaller 
power systems with fewer inputs. However, this method 
may underestimate the uncertainty associated with the 
input data since it relies on a limited range of input data. 
MCS method provides a more accurate estimate of the 
output variables since it takes into account the full range of 
variability in the input data with several iterations to 
proceed to the final result. However, this method is 
computationally intensive, making it more appropriate for 
larger power systems with more inputs; furthermore, 
although the consequences of this method has an adequate 
accuracy but the major problem of this method is that the 
calculation process of this method is Time-consuming. In 
PLF analysis, MCS method is often preferred because it 
provides more detailed and accurate representations of 
uncertain variables, such as the load and generation data. 
By considering the correlation between inputs, Monte 
Carlo method can generate probability distributions of 
output variables. Also, MCS method is particularly useful 
when dealing with a large amount of uncertain data. 
However, Hong's TPM remains a useful tool for load flow 
analysis, particularly for smaller systems with fewer input 
variables. It provides a fast and straightforward method of 
analysis that can be used to estimate the output variables. 

In conclusion, while both methods provide valuable 
contributions to PLF analysis, Monte Carlo method is 
often preferred for its statistical accuracy, while Hong's 
Two-Point Estimation Method is a useful diagnostic tool 
when time and computational resources are limited. The 
choice between the two methods depends on the size and 
complexity of the power system, the accuracy required and 
the availability of computational resources. 

9. Fundamental of Genetic optimization 
algorithm 

     The integration of DERs into distribution networks can 
improve system efficiency, reduce losses, and improve 
voltage profiles. In further, Capacitors in distribution 
networks are used to improve voltage regulation by 
reducing reactive power demand and consequently, 
mitigating voltage drops; however, locating the best 
placement and capacity of DERs and Capacitors can be 
complex and time-consuming. Genetic optimization 
algorithms (GOAs) can be a useful tool for finding the 
optimal configuration of DERs and Capacitors in the 
distribution network, the objective is to find locations and 
power capacity values which the installation of DER and 
Capacitor would lead to maximum benefits such as 
reduced losses, improved voltage profile and improved 
reliability, as it may not be provided in a non-optimal 
situation. 
GOAs are a type of optimization method that use the 
principles of genetics and natural selection to evolve a 
population of candidate solutions over a series of 
generations. In the context of placement and sizing of 
DERs and Capacitors, GOAs are used to look for the 
optimal configuration of DER and Capacitor locations and 
capacities based on a set of objective functions.  Installing 
DERs and capacitors in a distribution system can cause 
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situations, it is necessary to reevaluate the protection settings, 
depending on the magnitude and nature of the changes in the 
short-circuit current levels, the relay settings may need to be 
updated or the relays may need to be replaced with devices that 
are better suited for the new operating conditions. In order to 
avoid these changes in the protection topology of the system, 
the minimization of the changes in three-phase short circuit 
current of the system will be added to the objective function of 
the optimization algorithm that can help ensure the safety and 
reliability of the distribution system. During the GOA evolution 
process, the solutions evolve over several generations through 
genetic operators, such as selection, crossover, and mutation. 
The fitness evaluation is performed at each generation to select 
the best solutions, which are then carried forward to the next 
generation. This process continues until a satisfactory solution 
is reached.

10. Proposed Optimal Placement and Sizing of DER and 
Capacitor Methodology
This approach is a computational approach for identifying the 
best locations and sizes of DER sources and capacitors in a 
power distribution system to minimize power losses and voltage 
deviations while minimizing changes in three-phase short-circuit 
currents. The genetic algorithm evaluates multiple combinations 
of DER and capacitor locations, sizes, load demand, and other 
system parameters to identify an optimal configuration of 
DERs and capacitors that meets the defined objectives while 
satisfying any constraints. The resulting placement and sizing 
of DER resources and capacitors can help to mitigate the impact 
of power fluctuations, reduce the transmission and distribution 
losses, and provide substantial benefits to the network and the 
customers. It can also enhance the resilience and reliability of 
the power distribution system, which is increasingly important 
for critical infrastructure and emergency services [20].

• Define the objective function: The objective function is 
to minimize the power losses and voltage deviation while 
minimizing the changes in the three-phase short circuit current 
of the distribution system with the installation of capacitors and 
DERs. The power loss is calculated by subtracting the output 
power from the input power of the transmission lines, while the 
voltage deviation is the difference between the actual voltage 
and the standard voltage level.
• Define the variables: The variables that affect the performance 
of the system include the type and size of the capacitors and 
DERs, as well as their locations in the distribution system.
• Define the constraints: The constraints are the limitations of 
the system, such as the maximum capacity of the capacitors and 
DERs, the distance between the installations, and the voltage 
limits.

• Implement the genetic algorithm: The genetic algorithm is 
used to determine the best placement and sizing of capacitors 
and DERs to minimize power losses and voltage deviation. The 
algorithm starts with a random population of individuals, and 
each individual represents a possible solution. The individuals 
are evaluated based on their fitness, which is determined by 
the objective function. The fittest individuals are selected for 
reproduction, and the process is repeated until the optimal 
solution is reached.

11. Proposed Algorithm
The proposed method is divided into four main steps: (1) 
performing PLF in the presence of DERs and loads using 
backward/forward sweep load flow method to create an initial 
PLF data base (2) statistical calculations of MCS and two-point 
estimation method (3) Optimal placement and sizing of DERs 
and capacitors using genetic optimization method (4) placing 
DERs and capacitors in their optimized locations and setting 
their optimal values and perform the PLF respectively.

Step 1 Placement of Electric loads, EV charging stations and PV 
and WT type DERs, having uncertainty at specified buses.
Step 2 Collecting data for initial load flow samples by creating 
random samples from the probability distributions of the uncertain 
parameters for random input variables Calculating samples for 
output variables by performing load flow. Continuing the above 
procedure until the number of iterations reaches a specific value.
Step 3 performing MCS in order to estimate PDF of the output 
variables.
Step 4 Carrying out two-point estimation method; Obtaining 
values of weight coefficients and ξl,1, ξl,2 and λl3 of random 
variables using Eqs. (9)-(11). 
Determining position of estimation points xl.1 , xl.2 by Eq. (8) 
Obtaining variable Y using estimation points (Eq. (6)).
Calculating the mean and standard deviation of the output using 
Eqs. 12 and 13 and weight coefficients of estimated points. 
Estimating PDF of the output variables using torques obtained 
in the previous step.
Step 5 Comparing the results of the Two-point estimation method 
with the Monte Carlo method
Step 6 Carrying out the optimal placement and sizing of DERs 
and capacitor banks using the genetic optimization algorithm 
method and obtaining the optimal place and generation capacity 
of DER resources and capacitor banks.
Step 7 Repeating steps two to five after placing DERs and 
capacitor banks in their optimized locations and adjusting 
their optimal values according to the values obtained from the 
optimization algorithm.
Step 8 Comparing probability density functions of output 
variables obtained before and after the optimization process.
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Fig. 2. Flow chart of the proposed algorithm 

Case Study: 

In order to perform Load flow analyzation and to 
determinations, the proposed methods are tested on the 
modified IEEE 33_Bus distribution networks. 

Sbase = 100 MVA, Vbase= 11 Kv.  It should be 
mentioned that these studies are performed in MATLAB 
on a PC with a 1.80 GHz processor and 12 GB RAM. 

An IEEE 33-bus radial distribution test system is shown in 
Fig. 1; this system has one feeder with four laterals and 32 
branches. 

 

Fig. 1. 33 Bus Radial Distribution Test System. 

12. Results and discussion 

   The generated program is carried out on the 33-bus test 
system. Obtained PLF results for 33-bus test system 
without placement of DER and Capacitor are tabulated in 
Table 1. 

Table 1. Before placement of DER and Capacitor for 33 Bus Test System 

MCS TPM 

 Mean Std. Mean Std. 
|   | 0.954967 0.00968931 0.954281 0.00573816 

      (MW) 0.181987 0.0480249 0.189251 0.0486186 

      (MVAR) - 0.883654 0.000411833 -0.88366 0.00041119 
Voltage 
Deviation (PU) 0.209694 0.0257975 0.211422 0.0157444 
Total Losses 
(MW) 0.126298 0.0164939 0.125618 0.00801071 

Processing 
Time (sec) 387.88 25.9552 

 

After optimal placement and sizing of DER and Capacitor 
the obtained PLF results are tabulated in Table 2. 

Table 2. After placement of DER and Capacitor for 33 Bus Test System 

MCS TPM 

 Mean Std. Mean Std. 
|   | 0.983529 0.007380 0.982921 0.004635 

      (MW) 0.181617 0.0474407 0.187784 0.0478866 

      (MVAR) - 0.0810736 0.0002157 -0.0810748 0.0002129 
Voltage 
Deviation (PU) 0.0489234 0.0213739 0.0504361 0.013751 
Total Losses 
(MW) 0.022691 0.007986 0.0218846 0.0029916 

Processing 
Time (sec) 427.527 39.8666 

     

   According to the MCS method, which is based on 
repetition, it reaches the optimal solution over a longer 
period of time; But the obtained answers are closer to 
reality, that's why this method is considered the basis of 
calculations. Since the two-point estimation method has 
fewer input points than the MCS method, thus this method 
is faster to reach the optimal solution than the MCS 
method. Comparison of the output of the load flow 
variables shows that Hong’s Two-point estimation method 
follow the MCS results well, therefore this method has an 
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Figure 2. Flow Chart of the Proposed Algorithm

Case Study
In order to perform Load flow analyzation and to determinations, 
the proposed methods are tested on the modified IEEE 33_Bus 
distribution networks.

Sbase = 100 MVA, Vbase= 11 Kv.  It should be mentioned that 
these studies are performed in MATLAB on a PC with a 1.80 
GHz processor and 12 GB RAM.
An IEEE 33-bus radial distribution test system is shown in Fig. 
1; this system has one feeder with four laterals and 32 branches.

Figure 1. 33 Bus Radial Distribution Test System.
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12. Results and Discussion
The generated program is carried out on the 33-bus test system. 

Obtained PLF results for 33-bus test system without placement 
of DER and Capacitor are tabulated in Table 1.
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generation capacity of DER resources and capacitor banks. 
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capacitor banks in their optimized locations and adjusting 
their optimal values according to the values obtained from 
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variables obtained before and after the optimization 
process. 
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12. Results and discussion 

   The generated program is carried out on the 33-bus test 
system. Obtained PLF results for 33-bus test system 
without placement of DER and Capacitor are tabulated in 
Table 1. 

Table 1. Before placement of DER and Capacitor for 33 Bus Test System 

MCS TPM 

 Mean Std. Mean Std. 
|   | 0.954967 0.00968931 0.954281 0.00573816 

      (MW) 0.181987 0.0480249 0.189251 0.0486186 

      (MVAR) - 0.883654 0.000411833 -0.88366 0.00041119 
Voltage 
Deviation (PU) 0.209694 0.0257975 0.211422 0.0157444 
Total Losses 
(MW) 0.126298 0.0164939 0.125618 0.00801071 

Processing 
Time (sec) 387.88 25.9552 

 

After optimal placement and sizing of DER and Capacitor 
the obtained PLF results are tabulated in Table 2. 

Table 2. After placement of DER and Capacitor for 33 Bus Test System 

MCS TPM 

 Mean Std. Mean Std. 
|   | 0.983529 0.007380 0.982921 0.004635 

      (MW) 0.181617 0.0474407 0.187784 0.0478866 

      (MVAR) - 0.0810736 0.0002157 -0.0810748 0.0002129 
Voltage 
Deviation (PU) 0.0489234 0.0213739 0.0504361 0.013751 
Total Losses 
(MW) 0.022691 0.007986 0.0218846 0.0029916 

Processing 
Time (sec) 427.527 39.8666 

     

   According to the MCS method, which is based on 
repetition, it reaches the optimal solution over a longer 
period of time; But the obtained answers are closer to 
reality, that's why this method is considered the basis of 
calculations. Since the two-point estimation method has 
fewer input points than the MCS method, thus this method 
is faster to reach the optimal solution than the MCS 
method. Comparison of the output of the load flow 
variables shows that Hong’s Two-point estimation method 
follow the MCS results well, therefore this method has an  
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According to the MCS method, which is based on repetition, 
it reaches the optimal solution over a longer period of time; 
But the obtained answers are closer to reality, that's why this 
method is considered the basis of calculations. Since the two-
point estimation method has fewer input points than the MCS 
method, thus this method is faster to reach the optimal solution 
than the MCS method. Comparison of the output of the load flow 
variables shows that Hong’s Two-point estimation method follow 
the MCS results well, therefore this method has an acceptable 
accuracy in estimating the standard deviation of the output 
variables in a shorter period of time. The simulations revealed 

that two-point estimation method produce accurate answers and 
significantly minimize the PLF problem’s calculation time. It is 
noted that by comparing Voltage deviation and total losses of the 
system before and after optimal DER and Capacitor placement, 
the percentage of total loss and Voltage deviation reduction 
after allocation of DER and Capacitor are equal to 82.03% and 
76.66% respectively.

The voltage profile before and after placement of DER and 
Capacitor is graphically represented in Fig. 2.
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The power loss in each line before and after placement of DER and Capacitor is compared in Fig. 3. It is observed that the power 
loss at each line has been greatly reduced.
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It is obvious that in the graphic curves, according to the proviso 
that was determined in the objective function of the genetic 
algorithm to minimize the changes of the three-phase short-
circuit current, the it is obvious that three-phase short-circuit 

current in the different buses of the system in the state before and 
after the installation of DER sources and the capacitors have not 
changed significantly and have remained noticeably constant.

 
 

 
Fig. 6. Comparison of PDFs of voltage deviation obtained of the 
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    Conclusion 

In this paper the PLF by MCS and Two-point estimation 
method is applied before and after the optimal placement 
and sizing of DERs and capacitor banks using Genetic 
Algorithm is proposed where minimization of losses and 
voltage deviation as well as minimizing changes in the 
three-phase short circuit current is considered as main 
criteria. The obtained results show that the bus voltage 
profile of the system and the total power losses of system 
buses have been noticeably enhanced, having a minor 
change in three-phase short-circuit current values, Besides 
the graph obtained from solving the PLF using the TPM, 
while being faster than the MCS, corresponds to the graph 
obtained from solving the PLF by MCS to a very 
favorable extent. The PDFs of the output variables of the 
investigated network, like bus voltage magnitude and 
active and reactive power flow of branches obtained from 
solving PLF by two methods of MCS and Hong’s TPM, 
have been compared before and after optimal placement 
and sizing of DERs and CBs. The accuracy of the MCS is 
higher than the TPM due to the higher number of 
iterations in solving the problem. The calculation time in 
the MCS is about ten times longer than the TPM method. 
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13. Conclusion
In this paper the PLF by MCS and Two-point estimation method 
is applied before and after the optimal placement and sizing of 
DERs and capacitor banks using Genetic Algorithm is proposed 
where minimization of losses and voltage deviation as well as 
minimizing changes in the three-phase short circuit current is 
considered as main criteria. The obtained results show that the 
bus voltage profile of the system and the total power losses of 
system buses have been noticeably enhanced, having a minor 
change in three-phase short-circuit current values, Besides the 
graph obtained from solving the PLF using the TPM, while being 
faster than the MCS, corresponds to the graph obtained from 
solving the PLF by MCS to a very favorable extent. The PDFs of 
the output variables of the investigated network, like bus voltage 
magnitude and active and reactive power flow of branches 
obtained from solving PLF by two methods of MCS and Hong’s 
TPM, have been compared before and after optimal placement 
and sizing of DERs and CBs. The accuracy of the MCS is higher 
than the TPM due to the higher number of iterations in solving 
the problem. The calculation time in the MCS is about ten times 
longer than the TPM method.
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