
AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 1

A Numerical and Security Analysis of RSA: From Classical Encryption to Post-
Quantum Strategies

Research Article

Bhanu Prakash*, Sachin Srivastava, Sachin Prajapati, Rupesh Kumar and Gagandeep Kaur

*Corresponding Author
Bhanu Prakash, Computer Science and Engineering Lovely Professional
University Phagwara, Punjab, India.

Submitted: 2025, Apr 30; Accepted: 2025, Jun 02; Published: 2025, Jun 05

Citation: Prakash, B., Srivastava, S., Prajapati, S., Kumar, R., Kaur, G. (2025). A Numerical and Security Analysis of RSA:
From Classical Encryption to Post-Quantum Strategies. AI Intell Sys Eng Med Society, 1(1), 01-07.

Computer Science and Engineering Lovely
Professional University Phagwara, Punjab,
India

Abstract
This paper provides a detailed analysis of the RSA algorithm, an extensively used asymmetric encryption system forming
the foundation of ultramodern cryptographic security, the most prominent asymmetric encryption algorithm, which now
forms the base of ultramodern cryptographic security in the information period. In fact, RSA uses the fine complexity
of large high number factorization to insure both trustability and security of communication by using public- crucial
cryptography. The paper addresses the abecedarian principles of RSA concerning crucial generation, encryption, and
decryption; discusses counteraccusations of RSA concerning security, vulnerabilities, and adaptability to a variety of
cryptographic attacks; and identifies veritable operations of RSA in real- life situations similar as secure dispatches
protocols, authentication systems, and digital autographs. This paper also discusses performance considerations,
crucial length recommendations, and openings for perfecting RSA encryption.

Keywords: RSA, Encryption, Cryptography, Key Management, Public-Key, Asymmetric Encryption, Secure Communication,
Digital Signatures

1. Introduction
The rapid development of digital technology has fundamentally
transformed the way information is stored and communicated. This
transformation has brought about significant benefits but has also
introduced critical challenges in ensuring the security and integrity
of sensitive information. In today's world, online transactions,
financial exchanges, healthcare data management, and government
communications are predominantly digital, making the protection
of this information paramount [1]. The increasing prevalence of
cyberattacks, including man-in-the-middle attacks, data breaches,
and identity theft, poses serious threats to both organizations and
individuals [2,3].

To mitigate these risks, cryptographic methods play a crucial role
in safeguarding data integrity, authenticity, and confidentiality [4].

Cryptography, the art of secret writing, has evolved significantly
to address these challenges. Traditional symmetric encryption
protocols, such as the Advanced Encryption Standard (AES) and

the Data Encryption Standard (DES), have been widely used for
securing communications for many years [5]. These protocols
utilize a single key for both encryption and decryption, which
presents a significant challenge: secure key distribution. The
secure transmission of the key between communicating parties is
a fundamental drawback of symmetric encryption. If an attacker
intercepts this key during transmission, the security of the entire
communication is compromised, as all encrypted data can be
decrypted [6].

Asymmetric cryptography was introduced to overcome the key
distribution problem inherent in symmetric systems. Asymmetric
cryptography, also known as public-key cryptography, employs
two distinct keys: a public key for encryption and a private key
for decryption [7]. The public key can be freely shared, while the
private key must be kept secret by the owner. This fundamental
difference allows for secure communication without the need for
a secure channel to exchange keys. One of the most widely used
asymmetric encryption algorithms is the Rivest-Shamir-Adleman

AI and Intelligent Systems: Engineering, Medicine & Society

AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 2

(RSA) algorithm, named after its creators, Ron Rivest, Adi
Shamir, and Leonard Adleman, who developed it in 1977 [8]. The
RSA algorithm's security relies on the computational complexity
of prime factorization, a mathematical problem that is considered
infeasible for classical computers when dealing with sufficiently
large integers [9]. This computational hardness makes RSA a
robust solution for many security applications [10].

1.1. Significance and Uses of RSA
The RSA algorithm has become a crucial component of modern
cryptographic infrastructure and is widely employed in various
applications, including:
• Secure Web Browsing (HTTPS): RSA is commonly used in

TLS/SSL certificates to establish secure connections between
clients and servers [2].

• Email Encryption (PGP & S/MIME): RSA encrypts email
content, ensuring that only intended recipients can access it
[5].

• Digital Signatures: RSA enables users to digitally sign
documents, providing authentication and protection against
tampering [4].

• Blockchain Technology: Many blockchain platforms use
RSA-based cryptographic methods for wallet security and
transaction verification [6].

• VPN & Network Security: RSA is used in virtual private
networks (VPNs) and encrypted communication protocols for
secure authentication [8].

1.2. Security Challenges and Emerging Threats
Despite its widespread adoption, the RSA algorithm faces several
challenges:
• Computational Overhead: RSA requires high computational

resources for encryption and decryption, particularly when
using 2048-bit or 4096-bit keys to maintain strong security
[9].

• Key Size Growth: As computing power increases, larger
RSA key sizes are needed for security, which can lead to
performance inefficiencies in real-time applications [10].

• Quantum Computing Threat: The advancement of quantum
computers poses a major risk to RSA security. Shor’s algorithm
allows quantum computers to efficiently factor large numbers,
potentially breaking RSA encryption in the near future [8].

• Hybrid Encryption Models: Due to RSA's computational
complexity, it is often combined with symmetric encryption
(e.g., AES + RSA) to balance security and performance [12].

• C) Objectives of this Paper
• This paper presents a comprehensive study of the RSA

algorithm, covering:
• Key generation, encryption, and decryption mechanisms to

understand the fundamental workings of RSA.
• Numerical implementation and mathematical foundation

behind RSA security.
• Historical evolution of RSA key sizes and cryptographic

advancements addressing security challenges.
• Potential improvements, including hybrid encryption

techniques (e.g., AES + RSA) and post-quantum cryptographic

solutions.
• Real-world implementation of RSA in secure messaging

applications, demonstrating its practical use in encrypted
communication.

2. Methodology
The RSA encryption technique employs a standardized stepwise
procedure, fundamentally comprising key generation, encryption,
and decryption. This methodology is detailed in Section III. The
following subsections elaborate on these steps:

2.1. Public Key Cryptography
RSA is an asymmetric encryption algorithm, also known as public-
key cryptography, which utilizes a pair of related keys:
• A public key, which can be shared with anyone, used for

encryption.
• A private key, which must be kept secret by the owner, used

for decryption.

This key separation ensures that only the intended recipient,
possessing the corresponding private key, can decrypt the
message, thereby eliminating the need for a secure key exchange
mechanism. This is a core advantage of asymmetric cryptography
over symmetric cryptography [7].

2.2. Key Generation Process
The generation of the RSA key pair involves the following steps:
• Selecting two distinct large prime numbers, typically denoted

as p and q. The security of RSA heavily relies on the size of
these primes [9].

• Computing the modulus n, which is the product of p and q (n
= p × q).

• Computing Euler's totient function, denoted as ϕ(n), which is
crucial for key derivation. For RSA, ϕ(n) is calculated as (p-1)
(q-1) [11].

2.3. Encryption and Decryption Process
• Encryption: The sender encrypts the plaintext message using

the recipient's public key. This process ensures that only the
intended recipient can access the data.

• Decryption: The recipient decrypts the ciphertext using their
corresponding private key, thus maintaining the confidentiality
and security of the communication [13].

2.4. Security Requirements
To ensure robust cryptographic security, the RSA algorithm must
adhere the following requirements:
• Computational Infeasibility: Deriving the private key from

the public key should be computationally infeasible. This
robustness is essential to protect against brute-force attacks
and factorization attacks [14].

• Efficiency: The encryption and decryption processes should
be optimized to balance security and performance for practical
applications.

• Key Size Selection: RSA keys, determined by the size of the
primes p and q, must be sufficiently large (e.g., 2048-bit or

AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 3

4096-bit) to resist factorization attacks and ensure long-term
security [15].

3. RSA Algorithm
The RSA algorithm is a structured process that comprises three
main phases: key generation, encryption, and decryption. The
steps involved in each phase are detailed below

3.1. Key Generation
The key generation process is fundamental to RSA security and
involves the following steps:
1. Select Two Distinct Large Prime Numbers: Choose two large
prime numbers, denoted as p and q. These primes must be kept
secret. The security of RSA relies heavily on the difficulty of
factoring the product of these large primes [6].

2. Compute the Modulus (n): Calculate the modulus n by
multiplying the two primes:

n = p × q

The modulus n forms part of both the public and private keys [9].

3. Compute Euler's Totient Function (ϕ(n)): Compute Euler's
totient function, denoted as ϕ(n). For RSA, this is calculated as:

i.ϕ(n) = (p − 1)(q − 1)

Euler's totient function is crucial for determining the encryption
and decryption keys [12].

4. Select the Public Exponent (e): Choose an integer e as the public
exponent such that:

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

Where gcd represents the greatest common divisor. The public
exponent e must be coprime with ϕ(n). Common choices for e
include 3, 17, or 65537, with 65537 being widely used due to its
security and efficiency advantages [3], [8].

5. Compute the Private Key (d): Calculate the private key d using
the modular multiplicative inverse of e modulo ϕ(n):

d ≡ e−1 mod ϕ(n)

The private key d must be kept secret [14].

3.2. Encryption
The encryption process transforms the plaintext message into
ciphertext using the recipient's public key:
• Convert Plaintext to Numerical Value: Convert the plaintext

message M into a numerical value. This can be done using
various encoding schemes [10].

• Compute the Ciphertext (C): Calculate the ciphertext C using
the public key (e, n):

 C ≡ Me mod n
• Secure Transmission: The encrypted message C is then sent

securely to the recipient [13].

3.3. Decryption
The decryption process recovers the original plaintext message M
from the ciphertext C using the recipient's private key (d, n):
• Decrypt the Ciphertext (C): The recipient decrypts the

ciphertext C using their private key (d, n):
 M ≡ Cd mod n
• Retrieve Plaintext: This retrieves the original plaintext

message M, ensuring secure and authenticated communication
[16].

4. Numerical Study on RSA Algorithm
Example: RSA Key Generation And Encryption Process
The RSA algorithm uses two large prime numbers to generate
public and private keys. The step-by-step process is described
below:
• Select two distinct primes numbers
 p = 17, q = 23
 In practical RSA implementations, much larger prime

numbers, typically 2048-bit or 4096-bit, are used to provide
robust security against factorization attacks [9]. This is a
crucial point to emphasize, as the security of RSA is directly
related to the size of the primes [15].

• Compute modulus n, which forms part of the RSA key pair
 n = p × q = 17 × 23 = 391.
 The modulus n is a public value and is part of both the public

and private keys [10].
• Compute Euler’s totient function (ϕ(n)):
 ϕ(n) = (p − 1) × (q − 1) = 16 × 22 = 352.
 This value remains secret and is essential for deriving the

private key [11].
• Select a public exponent e such that satisfies the following

conditions:
 1 < e < ϕ(n), gcd (e, ϕ(n)) = 1.
 A common choice is e = 13, ensuring it is coprime with 352

for efficient encryption [6].

4.1. Compute Private Key d
• The private key d is calculated using the modular inverse of e

modulo ϕ(n):

 d ≡ e−1 mod ϕ(n)

• Using the Extended Euclidean Algorithm, we find:

 13 × 325 = 4225 ≡ 1 mod 352 ⟹ d = 325.

• The final key pair is:
 Public Key (e, n) = (13, 391)
 Private Key (d, n) = (325, 391)

4.2. Encrypt plaintext (M)
• Assume the plaintext message M = 42.

AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 4

• Compute the ciphertext C using the public key (e, n):
 C ≡ Me mod n
 C = 4213 mod 391

• Breakdown of Computation:
 422 mod 391 = 200
 424 mod 391 = 2002 mod 391 = 118
 4213 ≡ 118 × 200 × 42 mod 391 = 145

• Final ciphertext:
 C = 145 [5].

4.3. Decrypt ciphertext (C)
• To decrypt the ciphertext C = 145, use the private key (d, n) =

(325, 391):
 M ≡ Cd mod n
 M = 145325 mod 391 = 42

• Applying modular exponentiation, we obtain:
 M = 42

• Decryption is successful, and the original message is recovered
[7].

4.4. Security Considerations
• Prime Size Importance: It is crucial to reiterate that the

small prime numbers used in this example (17, 23) are for
illustrative purposes only. Real-world RSA implementations
employ much larger primes (e.g., 2048-bit, 4096-bit) to ensure
resistance against factorization attacks [9,15].

• Hybrid Encryption: RSA is computationally intensive for
encrypting large amounts of data. In practice, RSA is often
used in conjunction with symmetric encryption algorithms
(e.g., AES + RSA) to achieve a balance between security and
efficiency. RSA is used for key exchange, while AES is used
for data encryption [12].

• Quantum Computing Threat: The potential threat posed by
quantum computers to RSA security due to Shor's algorithm
is a significant concern. The development of post-quantum
cryptography is essential to address this vulnerability [8].

5. Discussion
This section provides an in-depth discussion of the RSA algorithm,
examining its historical context, security implications, performance

trade-offs, and real-world applications.

5.1. Historical Progression of key Sizes
The evolution of RSA key sizes is a critical aspect of the algorithm's
ongoing adaptation to evolving security threats. As computational
power has increased and cryptographic research has advanced,
it has become necessary to progressively increase key lengths to
maintain adequate security levels
• 512-bit Keys (Pre-2000s): Early RSA implementations

commonly employed 512-bit keys, which were considered
sufficient to withstand the attacks prevalent at the time.
However, the development of attacks like the General Number
Field Sieve (GNFS) rendered these keys vulnerable, and they
were deprecated by 2013 [1].

• 1024-bit Keys (2000s–2013): Throughout the early 2000s,
1024-bit RSA keys became the industry standard, striking
a balance between security and computational efficiency.
Nevertheless, the rapid increase in computational capabilities
made these keys insufficient by 2013, prompting cryptographic
standards to recommend the adoption of larger key sizes
[9,14].

• 2048-bit Keys (2013–Present): In response to recommendations
from organizations like the National Institute of Standards
and Technology (NIST), 2048-bit RSA keys became the new
baseline for cryptographic security, providing approximately
112-bit equivalent symmetric security. It is projected that this
key length will remain secure until at least 2030 [10,11].

• 4096-bit Keys (Emerging Trend): With the continued
advancement of computing technology, 4096-bit keys are
increasingly being adopted for applications requiring the
highest levels of security. These keys offer approximately
150-bit equivalent symmetric security but introduce increased
computational overhead, affecting encryption and decryption
speeds [11].

5.2. Security Implications
5.2.1. Factorization Resistance and Quantum Threats
A fundamental strength of RSA lies in its reliance on the
computational difficulty of factoring large composite numbers.
However, the increasing availability of powerful computing
resources and the potential emergence of quantum computers pose
significant threats to RSA's security [8,15].

Table 1: Provides A Comparative Analysis of The Feasibility of
Classical and Quantum Attacks Against Different RSA Key Sizes

Key Size Classical Attack Feasibility Quantum Attack Risk (Shor’s Algorithm) [8]
1024-bit Broken With $1M cluster in 2-3 years Vulnerable
2048-bit Requires ~$10B and 1B years At risk post-2030
4096-bit Infeasible with current methods Resistant to near-term quantum threats

Table 1: RSA Key Size Security Analysis

AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 5

5.3. Identified Vulnerabilities
• Key Size Limitation: The need to increase RSA key sizes to

maintain security in the face of growing computing power
leads to performance inefficiencies, particularly in real-time
applications [13].

• Side-Channel Attacks: RSA implementations are vulnerable to
side-channel attacks, such as timing attacks, power analysis,
and fault attacks, which can be exploited to extract private
keys by analyzing physical characteristics of the cryptographic
operations [12].

• Hybrid Cryptography Risks: Many systems employ hybrid
encryption schemes (e.g., RSA for key exchange and AES for
bulk encryption) to achieve a balance between performance

and security. However, if the key exchange mechanism is
compromised, the security of the entire system is jeopardized
[14].

5.4. Performance Trade-offs
RSA encryption and decryption involve modular exponentiation,
a computationally intensive operation, especially with larger
key sizes. Consequently, there are inherent trade-offs between
encryption speed, memory consumption, and the level of security
provided by RSA [11,13].

Table II summarizes these trade-offs:

Key Size Encryption/ Decryption Speed Memory/ Bandwidth Use Cases
512-bit Fast (~ms) Low Obsolete [5]
1024-bit Moderate Moderate Legacy systems (Phased out) [9]
2048-bit 2-3x slower than 1024-bit High Modern SSL/TLS, digital signatures [11]
4096-bit 10x slower than 2048-bit Very High Long-term storage, high security sectors [5]

Table 2: RSA Key Size vs. Performance

5.5. Computational Overhead Considerations
• RSA's computational complexity is O(n³), indicating that

decryption time increases exponentially with the key size.
For example, decrypting a message with a 4096-bit key takes
approximately four times longer than decrypting the same
message with a 2048-bit key [14].

• Hybrid cryptographic approaches, which combine RSA for
key exchange with symmetric encryption algorithms like
AES for data encryption, are commonly used to mitigate the
performance bottlenecks associated with RSA [13].

5.6. Standards and Cryptographic Recommendations
5.6.1. NIST Guidelines
The National Institute of Standards and Technology (NIST) plays
a crucial role in providing guidelines and recommendations for
cryptographic security, including RSA key sizes [10]:
• 2013: NIST mandated the use of 2048-bit keys for federal

government systems [11].
• 2015: NIST disallowed security levels below 112-bit, which

is equivalent to the security provided by 2048-bit RSA keys
[10].

5.7. Real-time Implementation of RSA in Secure
Communication
RSA is widely implemented in various real-world applications,
particularly in secure messaging systems and real-time
communication platforms [7].
• WebSockets-Based Secure Messaging: RSA has been

integrated with technologies like Node.js, Express.js, and
Socket.io to enable secure real-time communication. Event-
driven processing techniques are employed to optimize
performance and minimize latency in these systems [6].

• Dynamic Key Management: In secure communication

systems, each user typically generates an RSA key pair upon
joining the system, with the private key stored locally to ensure
end-to-end encryption. Public keys are then dynamically
shared to facilitate secure message transmission [7].

• Secure Key Transfer Protocol: RSA-based systems often
implement protocols that require mutual approval of public
key exchanges before initiating encrypted communication.
This approach helps to prevent man-in-the-middle (MITM)
attacks [15].

• Risk Mitigation Strategies: To enhance security, RSA-based
systems are designed to never transmit private keys over
the network, mitigating the risk of replay attacks and key
exposure [16].

• Performance Optimization: Hybrid encryption schemes,
such as combining RSA for key exchange and AES for bulk
data encryption, are employed to optimize performance.
Additionally, WebSocket persistence is used to maintain
session integrity and reduce the overhead associated with
repeated key exchanges [13].

5.8. Future of RSA and Post-Quantum Cryptography
The RSA algorithm has been a cornerstone of cryptographic
security, providing robust encryption and authentication
mechanisms for a wide range of applications. However, the rapid
advancements in quantum computing pose significant challenges
to RSA's continued security [3,12].

5.9. Quantum Computing and Its Impact on RSA
Quantum computers, leveraging principles of quantum mechanics,
have the potential to break RSA encryption by efficiently solving
mathematical problems that are infeasible for classical computers.
Shor’s Algorithm, a quantum algorithm developed by Peter Shor,
can factorize large numbers exponentially faster than the best-

AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 6

known classical algorithms. Since the security of RSA relies on the
difficulty of prime factorization, a sufficiently powerful quantum
computer could render RSA encryption obsolete [6,14].

Table III illustrates the projected impact of quantum computing on
the security of different RSA key sizes [8,14]:

RSA Key Size Classical Security Quantum Security (Shor's Algorithm)
1024-bit Insecure (breakable in months) Easily broken
2048-bit Secure until 2030 At risk post-2030
4096-bit Secure against classical attacks Temporary resistance, but breakable in the long term

Table 3: Projected Impact of Quantum Computing on RSA Key Sizes

5.10. Post-Quantum Cryptographic Alternatives
To address the vulnerabilities presented by quantum computing,
researchers are actively developing post-quantum cryptographic
(PQC) algorithms that are designed to remain secure even against
quantum attacks [4,10,16]. Several promising PQC alternatives
are being explored:
• Lattice-Based Cryptography: This approach relies on the

hardness of solving lattice problems, which are believed to
be resistant to quantum attacks. Examples of lattice-based
cryptographic algorithms include the NTRU encryption
algorithm and Learning-With-Errors (LWE)-based schemes
[7].

• Hash-Based Cryptography: Hash-based cryptography utilizes
cryptographic hash functions to construct secure digital

signatures that maintain quantum resistance. Examples of
hash-based signature schemes include the XMSS (eXtended
Merkle Signature Scheme) and SPHINCS+ [9].

• Code-Based Cryptography: This method employs error-
correcting codes to provide security. The McEliece
cryptosystem is a notable example of code-based cryptography
[11].

• Multivariate Polynomial Cryptography: This approach uses
multivariate polynomial equations to create public-key
cryptosystems that are designed to resist quantum attacks.
The Rainbow Signature Scheme is an example of multivariate
polynomial cryptography [13,15].

• Table IV provides a comparative analysis of these post-
quantum cryptographic alternatives [2,8].

Cryptographic Approach Security Basis Quantum Resistance Adoption Readiness
Lattice-Based Hardness of lattice problems High Actively researched
Hash-Based Cryptographic hash functions High Ready for implementation
Code-Based Error-correcting codes Moderate Still being evaluated
Multivariate Polynomial Multivariate equations Moderate Experimental stage

Table 4: Comparative Analysis of Post-Quantum Cryptographic Alternatives

5.11. The Transition to Post-Quantum Security
Recognizing the need to transition away from RSA and other
quantum-vulnerable algorithms, organizations and governments
worldwide are actively engaged in research and standardization
efforts for post-quantum cryptography [1,12]. The National
Institute of Standards and Technology (NIST) is leading a
significant initiative to standardize quantum-resistant algorithms
that can replace existing vulnerable encryption methods [10,14].
The transition to post-quantum cryptographic protocols will
necessitate updates across various aspects of digital infrastructure,
including software, hardware, and security frameworks. Key steps
in this transition include:
• Algorithm Standardization: NIST's Post-Quantum

Cryptography Standardization Project aims to establish secure
and efficient PQC algorithms by 2024-2025 [6].

• Software and Hardware Adaptation: Updating encryption
libraries, protocols (TLS, SSH, VPNs), and hardware security
modules (HSMs) to support PQC [3].

• Hybrid Cryptography Approaches: Implementing transitional
systems where both RSA and PQC algorithms coexist to
ensure backward compatibility [5,8].

• Risk Mitigation Strategies: Organizations must proactively

conduct security audits and risk assessments to identify
potential vulnerabilities in their cryptographic infrastructure
and plan for the adoption of PQC [9,16].

6. Conclusion
The RSA cryptosystem remains a fundamental component of
modern cryptographic security, ensuring secure communication,
authentication, and data integrity across digital platforms [3,8].
This paper has provided an in-depth exploration of RSA, covering
its mathematical foundations, key generation process, encryption
and decryption mechanisms, security considerations, and
performance trade-offs. A numerical example demonstrated RSA's
practical implementation, emphasizing its operational efficiency
and computational complexity [6]. Additionally, the security
analysis highlighted the significance of key size in determining
cryptographic strength, reinforcing the need for larger key sizes to
counter evolving cyber threats [9].

While 2048-bit and 4096-bit RSA keys offer enhanced security,
they introduce computational overhead, necessitating hybrid
encryption approaches such as AES-RSA integration for improved
efficiency [12]. Furthermore, the rise of quantum computing

AI Intell Sys Eng Med Society, 2025 Volume 1 | Issue 1 | 7

presents a formidable challenge to RSA’s long-term viability. The
potential application of Shor’s algorithm to factor large integers
efficiently underscores the urgency of transitioning to post-
quantum cryptographic solutions [14]. Ongoing research aims to
develop quantum-resistant algorithms capable of securing data in
the post-quantum era. Despite these challenges, RSA continues to
play a crucial role in securing web applications and other digital
infrastructures [7]. Future research should focus on enhancing
RSA’s scalability in large-scale distributed environments,
optimizing its real-time performance, and integrating post-
quantum cryptographic methods to address emerging threats.

References
1. Saranya, V. (2014). Vasumathi,“A study on RSA algorithm for

cryptography,”. International journal of Computer Science
and Information technologies, 5(4), 5708-5709.

2. Phatangare, S., Jadhav, S., Kawane, S., Holkar, P., & Gaikwad,
P. (2024). Multi-Level Encryption System using AES and RSA
Algorithms. International Journal for Research in Applied
Science and Engineering Technology, 12(5), 4043-4051.

3. Saini, A., & Vandana, D. A. (2022). Study on Modified RSA
Algorithm in Network Security. International Research
Journal of Modernization in Engineering Technology
Science, 4(4), 1461-1465.

4. Chaitanya, J., & Solanki, A. (2024). DATA ENCYPTION
AND DATA DECRYPTION BY AN IMPROVED RSA
ALGORITHM. Global Journal of Advanced Engineering
Technologies and Sciences, 11(12), 1-4.

5. Ranasinghe, R., Chathurangi, M., & Athukorala, P. (2024).
A novel improvement in RSA algorithm. Journal of Discrete
Mathematical Sciences and Cryptography, 27(1), 143-150.

6. Sihotang, H. T., Efendi, S., Zamzami, E. M., & Mawengkang,
H. (2020, November). Design and implementation of Rivest
Shamir Adleman’s (RSA) cryptography algorithm in text file
data security. In Journal of Physics: Conference Series (Vol.

1641, No. 1, p. 012042). IOP Publishing.
7. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A

method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2), 120-126.

8. Zhang, C., Liang, Y., Tavares, A., Wang, L., Gomes, T., & Pinto,
S. (2024). An improved public key cryptographic algorithm
based on chebyshev polynomials and RSA. Symmetry, 16(3),
263.

9. Preetha, M., & Nithya, M. (2013). A study and performance
analysis of RSA algorithm. International Journal of Computer
Science and Mobile Computing, 2(6), 126-139.

10. Jaju, S. A., & Chowhan, S. S. (2015, October). A Modified
RSA algorithm to enhance security for digital signature.
In 2015 international conference and workshop on computing
and communication (IEMCON) (pp. 1-5). IEEE.

11. Obaid, T. S. (2020). Study a public key in RSA
algorithm. European Journal of Engineering and Technology
Research, 5(4), 395-398.

12. Anwar, M., Ismail, M., & Bahig, H. M. (2024). Cryptoanalysis
of RSA variants with special structure of RSA primes. arXiv
preprint arXiv:2403.06184.

13. Pelofske, E. (2024). An Efficient All-to-All GCD Algorithm
for Low Entropy RSA Key Factorization. arXiv preprint
arXiv:2405.03166.

14. Mobin, M. A., & Kamrujjaman, M. (2024). Cryptanalysis
of RSA Cryptosystem: Prime Factorization using Genetic
Algorithm. arXiv preprint arXiv:2407.05944.

15. Bahig, H. M., Mahdi, M. A., Alutaibi, K. A., AlGhadhban,
A., & Bahig, H. M. (2020). Performance analysis of fermat
factorization algorithms. International Journal of Advanced
Computer Science and Applications, 11(12).

16. P. DaoThi, H. BuiTa, and V. Thai, "Application of Encryption
and Decryption in Digital Signatures Using RSA Algorithm,"
International Journal of Research in Engineering and Science
(IJRES), vol. 12, no. 7, pp. 50–54, July 2024.

Copyright: ©2025 Bhanu Prakash, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com/

https://doi.org/10.22214/ijraset.2024.62420
https://doi.org/10.22214/ijraset.2024.62420
https://doi.org/10.22214/ijraset.2024.62420
https://doi.org/10.22214/ijraset.2024.62420
https://www.researchgate.net/publication/360241707.
https://www.researchgate.net/publication/360241707.
https://www.researchgate.net/publication/360241707.
https://www.researchgate.net/publication/360241707.
https://gjaets.com/index.php/gjaets/article/view/348
https://gjaets.com/index.php/gjaets/article/view/348
https://gjaets.com/index.php/gjaets/article/view/348
https://gjaets.com/index.php/gjaets/article/view/348
https://doi.org/10.47974/JDMSC-1628
https://doi.org/10.47974/JDMSC-1628
https://doi.org/10.47974/JDMSC-1628
https://iopscience.iop.org/article/10.1088/1742-6596/1641/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/1641/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/1641/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/1641/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/1641/1/012042
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.3390/sym16030263
https://doi.org/10.3390/sym16030263
https://doi.org/10.3390/sym16030263
https://doi.org/10.3390/sym16030263
http://www.ijcsmc.com.
http://www.ijcsmc.com.
http://www.ijcsmc.com.
https://doi.org/10.1109/IEMCON.2015.7344493
https://doi.org/10.1109/IEMCON.2015.7344493
https://doi.org/10.1109/IEMCON.2015.7344493
https://doi.org/10.1109/IEMCON.2015.7344493
https://www.ej-eng.org/index.php/ejeng/article/view/1843
https://www.ej-eng.org/index.php/ejeng/article/view/1843
https://www.ej-eng.org/index.php/ejeng/article/view/1843
https://doi.org/10.48550/arXiv.2403.06184
https://doi.org/10.48550/arXiv.2403.06184
https://doi.org/10.48550/arXiv.2403.06184
https://doi.org/10.48550/arXiv.2405.03166
https://doi.org/10.48550/arXiv.2405.03166
https://doi.org/10.48550/arXiv.2405.03166
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://pdfs.semanticscholar.org/ed0e/00aea5eb433df8bed640e04ab121411e74f7.pdf
https://www.ijres.org/papers/Volume-12/Issue-7/12075054.pdf
https://www.ijres.org/papers/Volume-12/Issue-7/12075054.pdf
https://www.ijres.org/papers/Volume-12/Issue-7/12075054.pdf
https://www.ijres.org/papers/Volume-12/Issue-7/12075054.pdf

