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Abstract
This paper provides a detailed analysis of the RSA algorithm, an extensively used asymmetric encryption system forming 
the foundation of ultramodern cryptographic security, the most prominent asymmetric encryption algorithm, which now 
forms the base of ultramodern cryptographic security in the information period. In fact, RSA uses the fine complexity 
of large high number factorization to insure both trustability and security of communication by using public- crucial 
cryptography. The paper addresses the abecedarian principles of RSA concerning crucial generation, encryption, and 
decryption; discusses counteraccusations of RSA concerning security, vulnerabilities, and adaptability to a variety of 
cryptographic attacks; and identifies veritable operations of RSA in real- life situations similar as secure dispatches 
protocols, authentication systems, and digital autographs. This paper also discusses performance considerations, 
crucial length recommendations, and openings for perfecting RSA encryption.
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1. Introduction
The rapid development of digital technology has fundamentally 
transformed the way information is stored and communicated. This 
transformation has brought about significant benefits but has also 
introduced critical challenges in ensuring the security and integrity 
of sensitive information. In today's world, online transactions, 
financial exchanges, healthcare data management, and government 
communications are predominantly digital, making the protection 
of this information paramount [1]. The increasing prevalence of 
cyberattacks, including man-in-the-middle attacks, data breaches, 
and identity theft, poses serious threats to both organizations and 
individuals [2,3].

To mitigate these risks, cryptographic methods play a crucial role 
in safeguarding data integrity, authenticity, and confidentiality [4]. 

Cryptography, the art of secret writing, has evolved significantly 
to address these challenges. Traditional symmetric encryption 
protocols, such as the Advanced Encryption Standard (AES) and 

the Data Encryption Standard (DES), have been widely used for 
securing communications for many years [5]. These protocols 
utilize a single key for both encryption and decryption, which 
presents a significant challenge: secure key distribution. The 
secure transmission of the key between communicating parties is 
a fundamental drawback of symmetric encryption. If an attacker 
intercepts this key during transmission, the security of the entire 
communication is compromised, as all encrypted data can be 
decrypted [6].

Asymmetric cryptography was introduced to overcome the key 
distribution problem inherent in symmetric systems. Asymmetric 
cryptography, also known as public-key cryptography, employs 
two distinct keys: a public key for encryption and a private key 
for decryption [7]. The public key can be freely shared, while the 
private key must be kept secret by the owner. This fundamental 
difference allows for secure communication without the need for 
a secure channel to exchange keys. One of the most widely used 
asymmetric encryption algorithms is the Rivest-Shamir-Adleman 
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(RSA) algorithm, named after its creators, Ron Rivest, Adi 
Shamir, and Leonard Adleman, who developed it in 1977 [8]. The 
RSA algorithm's security relies on the computational complexity 
of prime factorization, a mathematical problem that is considered 
infeasible for classical computers when dealing with sufficiently 
large integers [9]. This computational hardness makes RSA a 
robust solution for many security applications [10].

1.1. Significance and Uses of RSA
The RSA algorithm has become a crucial component of modern 
cryptographic infrastructure and is widely employed in various 
applications, including:
•	 Secure Web Browsing (HTTPS): RSA is commonly used in 

TLS/SSL certificates to establish secure connections between 
clients and servers [2].

•	 Email Encryption (PGP & S/MIME): RSA encrypts email 
content, ensuring that only intended recipients can access it 
[5].

•	 Digital Signatures: RSA enables users to digitally sign 
documents, providing authentication and protection against 
tampering [4].

•	 Blockchain Technology: Many blockchain platforms use 
RSA-based cryptographic methods for wallet security and 
transaction verification [6].

•	 VPN & Network Security: RSA is used in virtual private 
networks (VPNs) and encrypted communication protocols for 
secure authentication [8].

1.2. Security Challenges and Emerging Threats
Despite its widespread adoption, the RSA algorithm faces several 
challenges:
•	 Computational Overhead: RSA requires high computational 

resources for encryption and decryption, particularly when 
using 2048-bit or 4096-bit keys to maintain strong security 
[9].

•	 Key Size Growth: As computing power increases, larger 
RSA key sizes are needed for security, which can lead to 
performance inefficiencies in real-time applications [10].

•	 Quantum Computing Threat: The advancement of quantum 
computers poses a major risk to RSA security. Shor’s algorithm 
allows quantum computers to efficiently factor large numbers, 
potentially breaking RSA encryption in the near future [8].

•	 Hybrid Encryption Models: Due to RSA's computational 
complexity, it is often combined with symmetric encryption 
(e.g., AES + RSA) to balance security and performance [12].

•	 C) Objectives of this Paper
•	 This paper presents a comprehensive study of the RSA 

algorithm, covering:
•	 Key generation, encryption, and decryption mechanisms to 

understand the fundamental workings of RSA.
•	 Numerical implementation and mathematical foundation 

behind RSA security.
•	 Historical evolution of RSA key sizes and cryptographic 

advancements addressing security challenges.
•	 Potential improvements, including hybrid encryption 

techniques (e.g., AES + RSA) and post-quantum cryptographic 

solutions.
•	 Real-world implementation of RSA in secure messaging 

applications, demonstrating its practical use in encrypted 
communication.

2. Methodology
The RSA encryption technique employs a standardized stepwise 
procedure, fundamentally comprising key generation, encryption, 
and decryption. This methodology is detailed in Section III. The 
following subsections elaborate on these steps:

2.1. Public Key Cryptography
RSA is an asymmetric encryption algorithm, also known as public-
key cryptography, which utilizes a pair of related keys:
•	 A public key, which can be shared with anyone, used for 

encryption.
•	 A private key, which must be kept secret by the owner, used 

for decryption.

This key separation ensures that only the intended recipient, 
possessing the corresponding private key, can decrypt the 
message, thereby eliminating the need for a secure key exchange 
mechanism. This is a core advantage of asymmetric cryptography 
over symmetric cryptography [7].

2.2. Key Generation Process
The generation of the RSA key pair involves the following steps:
•	 Selecting two distinct large prime numbers, typically denoted 

as p and q. The security of RSA heavily relies on the size of 
these primes [9].

•	 Computing the modulus n, which is the product of p and q (n 
= p × q).

•	 Computing Euler's totient function, denoted as ϕ(n), which is 
crucial for key derivation. For RSA, ϕ(n) is calculated as (p-1) 
(q-1) [11].

2.3. Encryption and Decryption Process
•	 Encryption: The sender encrypts the plaintext message using 

the recipient's public key. This process ensures that only the 
intended recipient can access the data.

•	 Decryption: The recipient decrypts the ciphertext using their 
corresponding private key, thus maintaining the confidentiality 
and security of the communication [13].

2.4. Security Requirements
To ensure robust cryptographic security, the RSA algorithm must 
adhere the following requirements:
•	 Computational Infeasibility: Deriving the private key from 

the public key should be computationally infeasible. This 
robustness is essential to protect against brute-force attacks 
and factorization attacks [14].

•	 Efficiency: The encryption and decryption processes should 
be optimized to balance security and performance for practical 
applications.

•	 Key Size Selection: RSA keys, determined by the size of the 
primes p and q, must be sufficiently large (e.g., 2048-bit or 
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4096-bit) to resist factorization attacks and ensure long-term 
security [15].

3. RSA Algorithm
The RSA algorithm is a structured process that comprises three 
main phases: key generation, encryption, and decryption. The 
steps involved in each phase are detailed below

3.1. Key Generation 
The key generation process is fundamental to RSA security and 
involves the following steps:
1. Select Two Distinct Large Prime Numbers: Choose two large 
prime numbers, denoted as p and q. These primes must be kept 
secret. The security of RSA relies heavily on the difficulty of 
factoring the product of these large primes [6].

2. Compute the Modulus (n): Calculate the modulus n by 
multiplying the two primes:
 
n = p × q  

The modulus n forms part of both the public and private keys [9].

3. Compute Euler's Totient Function (ϕ(n)): Compute Euler's 
totient function, denoted as ϕ(n). For RSA, this is calculated as:

i.ϕ(n) = (p − 1)(q − 1) 

Euler's totient function is crucial for determining the encryption 
and decryption keys [12].

4. Select the Public Exponent (e): Choose an integer e as the public 
exponent such that:

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

Where gcd represents the greatest common divisor. The public 
exponent e must be coprime with ϕ(n). Common choices for e 
include 3, 17, or 65537, with 65537 being widely used due to its 
security and efficiency advantages [3], [8].  

5. Compute the Private Key (d): Calculate the private key d using 
the modular multiplicative inverse of e modulo ϕ(n):
 
d ≡ e−1 mod ϕ(n)

The private key d must be kept secret [14].

3.2. Encryption
The encryption process transforms the plaintext message into 
ciphertext using the recipient's public key:
•	 Convert Plaintext to Numerical Value: Convert the plaintext 

message M into a numerical value. This can be done using 
various encoding schemes [10].

•	 Compute the Ciphertext (C): Calculate the ciphertext C using 
the public key (e, n): 

	 C ≡ Me mod n
•	 Secure Transmission: The encrypted message C is then sent 

securely to the recipient [13].

3.3. Decryption
The decryption process recovers the original plaintext message M 
from the ciphertext C using the recipient's private key (d, n):
•	 Decrypt the Ciphertext (C): The recipient decrypts the 

ciphertext C using their private key (d, n):
	 M ≡ Cd mod n 
•	 Retrieve Plaintext: This retrieves the original plaintext 

message M, ensuring secure and authenticated communication 
[16].

4. Numerical Study on RSA Algorithm  
Example: RSA Key Generation And Encryption Process
The RSA algorithm uses two large prime numbers to generate 
public and private keys. The step-by-step process is described 
below:
•	 Select two distinct primes numbers
	 p = 17,	 q = 23 
	 In practical RSA implementations, much larger prime 

numbers, typically 2048-bit or 4096-bit, are used to provide 
robust security against factorization attacks [9]. This is a 
crucial point to emphasize, as the security of RSA is directly 
related to the size of the primes [15].

•	 Compute modulus n, which forms part of the RSA key pair
	 n = p × q = 17 × 23 = 391. 
	 The modulus n is a public value and is part of both the public 

and private keys [10].
•	 Compute Euler’s totient function (ϕ(n)):
	 ϕ(n) = (p − 1) × (q − 1) = 16 × 22 = 352.
	 This value remains secret and is essential for deriving the 

private key [11]. 
•	 Select a public exponent e such that satisfies the following 

conditions: 
	 1 < e < ϕ(n), gcd (e, ϕ(n)) = 1. 
	 A common choice is e = 13, ensuring it is coprime with 352 

for efficient encryption [6].

4.1. Compute Private Key d
•	 The private key d is calculated using the modular inverse of e 

modulo ϕ(n):

	 d ≡ e−1 mod ϕ(n) 

•	 Using the Extended Euclidean Algorithm, we find:
	
	 13 × 325 = 4225 ≡ 1 mod 352 ⟹ d = 325. 

•	 The final key pair is: 
	 Public Key (e, n) = (13, 391)
	 Private Key (d, n) = (325, 391)

4.2. Encrypt plaintext (M)
•	 Assume the plaintext message M = 42.	
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•	 Compute the ciphertext C using the public key (e, n):
	 C ≡ Me mod n 
	 C = 4213  mod 391
       	               
•	 Breakdown of Computation: 
	 422 mod 391 = 200  
	 424 mod 391 = 2002 mod 391 = 118
	 4213 ≡ 118 × 200 × 42 mod 391 = 145

•	 Final ciphertext: 
	 C = 145 [5].

4.3. Decrypt ciphertext (C)
•	 To decrypt the ciphertext C = 145, use the private key (d, n) = 

(325, 391): 
	 M ≡ Cd mod n
	 M = 145325 mod 391 = 42  

•	 Applying modular exponentiation, we obtain:
	 M = 42

•	 Decryption is successful, and the original message is recovered 
[7].

4.4. Security Considerations
•	 Prime Size Importance: It is crucial to reiterate that the 

small prime numbers used in this example (17, 23) are for 
illustrative purposes only. Real-world RSA implementations 
employ much larger primes (e.g., 2048-bit, 4096-bit) to ensure 
resistance against factorization attacks [9,15].

•	 Hybrid Encryption: RSA is computationally intensive for 
encrypting large amounts of data. In practice, RSA is often 
used in conjunction with symmetric encryption algorithms 
(e.g., AES + RSA) to achieve a balance between security and 
efficiency. RSA is used for key exchange, while AES is used 
for data encryption [12].

•	 Quantum Computing Threat: The potential threat posed by 
quantum computers to RSA security due to Shor's algorithm 
is a significant concern. The development of post-quantum 
cryptography is essential to address this vulnerability [8].

5. Discussion
This section provides an in-depth discussion of the RSA algorithm, 
examining its historical context, security implications, performance 

trade-offs, and real-world applications.

5.1. Historical Progression of key Sizes
The evolution of RSA key sizes is a critical aspect of the algorithm's 
ongoing adaptation to evolving security threats. As computational 
power has increased and cryptographic research has advanced, 
it has become necessary to progressively increase key lengths to 
maintain adequate security levels
•	 512-bit Keys (Pre-2000s): Early RSA implementations 

commonly employed 512-bit keys, which were considered 
sufficient to withstand the attacks prevalent at the time. 
However, the development of attacks like the General Number 
Field Sieve (GNFS) rendered these keys vulnerable, and they 
were deprecated by 2013 [1].

•	 1024-bit Keys (2000s–2013): Throughout the early 2000s, 
1024-bit RSA keys became the industry standard, striking 
a balance between security and computational efficiency. 
Nevertheless, the rapid increase in computational capabilities 
made these keys insufficient by 2013, prompting cryptographic 
standards to recommend the adoption of larger key sizes 
[9,14].

•	 2048-bit Keys (2013–Present): In response to recommendations 
from organizations like the National Institute of Standards 
and Technology (NIST), 2048-bit RSA keys became the new 
baseline for cryptographic security, providing approximately 
112-bit equivalent symmetric security. It is projected that this 
key length will remain secure until at least 2030 [10,11].

•	 4096-bit Keys (Emerging Trend): With the continued 
advancement of computing technology, 4096-bit keys are 
increasingly being adopted for applications requiring the 
highest levels of security. These keys offer approximately 
150-bit equivalent symmetric security but introduce increased 
computational overhead, affecting encryption and decryption 
speeds [11].

5.2. Security Implications
5.2.1. Factorization Resistance and Quantum Threats
A fundamental strength of RSA lies in its reliance on the 
computational difficulty of factoring large composite numbers. 
However, the increasing availability of powerful computing 
resources and the potential emergence of quantum computers pose 
significant threats to RSA's security [8,15].

Table 1: Provides A Comparative Analysis of The Feasibility of 
Classical and Quantum Attacks Against Different RSA Key Sizes

Key Size Classical Attack Feasibility Quantum Attack Risk (Shor’s Algorithm) [8]
1024-bit Broken With $1M cluster in 2-3 years Vulnerable 
2048-bit Requires ~$10B and 1B years At risk post-2030 
4096-bit Infeasible with current methods Resistant to near-term quantum threats

Table 1: RSA Key Size Security Analysis
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5.3. Identified Vulnerabilities
•	 Key Size Limitation: The need to increase RSA key sizes to 

maintain security in the face of growing computing power 
leads to performance inefficiencies, particularly in real-time 
applications [13].

•	 Side-Channel Attacks: RSA implementations are vulnerable to 
side-channel attacks, such as timing attacks, power analysis, 
and fault attacks, which can be exploited to extract private 
keys by analyzing physical characteristics of the cryptographic 
operations [12].

•	 Hybrid Cryptography Risks: Many systems employ hybrid 
encryption schemes (e.g., RSA for key exchange and AES for 
bulk encryption) to achieve a balance between performance 

and security. However, if the key exchange mechanism is 
compromised, the security of the entire system is jeopardized 
[14].

5.4. Performance Trade-offs
RSA encryption and decryption involve modular exponentiation, 
a computationally intensive operation, especially with larger 
key sizes. Consequently, there are inherent trade-offs between 
encryption speed, memory consumption, and the level of security 
provided by RSA [11,13].

Table II summarizes these trade-offs:

Key Size Encryption/ Decryption Speed Memory/ Bandwidth Use Cases
512-bit Fast (~ms) Low Obsolete [5]
1024-bit Moderate Moderate Legacy systems (Phased out) [9]
2048-bit 2-3x slower than 1024-bit High Modern SSL/TLS, digital signatures [11]
4096-bit 10x slower than 2048-bit Very High Long-term storage, high security sectors [5]

Table 2: RSA Key Size vs. Performance

5.5. Computational Overhead Considerations
•	 RSA's computational complexity is O(n³), indicating that 

decryption time increases exponentially with the key size. 
For example, decrypting a message with a 4096-bit key takes 
approximately four times longer than decrypting the same 
message with a 2048-bit key [14].

•	 Hybrid cryptographic approaches, which combine RSA for 
key exchange with symmetric encryption algorithms like 
AES for data encryption, are commonly used to mitigate the 
performance bottlenecks associated with RSA [13].

5.6. Standards and Cryptographic Recommendations
5.6.1. NIST Guidelines
The National Institute of Standards and Technology (NIST) plays 
a crucial role in providing guidelines and recommendations for 
cryptographic security, including RSA key sizes [10]:
•	 2013:  NIST mandated the use of 2048-bit keys for federal 

government systems [11].
•	 2015: NIST disallowed security levels below 112-bit, which 

is equivalent to the security provided by 2048-bit RSA keys 
[10].

5.7. Real-time Implementation of RSA in Secure 
Communication
RSA is widely implemented in various real-world applications, 
particularly in secure messaging systems and real-time 
communication platforms [7].
•	 WebSockets-Based Secure Messaging: RSA has been 

integrated with technologies like Node.js, Express.js, and 
Socket.io to enable secure real-time communication. Event-
driven processing techniques are employed to optimize 
performance and minimize latency in these systems [6].

•	 Dynamic Key Management: In secure communication 

systems, each user typically generates an RSA key pair upon 
joining the system, with the private key stored locally to ensure 
end-to-end encryption. Public keys are then dynamically 
shared to facilitate secure message transmission [7].

•	 Secure Key Transfer Protocol: RSA-based systems often 
implement protocols that require mutual approval of public 
key exchanges before initiating encrypted communication. 
This approach helps to prevent man-in-the-middle (MITM) 
attacks [15].

•	 Risk Mitigation Strategies: To enhance security, RSA-based 
systems are designed to never transmit private keys over 
the network, mitigating the risk of replay attacks and key 
exposure [16].

•	 Performance Optimization: Hybrid encryption schemes, 
such as combining RSA for key exchange and AES for bulk 
data encryption, are employed to optimize performance. 
Additionally, WebSocket persistence is used to maintain 
session integrity and reduce the overhead associated with 
repeated key exchanges [13].

5.8. Future of RSA and Post-Quantum Cryptography
The RSA algorithm has been a cornerstone of cryptographic 
security, providing robust encryption and authentication 
mechanisms for a wide range of applications. However, the rapid 
advancements in quantum computing pose significant challenges 
to RSA's continued security [3,12].

5.9. Quantum Computing and Its Impact on RSA
Quantum computers, leveraging principles of quantum mechanics, 
have the potential to break RSA encryption by efficiently solving 
mathematical problems that are infeasible for classical computers. 
Shor’s Algorithm, a quantum algorithm developed by Peter Shor, 
can factorize large numbers exponentially faster than the best-
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known classical algorithms. Since the security of RSA relies on the 
difficulty of prime factorization, a sufficiently powerful quantum 
computer could render RSA encryption obsolete [6,14].

Table III illustrates the projected impact of quantum computing on 
the security of different RSA key sizes [8,14]:

RSA Key Size Classical Security Quantum Security (Shor's Algorithm)
1024-bit Insecure (breakable in months) Easily broken
2048-bit Secure until 2030 At risk post-2030
4096-bit Secure against classical attacks Temporary resistance, but breakable in the long term

Table 3: Projected Impact of Quantum Computing on RSA Key Sizes

5.10. Post-Quantum Cryptographic Alternatives
To address the vulnerabilities presented by quantum computing, 
researchers are actively developing post-quantum cryptographic 
(PQC) algorithms that are designed to remain secure even against 
quantum attacks [4,10,16]. Several promising PQC alternatives 
are being explored:
•	 Lattice-Based Cryptography: This approach relies on the 

hardness of solving lattice problems, which are believed to 
be resistant to quantum attacks. Examples of lattice-based 
cryptographic algorithms include the NTRU encryption 
algorithm and Learning-With-Errors (LWE)-based schemes 
[7].

•	 Hash-Based Cryptography: Hash-based cryptography utilizes 
cryptographic hash functions to construct secure digital 

signatures that maintain quantum resistance. Examples of 
hash-based signature schemes include the XMSS (eXtended 
Merkle Signature Scheme) and SPHINCS+ [9].

•	 Code-Based Cryptography: This method employs error-
correcting codes to provide security. The McEliece 
cryptosystem is a notable example of code-based cryptography 
[11].

•	 Multivariate Polynomial Cryptography: This approach uses 
multivariate polynomial equations to create public-key 
cryptosystems that are designed to resist quantum attacks. 
The Rainbow Signature Scheme is an example of multivariate 
polynomial cryptography [13,15].

•	 Table IV provides a comparative analysis of these post-
quantum cryptographic alternatives [2,8].

Cryptographic Approach Security Basis Quantum Resistance Adoption Readiness
Lattice-Based Hardness of lattice problems High Actively researched
Hash-Based Cryptographic hash functions High Ready for implementation
Code-Based Error-correcting codes Moderate Still being evaluated
Multivariate Polynomial Multivariate equations Moderate Experimental stage

Table 4: Comparative Analysis of Post-Quantum Cryptographic Alternatives

5.11. The Transition to Post-Quantum Security
Recognizing the need to transition away from RSA and other 
quantum-vulnerable algorithms, organizations and governments 
worldwide are actively engaged in research and standardization 
efforts for post-quantum cryptography [1,12]. The National 
Institute of Standards and Technology (NIST) is leading a 
significant initiative to standardize quantum-resistant algorithms 
that can replace existing vulnerable encryption methods [10,14]. 
The transition to post-quantum cryptographic protocols will 
necessitate updates across various aspects of digital infrastructure, 
including software, hardware, and security frameworks. Key steps 
in this transition include:
•	 Algorithm Standardization: NIST's Post-Quantum 

Cryptography Standardization Project aims to establish secure 
and efficient PQC algorithms by 2024-2025 [6].

•	 Software and Hardware Adaptation: Updating encryption 
libraries, protocols (TLS, SSH, VPNs), and hardware security 
modules (HSMs) to support PQC [3].

•	 Hybrid Cryptography Approaches: Implementing transitional 
systems where both RSA and PQC algorithms coexist to 
ensure backward compatibility [5,8].

•	 Risk Mitigation Strategies: Organizations must proactively 

conduct security audits and risk assessments to identify 
potential vulnerabilities in their cryptographic infrastructure 
and plan for the adoption of PQC [9,16].

6. Conclusion
The RSA cryptosystem remains a fundamental component of 
modern cryptographic security, ensuring secure communication, 
authentication, and data integrity across digital platforms [3,8]. 
This paper has provided an in-depth exploration of RSA, covering 
its mathematical foundations, key generation process, encryption 
and decryption mechanisms, security considerations, and 
performance trade-offs. A numerical example demonstrated RSA's 
practical implementation, emphasizing its operational efficiency 
and computational complexity [6]. Additionally, the security 
analysis highlighted the significance of key size in determining 
cryptographic strength, reinforcing the need for larger key sizes to 
counter evolving cyber threats [9]. 

While 2048-bit and 4096-bit RSA keys offer enhanced security, 
they introduce computational overhead, necessitating hybrid 
encryption approaches such as AES-RSA integration for improved 
efficiency [12]. Furthermore, the rise of quantum computing 
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presents a formidable challenge to RSA’s long-term viability. The 
potential application of Shor’s algorithm to factor large integers 
efficiently underscores the urgency of transitioning to post-
quantum cryptographic solutions [14]. Ongoing research aims to 
develop quantum-resistant algorithms capable of securing data in 
the post-quantum era. Despite these challenges, RSA continues to 
play a crucial role in securing web applications and other digital 
infrastructures [7]. Future research should focus on enhancing 
RSA’s scalability in large-scale distributed environments, 
optimizing its real-time performance, and integrating post-
quantum cryptographic methods to address emerging threats.
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