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A Novel Approach to Adopt Explainable Artificial Intelligence in X-ray Image Classification

Abstract
Robust “Blackbox” algorithms such as Convolutional Neural Networks (CNNs) are known for making high prediction performance. 
However, the ability to explain and interpret these algorithms still require innovation in the understanding of influential and, more 
importantly, explainable features that directly or indirectly impact the performance of predictivity. In view of the above needs, 
this study proposes an interaction- based methodology – Influence Score (I-score) – to screen out the noisy and non-informative 
variables in the images hence it nourishes an environment with explainable and interpretable features that are directly associated 
to feature predictivity. We apply the proposed method on a real-world application in Pneumonia Chest X-ray Image data set and 
produced state- of-the-art results. We demonstrate how to apply the proposed approach for more general big data problems by 
improving the explain ability and interpretability without sacrificing the prediction performance. The contribution of this paper 
opens a novel angle that moves the community closer to the future pipelines of XAI problems.

Citation: Shaw-Hwa Lo and Yiqiao Yin (2022) A Novel Approach to Adopt Explainable Artificial Intelligence in X-ray Image Classifica-
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Introduction
Many successful achievements in machine learning and deep 
learning have accelerated real-world implementation of Artificial 
Intelligence (AI). This issue has been greatly acknowledged by 
the Department of Defense (DoD) [1]. DARPA 2016 initiated the 
explainable Artificial Intelligence (XAI) challenge and brought 
this new interest to the surface [1]. In addressing the concepts of 
interpretability and explainability, these scholars and researchers 
have made at- tempts towards discussing a trade-off between 
learning performance (usually measured by prediction performance) 
and effectiveness of explanations (also known as explainability) 
is presented in Figure 1 [2, 3]. This trade-off often occurs in any 
supervised machine learning problems that aim to use explanatory 
variable to predict response variable (or outcome variable) which 
happens between learning performance (also known as prediction 
performance) and effectiveness of explanations (also known as 
explainability) [4]. The proposed I-score, if implemented, can 
raise prediction performance as well as establishing explainability 
in the any neural network architecture.

Figure 1: This diagram is a recreation DARPA document (DARPA-
BAA-16-53) [1, 5]. The diagram presents the relationship 
between learning performance (usually measured by prediction 
performance) and effectiveness of explanations (also known as 
explain ability).

Definition of Feature Explainability
A popular description of interpretability is by which defined XAI 
as the ability to explain or to present in understandable terms 
to a human [6]. Another popular version states interpretability 
as the degree to which a human can understand the cause of a 
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Abstract

Robust “blackbox” algorithms such as Convolutional Neural
Networks (CNNs) are known for making high prediction per-
formance. However, the ability to explain and interpret these
algorithms still require innovation in the understanding of in-
fluential and, more importantly, explainable features that di-
rectly or indirectly impact the performance of predictivity. In
view of the above needs, this study proposes an interaction-
based methodology – Influence Score (I-score) – to screen out
the noisy and non-informative variables in the images hence it
nourishes an environment with explainable and interpretable
features that are directly associated to feature predictivity. We
apply the proposed method on a real world application in
Pneumonia Chest X-ray Image data set and produced state-
of-the-art results. We demonstrate how to apply the proposed
approach for more general big data problems by improving
the explainability and interpretability without sacrificing the
prediction performance. The contribution of this paper opens
a novel angle that moves the community closer to the future
pipelines of XAI problems.

Introduction
Many successful achievements in machine learning and deep
learning has accelerated real-world implementation of Arti-
ficial Intelligence (AI). This issue has been greatly acknowl-
edged by the Department of Defense (DoD) (DARPA 2016).
(DARPA 2016) initiated the eXplainable Artificial Intelli-
gence (XAI) challenge and brought this new interest to the
surface. In addressing the concepts of interpretability and
explainability, these scholars and researchers have made at-
tempts towards discussing a trade-off between learning per-
formance (usually measured by prediction performance) and
effectiveness of explanations (also known as explainabil-
ity) is presented in Figure 1 (Linardatos, Papastefanopoulos,
and Kotsiantis 2021; Lipton 2018a). This trade-off often oc-
curs in any supervised machine learning problems that aim
to use explanatory variable to predict response variable (or

*We dedicate this to H. Chernoff, a well-known statistician and
a mathematician worldwide for his contributions to the influence
score (I-score) and the backward dropping algorithm (BDA).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: This diagram is a recreation DARPA document
(DARPA-BAA-16-53) (DARPA 2016; Rudin 2019). The di-
agram presents the relationship between learning perfor-
mance (usually measured by prediction performance) and
effectiveness of explanations (also known as explainability).

outcome variable)1 which happens between learning perfor-
mance (also known as prediction performance) and effec-
tiveness of explanations (also known as explainability). The
proposed I-score, if implemented, can raise prediction per-
formance as well as establishing explainability in the any
neural network architecture.

Definition of Feature Explainability
A popular description of interpretability is by (Doshi-Velez
and Kim 2017) which defined XAI as the ability to explain
or to present in understandable terms to a human. Another
popular version states interpretability as the degree to which
a human can understand the cause of a decision (Miller
2019). Though intuitive, these definitions lack mathemati-
cal formality and rigorousness (Adadi and Berrada 2018).
Moreover, it is yet unclear why variables provide us the good
prediction performance and, more importantly, how to yield
a relatively unbiased estimate of a parameter that is not sen-
sitive to noisy variables and is related to the parameter of
interest.

To shed light to these questions, we define the following
three necessary conditions (C1, C2, and C3) for any feature
selection methodology to be explainable and interpretable.

1We use the terms response variable and outcome variable in-
terchangeably throughout the article.
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decision [7]. Though intuitive, these definitions lack mathematical 
formality and rigorousness [4]. Moreover, it is yet unclear why 
variables provide us the good prediction performance and, more 
importantly, how to yield a relatively unbiased estimate of a 
parameter that is not sensitive to noisy variables and is related to 
the parameter of interest.

Three necessary conditions (C1, C2 and C3) for any feature to 
shed light to these questions, we define the following selection 
methodology to be explainable and interpretable.
 
•	 C1. The first condition states that the feature selection 

methodology does not require the knowledge of the underlying 
model of how explanatory variables affects out- come variable.

•	 C2. An explainable and interpretable feature selection method 
must clearly state to what degree a combination of explanatory 
variables influences the response variable. Moreover, it is 
beneficial if a statistician can directly compute a score for a 
set of variables in order to make reasonable comparisons.

•	 C3. In order for a feature assessment and selection technique 
to be interpretable and explainable, it must directly associate 
with the predictivity of the explanatory variables (for definition 
of predictivity [8, 9].

There is extensive evidence for the importance of explanation 
towards understanding and building trust in cognitive psychology, 
philosophy, and machine learning research [10-14]. Existing 
compute importance for a given base model (the one being 
explained) and an output category [15-21]. However, they require 
access to the internals of the base model, such as the gradients of 
the output. LIME offers such a black-box approach by drawing 
random samples around the instance to be explained and fitting an 
approximate linear decision model [22]. However, its saliency is 
based on super pixels, which may not capture correct regions [23]. 
Other techniques such as Random Input Sampling for Explanation 
or RISE produce importance region by using random masking and 
computation of Area-Under-Curve (AUC) value [23]. However, 
Area-Under-Curve, which this proposal shows later, is not very 
sensitive at detecting highly predictive variables and features. 
Under incorrect model specification, AUC can subject to severe 
negative impact. We summarize whether the conventional 
explainable methods satisfy the three explainability conditions in 
Table 1.

Table 1: Explainability Satisfaction Table. The table sum- 
marizes whether famous XAI methods and proposed I-score 
satisfy the definition of Explainability of a set of variables 
according to definition in Innovation 2.

Proposed Method
The proposed methodology comes with three stages. First, we 
investigate variables to identify those with high potential to form 
influential modules. Secondly, we generate highly influential 
variable modules from variables selected in the first stage, where 

variables of the same module interact with each other to produce a 
strong effect on Y. Last, we combine the variable modules to carry 
out prediction process.

Influence Score (I-score)
The Influence Score (I-score) is a statistic derived from the 
partition retention method [24]. Consider a set of n observations of 
an outcome variable (or response variable) Y and a large number 
S of explanatory variables, X1, X2, ... XS. Randomly select a small 
group, m, of the explanatory variables X’s. We can denote this 
subset of variables to be X {Xk, k = 1, ...,m}. We suppose Xk 
takes values of only 1 and 0 (though the variables are binary in 
this discussion, it can be generalized into continuous variables 
[25, 26]. Hence, there are 2m possible partitions for X’s. The n 
observations are partitioned into 2m cells according to the values 
of the m explanatory variables. We refer to this partition as ΠX. 
The proposed I-score (denoted by IΠX) is defined in the following

While insert eq. We notice that the I-score is designed to capture 
the discrepancy between the conditional means of Y on X1, X2, ..., 
Xm and the mean of  Y.

The statistics I is the summation of squared deviations of frequency 
of Y from what is expected under the null hypothesis. There are 
two properties associated with the statistics I. First, the measure I 
is non-parametric which requires no need to specify a model for 
the joint effect of {Xb1 , ..., Xbk} on Y . This measure I is created 
to describe the discrepancy between the conditional means of Y 
on {Xb1 , ..., Xbk} disregard the form of conditional distribution. 
With each variable to be dichotomous, the variable set {Xb1 , ..., 
Xbk}  form a well-defined partition, P (Chernoff, Lo, and Zheng 
2009). Secondly, under the null hypothesis that the subset has no 
influence on Y, the expectation of I remains non-increasing when 
dropping variables from the subset. The second property makes 
I fundamentally different from the Pearson’s χ2 statistic whose 
expectation is dependent on the degree of freedom and hence 
on the number of variables selected to define the partition. The 
authors demonstrated in simulation that the value of I-score is a 
function of sensitivity and specificity, which can translate to the 
value of Area-Under-Curve (a famous metric researchers refer to 
when examining the classifiers) [25, 26].

Backward Dropping Algorithm (BDA)
The Backward Dropping Algorithm is a greedy algorithm to search 
for the optimal subsets of variables that maximizes the I-score 
through step-wise elimination of variables from an initial subset 
sampled in some way from the variable space. The steps of the 
algorithm are presented in Algorithm 1.

The proposed BDA (Algorithm 1) presents a systematic way of 
searching for important and explainable features. The following 
small example illustrates the usage of I-score and BDA. Suppose 
there are Xi ∼ Bernoulli (1/2)

Definition of Explainability CAM LIME RISE I-score
C1 Non-parametric No No No Yes

C2 Quantifiable Measure No Yes Yes Yes

C3 Predictivity No No No Yes

• C1. The first condition states that the feature selection
methodology do not require the knowledge of the un-
derlying model of how explanatory variables affects out-
come variable.

• C2. An explainable and interpretable feature selection
method must clearly state to what degree a combination
of explanatory variables influence the response variable.
Moreover, it is beneficial if a statistician can directly
compute a score for a set of variables in order to make
reasonable comparisons.

• C3. In order for a feature assessment and selection tech-
nique to be interpretable and explainable, it must directly
associate with the predictivity of the explanatory vari-
ables (for definition of predictivity, please see (Lo et al.
2015, 2016)).

There is extensive evidence for the importance of expla-
nation towards understanding and building trust in cogni-
tive psychology (Lombrozo 2006), philosophy (Lombrozo
2011), and machine learning (Dzindolet et al. 2003; Lip-
ton 2018b; Ramanishka et al. 2017) research. Existing meth-
ods (Fong and Vedaldi 2017; Nguyen et al. 2016; Selvaraju
et al. 2017; Simonyan, Vedaldi, and Zisserman 2013; Yosin-
ski et al. 2015; Zhang et al. 2018; Zhou et al. 2016) compute
importance for a given base model (the one being explained)
and an output category. However, they require access to the
internals of the base model, such as the gradients of the out-
put. LIME (Ribeiro, Singh, and Guestrin 2016) offers such a
black-box approach by drawing random samples around the
instance to be explained and fitting an approximate linear de-
cision model. However, its saliency is based on superpixels,
which may not capture correct regions (Petsiuk, Das, and
Saenko 2018). Other techniques such as Random Input Sam-
pling for Explanation or RISE (Petsiuk, Das, and Saenko
2018) produce importance region by using random masking
and computation of Area-Under-Curve (AUC) value. How-
ever, Area-Under-Curve, which this proposal shows later,
is not very sensitive at detecting highly predictive variables
and features. Under incorrect model specification, AUC can
subject to severe negative impact. We summarize whether
the conventional explainable methods satisfy the three ex-
plainability conditions in Table 1.

Table 1: Explainability Satisfaction Table. The table sum-
marizes whether famous XAI methods and proposed I-score
satisfy the definition of Explainability of a set of variables
according to definition in Innovation 2.

Definition of Explainability CAM LIME RISE I-score
C1 Non-parametric No No No Yes
C2 Quantifiable Measure No Yes Yes Yes
C3 Predictivity No No No Yes

Proposed Method
The proposed methodology comes with three stages. First,
we investigate variables to identify those with high potential
to form influential modules. Secondly, we generate highly
influential variable modules from variables selected in the
first stage, where variables of the same module interact with

each other to produce a strong effect on Y . Last, we combine
the variable modules to carry out prediction process.

Influence Score (I-score)
The Influence Score (I-score) is a statistic derived from the
partition retention method (Chernoff, Lo, and Zheng 2009).
Consider a set of n observations of an outcome variable (or
response variable) Y and a large number S of explanatory
variables, X1, X2, ... XS . Randomly select a small group,
m, of the explanatory variables X’s. We can denote this sub-
set of variables to be X{Xk, k = 1, ...,m}. We suppose Xk

takes values of only 1 and 0 (though the variables are binary
in this discussion, it can be generalized into continuous vari-
ables, see (Lo and Yin 2021a,b)). Hence, there are 2m pos-
sible partitions for X’s. The n observations are partitioned
into 2m cells according to the values of the m explanatory
variables. We refer to this partition as ΠX . The proposed
I-score (denoted by IΠX

) is defined in the following

IΠX
=

1

ns2n

2m∑
j=1

n2
j (Ȳj − Ȳ )2 (1)

while s2n = 1
n

∑n
i=1(Yi − Ȳ )2. We notice that the I-score is

designed to capture the discrepancy between the conditional
means of Y on {X1, X2, ..., Xm} and the mean of Y .

The statistics I is the summation of squared deviations of
frequency of Y from what is expected under the null hypoth-
esis. There are two properties associated with the statistics
I . First, the measure I is non-parametric which requires no
need to specify a model for the joint effect of {Xb1 , ..., Xbk}
on Y . This measure I is created to describe the discrepancy
between the conditional means of Y on {Xb1 , ..., Xbk} dis-
regard the form of conditional distribution. With each vari-
able to be dichotomous, the variable set {Xb1 , ..., Xbk} form
a well-defined partition, P (Chernoff, Lo, and Zheng 2009).
Secondly, under the null hypothesis that the subset has no
influence on Y , the expectation of I remains non-increasing
when dropping variables from the subset. The second prop-
erty makes I fundamentally different from the Pearson’s
χ2 statistic whose expectation is dependent on the degrees
of freedom and hence on the number of variables selected
to define the partition. The authors (Lo and Yin 2021a,b)
demonstrated in simulation that the value of I-score is a
function of sensitivity and specificity, which can translate to
the value of Area-Under-Curve (a famous metric researchers
refer to when examining the classifiers).

Backward Dropping Algorithm (BDA)
The Backward Dropping Algorithm is a greedy algorithm to
search for the optimal subsets of variables that maximizes
the I-score through step-wise elimination of variables from
an initial subset sampled in some way from the variable
space. The steps of the algorithm are presented in Algorithm
1.

The proposed BDA (see Algorithm 1) presents a system-
atic way of searching for important and explainable fea-
tures. The following small example illustrates the usage of
I-score and BDA. Suppose there are Xi ∼ Bernoulli(1/2)

(1)
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Algorithm 1: Procedure of the Backward Dropping Algorithm 
(BDA)

Run:
1: while ||Xc|| > 1 do
2: tentatively drop each variable in Xc.
3: recalculate the I-score with one variable less.
4: then drop the one that gives the highest I-score and
call this new subset X′b, which has one variable less than Xc.
5: store this subset of variable and its corresponding Iscore
in a list for future reference.
6: reset Xc to be X′b.
7: end while
8: return The subset that yields the highest I-score in the
whole dropping process.

Table 2: Demonstration of BDA. The subset of variables
left with the highest I-score value is {X1,X2}.

while i = {1, 2, 3}. Assume there is a toy model Y   =   X1 + X2 
(mod 2). In other words, the variable X3 would be a noisy variable 
because it does not contribute to the definition of Y. In addition, 
suppose we generate 100 samples for Xi and Y. BDA can be used 
to screen out X3. We present the steps of BDA in Table 2.

Feature Engineering: Dagger Technique
The concept of interaction-based Feature is initially pro-posed in 
Lo and Yin (2021) [25, 26]. In their work, the authors defined an 
interaction-based feature that is used to replace the construction of 
using filters in designing Convolutional Neural Networks (CNNs). 
The conventional practice relies on pre-defined filters and these 
filters are small 2-by-2 or 3-by-3 window that are designed to 
capture certain information based on prior knowledge. The art of 
using interaction-based feature to create novel features within a 
2-by-2 or 3-by-3 window in an image is to allow the data rather 
than meaningless filters to indicate the predictive information in 
the image. These new features are denoted as X†’s, and hence the 
name “dagger technique”. The rest 

Algorithm 1: Procedure of the Backward Dropping Algo-
rithm (BDA)
Data: Training set {(y1, x1), ..., (yn, xn)} of n observa-
tions, where xi = (x1i, ..., xpi) is a p-dimensional vector
of explanatory variables. Typically p is very large. All ex-
planatory variables are discrete.
Initialize: Select an initial subset of k explanatory variables
Xb = {Xb1 , ..., Xbk}, b = 1, ..., B. The notation b indi-
cates which rounds of BDA it is executing. In practice, we
recommend B to be a large number. Then compute I-score:
I(Xb) =

∑
j∈ΠXb

n2
j (Ȳj − Ȳ )2. Set Xc to be Xb as the cur-

rent set.
Run:

1: while ||Xc|| > 1 do
2: tentatively drop each variable in Xc.
3: recalculate the I-score with one variable less.
4: then drop the one that gives the highest I-score and

call this new subset X ′
b, which has one variable less

than Xc.
5: store this subset of variable and its corresponding I-

score in a list for future reference.
6: reset Xc to be X ′

b.
7: end while
8: return The subset that yields the highest I-score in the

whole dropping process.

Table 2: Demonstration of BDA. The subset of variables
left with the highest I-score value is {X1, X2}.

I-score 13.10 25.90 1.05
Variables left X1, X2, X3 X1, X2 X2

Investigate Drop X1, I = 0.94 Drop X1, I = 1.31
Drop X2, I = 0.55 Drop X2, I = 1.05
Drop X3, I = 25.90

Drop X3 X1

while i = {1, 2, 3}. Assume there is a toy model Y =
X1 +X2(mod 2). In other words, the variable X3 would be
a noisy variable because it does not contribute to the defini-
tion of Y . In addition, suppose we generate 100 samples for
Xi and Y . BDA can be used to screen out X3. We present
the steps of BDA in Table 2.

Feature Engineering: Dagger Technique
The concept of interaction-based Feature is initially pro-
posed in Lo and Yin (2021) (Lo and Yin 2021a,b). In their
work, the authors defined an interaction-based feature that
is used to replace the construction of using filters in design-
ing Convolutional Neural Networks (CNNs). The conven-
tional practice relies on pre-defined filters and these filters
are small 2-by-2 or 3-by-3 window that are designed to cap-
ture certain information based on prior knowledge. The art
of using interaction-based feature to create novel features
within a 2-by-2 or 3-by-3 window in an image is to allow the
data rather than meaningless filters to indicate the predictive
information in the image. These new features are denoted
as X†’s, and hence the name “dagger technique”. The rest

Table 3: Interaction-based Engineer: “Dagger Tech-
nique”. This table summarizes the construction procedure
of X† (the “dagger technique”). Suppose we have a variable
set {X1, X2} and each of them can take values in {0, 1}. We
can construct X† and the values of this new feature is de-
fined using the local average of the target variable Y based
on the partition retained from the variable set {X1, X2}.
Here the variable set {X1, X2} produces 4 partitions. Hence,
we can define X† according to the following table. In test
set, we do not observe target variable (or response variable)
Y , so we use the training set values. Hence, the reminder is
that in generating test set X† we use ȳj’s from training set
where j takes values in {1, 2, 3, 4}.

Training set :
X† X1 X2

ȳ1 = E(Y |X1 = 1, X2 = 1) 1 1
ȳ2 = E(Y |X1 = 1, X2 = 0) 1 0
ȳ3 = E(Y |X1 = 0, X2 = 1) 0 1
ȳ4 = E(Y |X1 = 0, X2 = 0) 0 0

→

Test set :
X† X1 X2

ȳ1 (generated from training set) 1 1
ȳ2 (generated from training set) 1 0
ȳ3 (generated from training set) 0 1
ȳ4 (generated from training set) 0 0

of this subsection we formally define this method of using
partitions to define novel features.

A major benefit for using the proposed I-score is the par-
tition retention technique. This is a feature engineering tech-
nique that helps us to preserve the information of a variable
set and convert it into one feature. Since ROC AUC can-
not be directly computed between a response variable and
the potential variable set, common procedure tends to fit a
model first before AUC is computed. This is a very costly
method for the following two reasons. First, the fitting of
a regression or a classification model can be very costly to
train. Second, the model fitting procedure cannot guarantee
the prediction results of the final predictor. If the AUC value
is low, there is no solution to distinguish whether the poor
AUC result comes from model fitting or variable selection.

To tackle this problem, a proposed technique is to use
partition retention. These new features are denoted as X†’s
and hence we call this method the “dagger technique”. Now
we introduce this technique as follows. Suppose we have a
supervised learning problem and we are given explanatory
variables X and response variable Y . Suppose X has parti-
tions size k. We can create a novel non-parametric feature
using the following formula

X† := Ȳj , while j ∈ {1, 2, ..., k} (2)

where k is the size of the total partitions formed by X . For
example, suppose we have a X1 ∈ {1, 0} and X2 ∈ {1, 0}.
Then the variable set {X1, X2} has 4 partitions, i.e. com-
puted using 22 = 4. In this case, the running index for notat-
ing the partition j can take values {1, 2, 3, 4}. Then, based
on this variable set {X1, X2}, we can create a new feature
called X†

{X1,X2} that is a combination of X1 and X2 using
partition retention. Hence, this new feature can be defined as
X†

{X1,X2} := Ȳj while j ∈ {1, 2, 3, 4} as discussed above.
We can summarize this example in tabular form (see Table
3).

I-score 13.10 25.90 1.05
Variables left X1, X2, X3 X1, X2 X2

Investigate Drop X1, I = 0.94
Drop X2, I = 0.55
Drop X3, I = 25.90

Drop X1, I = 1.31
Drop X2, I = 1.05

Drop X3 X1

Table 3: Interaction-based Engineer: “Dagger Technique”. This table summarizes the construction procedure of X† (the “dagger 
technique”). Suppose we have a variable set {X1, X2} and each of them can take values in {0, 1}. We can construct X† and the 
values of this new feature is defined using the local average of the target variable Y based on the partition retained from the 
variable set {X1, X2}. Here the variable set {X1, X2} produces 4 partitions. Hence, we can define X† according to the following 
table. In test set, we do not observe target variable (or response variable) Y, so we use the training set values. Hence, the reminder 
is that in generating test set X† we use yj ’s from training set where j takes values in {1, 2, 3, 4}. of this subsection we formally 
define this method of using partitions to define novel features.

Algorithm 1: Procedure of the Backward Dropping Algo-
rithm (BDA)
Data: Training set {(y1, x1), ..., (yn, xn)} of n observa-
tions, where xi = (x1i, ..., xpi) is a p-dimensional vector
of explanatory variables. Typically p is very large. All ex-
planatory variables are discrete.
Initialize: Select an initial subset of k explanatory variables
Xb = {Xb1 , ..., Xbk}, b = 1, ..., B. The notation b indi-
cates which rounds of BDA it is executing. In practice, we
recommend B to be a large number. Then compute I-score:
I(Xb) =

∑
j∈ΠXb

n2
j (Ȳj − Ȳ )2. Set Xc to be Xb as the cur-

rent set.
Run:

1: while ||Xc|| > 1 do
2: tentatively drop each variable in Xc.
3: recalculate the I-score with one variable less.
4: then drop the one that gives the highest I-score and

call this new subset X ′
b, which has one variable less

than Xc.
5: store this subset of variable and its corresponding I-

score in a list for future reference.
6: reset Xc to be X ′

b.
7: end while
8: return The subset that yields the highest I-score in the

whole dropping process.

Table 2: Demonstration of BDA. The subset of variables
left with the highest I-score value is {X1, X2}.

I-score 13.10 25.90 1.05
Variables left X1, X2, X3 X1, X2 X2

Investigate Drop X1, I = 0.94 Drop X1, I = 1.31
Drop X2, I = 0.55 Drop X2, I = 1.05
Drop X3, I = 25.90

Drop X3 X1

while i = {1, 2, 3}. Assume there is a toy model Y =
X1 +X2(mod 2). In other words, the variable X3 would be
a noisy variable because it does not contribute to the defini-
tion of Y . In addition, suppose we generate 100 samples for
Xi and Y . BDA can be used to screen out X3. We present
the steps of BDA in Table 2.

Feature Engineering: Dagger Technique
The concept of interaction-based Feature is initially pro-
posed in Lo and Yin (2021) (Lo and Yin 2021a,b). In their
work, the authors defined an interaction-based feature that
is used to replace the construction of using filters in design-
ing Convolutional Neural Networks (CNNs). The conven-
tional practice relies on pre-defined filters and these filters
are small 2-by-2 or 3-by-3 window that are designed to cap-
ture certain information based on prior knowledge. The art
of using interaction-based feature to create novel features
within a 2-by-2 or 3-by-3 window in an image is to allow the
data rather than meaningless filters to indicate the predictive
information in the image. These new features are denoted
as X†’s, and hence the name “dagger technique”. The rest

Table 3: Interaction-based Engineer: “Dagger Tech-
nique”. This table summarizes the construction procedure
of X† (the “dagger technique”). Suppose we have a variable
set {X1, X2} and each of them can take values in {0, 1}. We
can construct X† and the values of this new feature is de-
fined using the local average of the target variable Y based
on the partition retained from the variable set {X1, X2}.
Here the variable set {X1, X2} produces 4 partitions. Hence,
we can define X† according to the following table. In test
set, we do not observe target variable (or response variable)
Y , so we use the training set values. Hence, the reminder is
that in generating test set X† we use ȳj’s from training set
where j takes values in {1, 2, 3, 4}.

Training set :
X† X1 X2

ȳ1 = E(Y |X1 = 1, X2 = 1) 1 1
ȳ2 = E(Y |X1 = 1, X2 = 0) 1 0
ȳ3 = E(Y |X1 = 0, X2 = 1) 0 1
ȳ4 = E(Y |X1 = 0, X2 = 0) 0 0

→

Test set :
X† X1 X2

ȳ1 (generated from training set) 1 1
ȳ2 (generated from training set) 1 0
ȳ3 (generated from training set) 0 1
ȳ4 (generated from training set) 0 0

of this subsection we formally define this method of using
partitions to define novel features.

A major benefit for using the proposed I-score is the par-
tition retention technique. This is a feature engineering tech-
nique that helps us to preserve the information of a variable
set and convert it into one feature. Since ROC AUC can-
not be directly computed between a response variable and
the potential variable set, common procedure tends to fit a
model first before AUC is computed. This is a very costly
method for the following two reasons. First, the fitting of
a regression or a classification model can be very costly to
train. Second, the model fitting procedure cannot guarantee
the prediction results of the final predictor. If the AUC value
is low, there is no solution to distinguish whether the poor
AUC result comes from model fitting or variable selection.

To tackle this problem, a proposed technique is to use
partition retention. These new features are denoted as X†’s
and hence we call this method the “dagger technique”. Now
we introduce this technique as follows. Suppose we have a
supervised learning problem and we are given explanatory
variables X and response variable Y . Suppose X has parti-
tions size k. We can create a novel non-parametric feature
using the following formula

X† := Ȳj , while j ∈ {1, 2, ..., k} (2)

where k is the size of the total partitions formed by X . For
example, suppose we have a X1 ∈ {1, 0} and X2 ∈ {1, 0}.
Then the variable set {X1, X2} has 4 partitions, i.e. com-
puted using 22 = 4. In this case, the running index for notat-
ing the partition j can take values {1, 2, 3, 4}. Then, based
on this variable set {X1, X2}, we can create a new feature
called X†

{X1,X2} that is a combination of X1 and X2 using
partition retention. Hence, this new feature can be defined as
X†

{X1,X2} := Ȳj while j ∈ {1, 2, 3, 4} as discussed above.
We can summarize this example in tabular form (see Table
3).

A major benefit for using the proposed I-score is the partition 
retention technique. This is a feature engineering technique that 
helps us to preserve the information of a variable set and convert 
it into one feature. Since ROC AUC can- not be directly computed 
between a response variable and the potential variable set, common 
procedure tends to fit a model first before AUC is computed. This 
is a very costly method for the following two reasons. First, the 

fitting of   a regression or a classification model can be very costly 
to train. Second, the model fitting procedure cannot guarantee the 
prediction results of the final predictor. If the AUC value is low, 
there is no solution to distinguish whether the poor AUC result 
comes from model fitting or variable selection.

To tackle this problem, a proposed technique is to use partition 
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retention. These new features are denoted as X†’s and hence we 
call this method the “dagger technique”. Now we introduce this 
technique as follows. Suppose we have a supervised learning 
problem and we are given explanatory variables X and response 
variable Y. Suppose X has partitions size k. We can create a novel 
non-parametric feature using the following formula

where k is the size of the total partitions formed by X. For example, 
suppose we have a X1 ∈ {1, 0} and X2 ∈ {1, 0}. Then the variable 
set {X1, X2} has 4 partitions, i.e. computed using 22 = 4. In this 
case, the running index for notating the partition j can take values 
{1, 2, 3, 4}. Then, based on this variable set {X1 , X2}, we can 
create a new feature called X†{X1 , X2} that is a combination of 
X1 and X2 using partition retention. Hence, this new feature can be 
defined as X†{X1, X2} := Yj while j ∈ {1, 2, 3, 4} as discussed above. 
We can summarize this example in tabular form (see Table 3).

Figure 2: Interaction-based Convolutional Neural Net- work. 
This is the executive diagram for the basic design of the proposed 
Interaction-based Convolutional Neural Net- Network (ICNN). 
The symbol “B” means the proposed Backward Dropping 
Algorithm (BDA). Suppose all variables are dichotomous. For 
example, the first group B(x1, x2, x4, x5), after running the BDA, may 
be reduced to {x1, x5}. The symbol “†” means the construction of 
interaction-based feature engineer using local averages of target 
variables based on the partition generated using high I-score 
variables or features in training set. For the set {x1, x5}, dagger 
technique can be used to construct x†1, which is based on the 
partition retained from the set {x1, x5}. Though this figure presents 
a simple situation, most complex ICNN can be designed using the 
same technique automatically. The proposed technique here can be 
generalized to any large-scale data set.

Interaction-based Convolutional Neural Network 
(ICNN)
I-score, Backward Dropping Algorithm, and Dagger Technique 
are proposed to replace pre-trained kernel in Convolutional Neural 
Network (CNN). While the original CNN uses a pre-trained filter, 
the proposed techniques can automatically extract features from 
image data set. How do we understand the medical images and 
why does certain medical? images carry diseased status? These 
questions can be answered by Interaction-based Convolutional 
Neural Network (ICNN), but they remain challenging for the 
original deep CNNs due to the fact that pre-defined kernels or filters 
are used without any feature selection method. This is because the 
kernels and filters used suffer low predictivity and they do not go 
through Backward Dropping Algorithm. 

Suppose there is a 3-by-3 matrix (this can be considered as one 
image) as shown in the Figure 2. First, a kernel of size 2-by-2 is 
defined and this 2-by-2 kernel coins 4 variables. These 4 variables 

form a small group and Backward Dropping Algorithm (BDA, and 
it is denoted as B) is used. Each group, after BDA, finely selects 
a subset, of which the dagger technique is used. This procedure is 
illustrated in Figure 2.

We can design an I-score implemented neural networks. Since 
the pre-defined filters are replaced with proposed BDA and 
dagger technique, we call the new design an Interaction based 
Convolutional Neural Network (ICNN). 

Forward Propagation (Forward Pass)
To illustrate the procedure of model training. Let us consider a 
set of input variables to be {X†

1, X
†

2, X
†

3}. In the proposed work, 
this is referring to the variable modules, also notated as X†’s, that 
we created using Interaction-based Feature Engineer (Equation 
2). For this discussion, we define a set of weights {w1, w2, w3} 
to construct a linear transformation. The symbol Σ below in the 
following diagram represents this linear transformation that takes 
the form X†

1w1 + X†
2w2 + X†

3w3.

For simplicity of notation, we write                                 in short 
Then we denote a(・) as an activation function. We choose sigmoid 
to be this activation function a(・). This means we have output y to 
be defined as a(Σ). In other words, let us write the following

Architecture
This architecture of neural network is presented below. For 
simplicity of drawing this picture, we assume there are 3 input 
variable modules, {X†

1,X
†

2,X
†

3}. In practice, the number of 
variable modules (the total number of X†’s) depends on image data 
dimensions, window size, stride level, and starting point [25].

Figure 3: The above architecture presents a feed forward neural 
network with three input variables. The input variables are {X1

†, 
X2

†, X3
†} which are variable modules created using equation 2.

For the loss function, we used the binary cross-entropy loss 
function. This loss function is designed to minimize the distance 
between a target probability distribution P an estimated target 

Algorithm 1: Procedure of the Backward Dropping Algo-
rithm (BDA)
Data: Training set {(y1, x1), ..., (yn, xn)} of n observa-
tions, where xi = (x1i, ..., xpi) is a p-dimensional vector
of explanatory variables. Typically p is very large. All ex-
planatory variables are discrete.
Initialize: Select an initial subset of k explanatory variables
Xb = {Xb1 , ..., Xbk}, b = 1, ..., B. The notation b indi-
cates which rounds of BDA it is executing. In practice, we
recommend B to be a large number. Then compute I-score:
I(Xb) =

∑
j∈ΠXb

n2
j (Ȳj − Ȳ )2. Set Xc to be Xb as the cur-

rent set.
Run:

1: while ||Xc|| > 1 do
2: tentatively drop each variable in Xc.
3: recalculate the I-score with one variable less.
4: then drop the one that gives the highest I-score and

call this new subset X ′
b, which has one variable less

than Xc.
5: store this subset of variable and its corresponding I-

score in a list for future reference.
6: reset Xc to be X ′

b.
7: end while
8: return The subset that yields the highest I-score in the

whole dropping process.

Table 2: Demonstration of BDA. The subset of variables
left with the highest I-score value is {X1, X2}.

I-score 13.10 25.90 1.05
Variables left X1, X2, X3 X1, X2 X2

Investigate Drop X1, I = 0.94 Drop X1, I = 1.31
Drop X2, I = 0.55 Drop X2, I = 1.05
Drop X3, I = 25.90

Drop X3 X1

while i = {1, 2, 3}. Assume there is a toy model Y =
X1 +X2(mod 2). In other words, the variable X3 would be
a noisy variable because it does not contribute to the defini-
tion of Y . In addition, suppose we generate 100 samples for
Xi and Y . BDA can be used to screen out X3. We present
the steps of BDA in Table 2.

Feature Engineering: Dagger Technique
The concept of interaction-based Feature is initially pro-
posed in Lo and Yin (2021) (Lo and Yin 2021a,b). In their
work, the authors defined an interaction-based feature that
is used to replace the construction of using filters in design-
ing Convolutional Neural Networks (CNNs). The conven-
tional practice relies on pre-defined filters and these filters
are small 2-by-2 or 3-by-3 window that are designed to cap-
ture certain information based on prior knowledge. The art
of using interaction-based feature to create novel features
within a 2-by-2 or 3-by-3 window in an image is to allow the
data rather than meaningless filters to indicate the predictive
information in the image. These new features are denoted
as X†’s, and hence the name “dagger technique”. The rest

Table 3: Interaction-based Engineer: “Dagger Tech-
nique”. This table summarizes the construction procedure
of X† (the “dagger technique”). Suppose we have a variable
set {X1, X2} and each of them can take values in {0, 1}. We
can construct X† and the values of this new feature is de-
fined using the local average of the target variable Y based
on the partition retained from the variable set {X1, X2}.
Here the variable set {X1, X2} produces 4 partitions. Hence,
we can define X† according to the following table. In test
set, we do not observe target variable (or response variable)
Y , so we use the training set values. Hence, the reminder is
that in generating test set X† we use ȳj’s from training set
where j takes values in {1, 2, 3, 4}.

Training set :
X† X1 X2

ȳ1 = E(Y |X1 = 1, X2 = 1) 1 1
ȳ2 = E(Y |X1 = 1, X2 = 0) 1 0
ȳ3 = E(Y |X1 = 0, X2 = 1) 0 1
ȳ4 = E(Y |X1 = 0, X2 = 0) 0 0

→

Test set :
X† X1 X2

ȳ1 (generated from training set) 1 1
ȳ2 (generated from training set) 1 0
ȳ3 (generated from training set) 0 1
ȳ4 (generated from training set) 0 0

of this subsection we formally define this method of using
partitions to define novel features.

A major benefit for using the proposed I-score is the par-
tition retention technique. This is a feature engineering tech-
nique that helps us to preserve the information of a variable
set and convert it into one feature. Since ROC AUC can-
not be directly computed between a response variable and
the potential variable set, common procedure tends to fit a
model first before AUC is computed. This is a very costly
method for the following two reasons. First, the fitting of
a regression or a classification model can be very costly to
train. Second, the model fitting procedure cannot guarantee
the prediction results of the final predictor. If the AUC value
is low, there is no solution to distinguish whether the poor
AUC result comes from model fitting or variable selection.

To tackle this problem, a proposed technique is to use
partition retention. These new features are denoted as X†’s
and hence we call this method the “dagger technique”. Now
we introduce this technique as follows. Suppose we have a
supervised learning problem and we are given explanatory
variables X and response variable Y . Suppose X has parti-
tions size k. We can create a novel non-parametric feature
using the following formula

X† := Ȳj , while j ∈ {1, 2, ..., k} (2)

where k is the size of the total partitions formed by X . For
example, suppose we have a X1 ∈ {1, 0} and X2 ∈ {1, 0}.
Then the variable set {X1, X2} has 4 partitions, i.e. com-
puted using 22 = 4. In this case, the running index for notat-
ing the partition j can take values {1, 2, 3, 4}. Then, based
on this variable set {X1, X2}, we can create a new feature
called X†

{X1,X2} that is a combination of X1 and X2 using
partition retention. Hence, this new feature can be defined as
X†

{X1,X2} := Ȳj while j ∈ {1, 2, 3, 4} as discussed above.
We can summarize this example in tabular form (see Table
3).
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Figure 2: Interaction-based Convolutional Neural Net-
work. This is the executive diagram for the basic design of
the proposed Interaction-based Convolutional Neural Net-
work (ICNN). The symbol “B” means the proposed Back-
ward Dropping Algorithm (BDA). Suppose all variables are
dichotomous. For example, the first group B(x1, x2, x4, x5),
after running the BDA, may be reduced to {x1, x5}. The
symbol “†” means the construction of interaction-based fea-
ture engineer using local averages of target variables based
on the partition generated using high I-score variables or fea-
tures in training set. For the set {x1, x5}, dagger technique
can be used to construct x†

1, which is based on the partition
retained from the set {x1, x5}. Though this figure presents a
simple situation, most complex ICNN can be designed using
the same technique automatically. The proposed technique
here can be generalized to any large-scale data set.
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Interaction-based Convolutional Neural Network
(ICNN)
I-score, Backward Dropping Algorithm, and Dagger Tech-
nique are proposed to replace pre-trained kernel in Convo-
lutional Neural Network (CNN). While the original CNN
uses a pre-trained filter, the proposed techniques can auto-
matically extract features from image data set. How do we
understand the medical images and why does certain medi-
cal images carry diseased status? These questions can be an-
swered by Interaction-based Convolutional Neural Network
(ICNN), but they remain challenging for the original deep
CNNs due to the fact that pre-defined kernels or filters are
used without any feature selection method. This is because
the kernels and filters used suffer low predictivity and they
do not go through Backward Dropping Algorithm.

Suppose there is a 3-by-3 matrix (this can be considered
as one image) as shown in the Figure 2. First, a kernel of size
2-by-2 is defined and this 2-by-2 kernel coins 4 variables.
These 4 variables form a small group and Backward Drop-
ping Algorithm (BDA, and it is denoted as B) is used. Each
group, after BDA, finely selects a subset, of which the dag-
ger technique is used. This procedure is illustrated in Figure
2.

We can design an I-score implemented neural networks.
Since the pre-defined filters are replaced with proposed BDA
and dagger technique, we call the new design an Interaction-
based Convolutional Neural Network (ICNN).

Forward Propagation (Forward Pass). To illustrate the
procedure of model training. Let us consider a set of input
variables to be {X†

1 , X
†
2 , X

†
3}. In the proposed work, this is

referring to the variable modules, also notated as X†’s, that
we created using Interaction-based Feature Engineer (see
equation 2). For this discussion, we define a set of weights
{w1, w2, w3} to construct a linear transformation. The sym-
bol Σ below in the following diagram represents this linear
transformation that takes the form X†

1w1 +X†
2w2 +X†

3w3.
For simplicity of notation, we write Σ =

∑3
j=1 wjX

†
j in

short. Then we denote a(·) as an activation function. We

choose sigmoid to be this activation function a(·). This
means we have output ŷ to be defined as a(Σ). In other
words, let us write the following

ŷ := a(Σ) = a(
3∑

j=1

wjX
†
j ) = 1/(1 + exp(−(

3∑
j=1

wjX
†
j )))

(3)
The general form (assuming there are p variable modules) is
expressed below

ŷ := a(Σ) = a(

p∑
j=1

wjX
†
j ) = 1/(1 + exp(−(

p∑
j=1

wjX
†
j )))

(4)
Architecture. This architecture of neural network is

presented below. For simplicity of drawing this picture, we
assume there are 3 input variable modules, {X†

1 , X
†
2 , X

†
3}.

In practice, the number of variable modules (the total num-
ber of X†’s) depends on image data dimensions, window
size, stride level, and starting point (please see §4.3 in (Lo
and Yin 2021a)).

Figure 3: The above architecture presents a feed forward
neural network with three input variables. The input vari-
ables are {X†

1 , X
†
2 , X

†
3} which are variable modules created

using equation 2.
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p ↗

For the loss function, we used the binary cross-entropy
loss function. This loss function is designed to minimize
the distance between a target probability distribution P and
an estimated target distribution Q when the task is a two-
class classification problem. The cross-entropy loss function
is defined as the following

L(yi, ŷi) = − 1
n

∑n
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

(5)
where yi is the ground truth of response variable for the ith

observation and ŷi is the predicted value of response vari-
able for the ith observation. The linear transformation, non-
linear transformation, and the computation of the loss func-
tion completes the forward propagation.

Backward Propagation (Backward Pass). To search
for the optimal weights, we use an optimizer algorithm
called RMSprop (short for Root Mean Square Propagation,
a named suggested by Geoffrey Hinton). With the loss func-
tion computed above, we derive the gradient of the loss func-
tion to be ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we com-
pute vt,∇L := βvt−1,∇L + (1 − β)∇L2 while β is a tun-
ing parameter. Note that the square term on ∇L is element-
wise multiplication. Then we can update the weights using
wt := wt−1 − η · ∇L/√vt,∇L while η is learning rate.
The value of learning rate η is a tuning parameter and it is
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the proposed Interaction-based Convolutional Neural Net-
work (ICNN). The symbol “B” means the proposed Back-
ward Dropping Algorithm (BDA). Suppose all variables are
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after running the BDA, may be reduced to {x1, x5}. The
symbol “†” means the construction of interaction-based fea-
ture engineer using local averages of target variables based
on the partition generated using high I-score variables or fea-
tures in training set. For the set {x1, x5}, dagger technique
can be used to construct x†

1, which is based on the partition
retained from the set {x1, x5}. Though this figure presents a
simple situation, most complex ICNN can be designed using
the same technique automatically. The proposed technique
here can be generalized to any large-scale data set.
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I-score, Backward Dropping Algorithm, and Dagger Tech-
nique are proposed to replace pre-trained kernel in Convo-
lutional Neural Network (CNN). While the original CNN
uses a pre-trained filter, the proposed techniques can auto-
matically extract features from image data set. How do we
understand the medical images and why does certain medi-
cal images carry diseased status? These questions can be an-
swered by Interaction-based Convolutional Neural Network
(ICNN), but they remain challenging for the original deep
CNNs due to the fact that pre-defined kernels or filters are
used without any feature selection method. This is because
the kernels and filters used suffer low predictivity and they
do not go through Backward Dropping Algorithm.

Suppose there is a 3-by-3 matrix (this can be considered
as one image) as shown in the Figure 2. First, a kernel of size
2-by-2 is defined and this 2-by-2 kernel coins 4 variables.
These 4 variables form a small group and Backward Drop-
ping Algorithm (BDA, and it is denoted as B) is used. Each
group, after BDA, finely selects a subset, of which the dag-
ger technique is used. This procedure is illustrated in Figure
2.

We can design an I-score implemented neural networks.
Since the pre-defined filters are replaced with proposed BDA
and dagger technique, we call the new design an Interaction-
based Convolutional Neural Network (ICNN).

Forward Propagation (Forward Pass). To illustrate the
procedure of model training. Let us consider a set of input
variables to be {X†

1 , X
†
2 , X

†
3}. In the proposed work, this is

referring to the variable modules, also notated as X†’s, that
we created using Interaction-based Feature Engineer (see
equation 2). For this discussion, we define a set of weights
{w1, w2, w3} to construct a linear transformation. The sym-
bol Σ below in the following diagram represents this linear
transformation that takes the form X†

1w1 +X†
2w2 +X†

3w3.
For simplicity of notation, we write Σ =

∑3
j=1 wjX
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short. Then we denote a(·) as an activation function. We

choose sigmoid to be this activation function a(·). This
means we have output ŷ to be defined as a(Σ). In other
words, let us write the following

ŷ := a(Σ) = a(
3∑
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presented below. For simplicity of drawing this picture, we
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In practice, the number of variable modules (the total num-
ber of X†’s) depends on image data dimensions, window
size, stride level, and starting point (please see §4.3 in (Lo
and Yin 2021a)).
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For the loss function, we used the binary cross-entropy
loss function. This loss function is designed to minimize
the distance between a target probability distribution P and
an estimated target distribution Q when the task is a two-
class classification problem. The cross-entropy loss function
is defined as the following

L(yi, ŷi) = − 1
n

∑n
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

(5)
where yi is the ground truth of response variable for the ith

observation and ŷi is the predicted value of response vari-
able for the ith observation. The linear transformation, non-
linear transformation, and the computation of the loss func-
tion completes the forward propagation.

Backward Propagation (Backward Pass). To search
for the optimal weights, we use an optimizer algorithm
called RMSprop (short for Root Mean Square Propagation,
a named suggested by Geoffrey Hinton). With the loss func-
tion computed above, we derive the gradient of the loss func-
tion to be ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we com-
pute vt,∇L := βvt−1,∇L + (1 − β)∇L2 while β is a tun-
ing parameter. Note that the square term on ∇L is element-
wise multiplication. Then we can update the weights using
wt := wt−1 − η · ∇L/√vt,∇L while η is learning rate.
The value of learning rate η is a tuning parameter and it is
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on the partition generated using high I-score variables or fea-
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nique are proposed to replace pre-trained kernel in Convo-
lutional Neural Network (CNN). While the original CNN
uses a pre-trained filter, the proposed techniques can auto-
matically extract features from image data set. How do we
understand the medical images and why does certain medi-
cal images carry diseased status? These questions can be an-
swered by Interaction-based Convolutional Neural Network
(ICNN), but they remain challenging for the original deep
CNNs due to the fact that pre-defined kernels or filters are
used without any feature selection method. This is because
the kernels and filters used suffer low predictivity and they
do not go through Backward Dropping Algorithm.

Suppose there is a 3-by-3 matrix (this can be considered
as one image) as shown in the Figure 2. First, a kernel of size
2-by-2 is defined and this 2-by-2 kernel coins 4 variables.
These 4 variables form a small group and Backward Drop-
ping Algorithm (BDA, and it is denoted as B) is used. Each
group, after BDA, finely selects a subset, of which the dag-
ger technique is used. This procedure is illustrated in Figure
2.

We can design an I-score implemented neural networks.
Since the pre-defined filters are replaced with proposed BDA
and dagger technique, we call the new design an Interaction-
based Convolutional Neural Network (ICNN).

Forward Propagation (Forward Pass). To illustrate the
procedure of model training. Let us consider a set of input
variables to be {X†

1 , X
†
2 , X

†
3}. In the proposed work, this is

referring to the variable modules, also notated as X†’s, that
we created using Interaction-based Feature Engineer (see
equation 2). For this discussion, we define a set of weights
{w1, w2, w3} to construct a linear transformation. The sym-
bol Σ below in the following diagram represents this linear
transformation that takes the form X†

1w1 +X†
2w2 +X†

3w3.
For simplicity of notation, we write Σ =

∑3
j=1 wjX

†
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short. Then we denote a(·) as an activation function. We

choose sigmoid to be this activation function a(·). This
means we have output ŷ to be defined as a(Σ). In other
words, let us write the following

ŷ := a(Σ) = a(
3∑
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ŷ := a(Σ) = a(

p∑
j=1

wjX
†
j ) = 1/(1 + exp(−(

p∑
j=1

wjX
†
j )))

(4)
Architecture. This architecture of neural network is

presented below. For simplicity of drawing this picture, we
assume there are 3 input variable modules, {X†

1 , X
†
2 , X

†
3}.

In practice, the number of variable modules (the total num-
ber of X†’s) depends on image data dimensions, window
size, stride level, and starting point (please see §4.3 in (Lo
and Yin 2021a)).

Figure 3: The above architecture presents a feed forward
neural network with three input variables. The input vari-
ables are {X†

1 , X
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3} which are variable modules created

using equation 2.
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For the loss function, we used the binary cross-entropy
loss function. This loss function is designed to minimize
the distance between a target probability distribution P and
an estimated target distribution Q when the task is a two-
class classification problem. The cross-entropy loss function
is defined as the following

L(yi, ŷi) = − 1
n

∑n
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

(5)
where yi is the ground truth of response variable for the ith

observation and ŷi is the predicted value of response vari-
able for the ith observation. The linear transformation, non-
linear transformation, and the computation of the loss func-
tion completes the forward propagation.

Backward Propagation (Backward Pass). To search
for the optimal weights, we use an optimizer algorithm
called RMSprop (short for Root Mean Square Propagation,
a named suggested by Geoffrey Hinton). With the loss func-
tion computed above, we derive the gradient of the loss func-
tion to be ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we com-
pute vt,∇L := βvt−1,∇L + (1 − β)∇L2 while β is a tun-
ing parameter. Note that the square term on ∇L is element-
wise multiplication. Then we can update the weights using
wt := wt−1 − η · ∇L/√vt,∇L while η is learning rate.
The value of learning rate η is a tuning parameter and it is
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dichotomous. For example, the first group B(x1, x2, x4, x5),
after running the BDA, may be reduced to {x1, x5}. The
symbol “†” means the construction of interaction-based fea-
ture engineer using local averages of target variables based
on the partition generated using high I-score variables or fea-
tures in training set. For the set {x1, x5}, dagger technique
can be used to construct x†

1, which is based on the partition
retained from the set {x1, x5}. Though this figure presents a
simple situation, most complex ICNN can be designed using
the same technique automatically. The proposed technique
here can be generalized to any large-scale data set.
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For the loss function, we used the binary cross-entropy
loss function. This loss function is designed to minimize
the distance between a target probability distribution P and
an estimated target distribution Q when the task is a two-
class classification problem. The cross-entropy loss function
is defined as the following

L(yi, ŷi) = − 1
n

∑n
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

(5)
where yi is the ground truth of response variable for the ith

observation and ŷi is the predicted value of response vari-
able for the ith observation. The linear transformation, non-
linear transformation, and the computation of the loss func-
tion completes the forward propagation.

Backward Propagation (Backward Pass). To search
for the optimal weights, we use an optimizer algorithm
called RMSprop (short for Root Mean Square Propagation,
a named suggested by Geoffrey Hinton). With the loss func-
tion computed above, we derive the gradient of the loss func-
tion to be ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we com-
pute vt,∇L := βvt−1,∇L + (1 − β)∇L2 while β is a tun-
ing parameter. Note that the square term on ∇L is element-
wise multiplication. Then we can update the weights using
wt := wt−1 − η · ∇L/√vt,∇L while η is learning rate.
The value of learning rate η is a tuning parameter and it is
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matrix has new dimensions computed as the following

For simplicity of this investigation, we assume input matrices to 
be a square. In other words, in the application of this paper, we 
process the input images to have the same width and height, i.e. 
128 by 128 pixels. For future work, this can be generalized into 
different shapes.

Interaction-based Recurrent Neural Network (IRNN)
I-score and Dagger Technique are proposed to replace com- 
plicated designs such as Gated Recurrent Unit and Long Short-
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problem. Not only can I-score and Dagger Technique raise 
prediction performance, the proposed methods can also address the 
semantics in lan- guage problems, which provides explainability in 
Natural Language Processing (NLP). This innovation leads to a 
fam- ily of novel network architectures called Interaction-based 
Recurrent Neural Network (IRNN).

Suppose the data set is a text document with length 8. This means 
an instance or an observation in this text document data set may 
have up to 8 variables or features (this can be considered as a 
sentence with 8 words). The pro- posed technique is summarized 
in Figure 5. A kernel of size.
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ward Dropping Algorithm (BDA). Suppose all variables are
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after running the BDA, may be reduced to {x1, x5}. The
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ture engineer using local averages of target variables based
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can be used to construct x†

1, which is based on the partition
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the same technique automatically. The proposed technique
here can be generalized to any large-scale data set.
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understand the medical images and why does certain medi-
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(ICNN), but they remain challenging for the original deep
CNNs due to the fact that pre-defined kernels or filters are
used without any feature selection method. This is because
the kernels and filters used suffer low predictivity and they
do not go through Backward Dropping Algorithm.

Suppose there is a 3-by-3 matrix (this can be considered
as one image) as shown in the Figure 2. First, a kernel of size
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These 4 variables form a small group and Backward Drop-
ping Algorithm (BDA, and it is denoted as B) is used. Each
group, after BDA, finely selects a subset, of which the dag-
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Since the pre-defined filters are replaced with proposed BDA
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equation 2). For this discussion, we define a set of weights
{w1, w2, w3} to construct a linear transformation. The sym-
bol Σ below in the following diagram represents this linear
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For the loss function, we used the binary cross-entropy
loss function. This loss function is designed to minimize
the distance between a target probability distribution P and
an estimated target distribution Q when the task is a two-
class classification problem. The cross-entropy loss function
is defined as the following

L(yi, ŷi) = − 1
n

∑n
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

(5)
where yi is the ground truth of response variable for the ith

observation and ŷi is the predicted value of response vari-
able for the ith observation. The linear transformation, non-
linear transformation, and the computation of the loss func-
tion completes the forward propagation.

Backward Propagation (Backward Pass). To search
for the optimal weights, we use an optimizer algorithm
called RMSprop (short for Root Mean Square Propagation,
a named suggested by Geoffrey Hinton). With the loss func-
tion computed above, we derive the gradient of the loss func-
tion to be ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we com-
pute vt,∇L := βvt−1,∇L + (1 − β)∇L2 while β is a tun-
ing parameter. Note that the square term on ∇L is element-
wise multiplication. Then we can update the weights using
wt := wt−1 − η · ∇L/√vt,∇L while η is learning rate.
The value of learning rate η is a tuning parameter and it is

usually a very small number. This process starts with the
loss function and goes back to the beginning to update the
weights w = {w1, w2, w3}. Hence, it earns the name back-
ward propagation.

Computation of Dimensions. We first discuss three tun-
ing parameters and then we formally write out the dimension
of a new matrix after convolutional operation on an image
matrix.

• Window Size. Window size is the size of the local area
that we narrow down to run the Backward Dropping Al-
gorithm.

• Stride Level. The level of stride is how many rows or
columns that get skipped over. This tuning parameter al-
lows the algorithm to move faster but it makes sacrifice
by skipping some variables.

• Starting Point. Another tuning parameter that we rec-
ommend to adjust is the starting point. The starting point
represents the location of the first pixel that we start the
proposed operation. The vanilla starting point is to start
the rolling window from the pixel located at the first row
and the first column.

The above discussion introduced the tuning parameters of
window size, stride level, and starting point. These parame-
ters update our input matrix and generate a new matrix with
different sizes. Let us denote window size to be w, stride
level to be l, and starting point to be p. Given an input ma-
trix with size sin by sin, the output matrix has new dimen-
sions computed as the following

⌊sin − p− w + 1

l
+ 1⌋ × ⌊sin − p− w + 1

l
+ 1⌋ (6)

For simplicity of this investigation, we assume input matri-
ces to be a square. In other words, in the application of this
paper, we process the input images to have the same width
and height, i.e. 128 by 128 pixels. For future work, this can
be generalized into different shapes.

Interaction-based Recurrent Neural Network
(IRNN)
I-score and Dagger Technique are proposed to replace com-
plicated designs such as Gated Recurrent Unit and Long
Short Term Memory in the text sentiment analysis. Many
text sentiment classification tasks are conducted using com-
plicated Recurrent Neural Networks (RNNs) and the reason
is to detect long-term dependencies in sequential or time-
series data sets. The proposed I-score and Dagger Tech-
nique can address this explainability problem. Not only can
I-score and Dagger Technique raise prediction performance,
the proposed methods can also address the semantics in lan-
guage problems, which provides explainability in Natural
Language Processing (NLP). This innovation leads to a fam-
ily of novel network architectures called Interaction-based
Recurrent Neural Network (IRNN).

Suppose the data set is a text document with length 8.
This means an instance or an observation in this text docu-
ment data set may have up to 8 variables or features (this
can be considered as a sentence with 8 words). The pro-
posed technique is summarized in Figure 5. A kernel of size

Figure 4: This executive diagram summarizes the key com-
ponents of the method: Interaction Convolutional Neural
Network, proposed in this paper. This design heavily relies
on the I-score and has an architecture that is interpretable at
each location of the image at each convolutional layer. More
importantly, the proposed design satisfies all three dimen-
sions (C1, C2, and C3 in the Introduction) of the definition
of interpretability and explainability.

Figure 5: Interaction-based Recurrent Neural Network.
This is the executive diagram for the basic design of the pro-
posed Interaction-based Recurrent Neural Network (IRNN).
The symbol “B” means the proposed Backward Drop-
ping Algorithm. The symbol “†” means the construction of
interaction-based feature engineer using local averages of
target variables based on the partition generated using high
I-score variables or features in training set. The methodol-
ogy in this figure shares the same philosophy and approach
in Figure 2, which implies that the proposed methodology
can be generalized into almost all applications with differ-
ent forms of data sets.
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5 is selected and BDA (again denoted as B in Figure 5) is
used within a group of 5 variables. The dagger technique
is then adopted on the finely selected variables from each
group to create dagger features or interaction-based features.
This procedure is illustrated in 5.

Forward Propagation (Forward Pass). We briefly dis-
cuss the basic RNN that we will use in the application and
the diagram for the basic RNN. Suppose we have input fea-
tures X1, X2, .... These features are directly processed from
the text document which can be processed word index or
they can be embedded word vectors. The features are fed
into the hidden layer where the neurons (or units) are de-
noted as h1, h2, .... There is a weight connecting the previ-
ous neuron with the current neuron. We denote this weight
as W . Each current neuron has contribution from current
feature which is connected with a weight parameter U . For
any t in {1, 2, ..., T}, we can compute each hidden neuron
by using the following formula

ht = g(W · ht−1 + U ·Xt + b) (7)

(6)
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weights w = {w1, w2, w3}. Hence, it earns the name back-
ward propagation.

Computation of Dimensions. We first discuss three tun-
ing parameters and then we formally write out the dimension
of a new matrix after convolutional operation on an image
matrix.

• Window Size. Window size is the size of the local area
that we narrow down to run the Backward Dropping Al-
gorithm.

• Stride Level. The level of stride is how many rows or
columns that get skipped over. This tuning parameter al-
lows the algorithm to move faster but it makes sacrifice
by skipping some variables.

• Starting Point. Another tuning parameter that we rec-
ommend to adjust is the starting point. The starting point
represents the location of the first pixel that we start the
proposed operation. The vanilla starting point is to start
the rolling window from the pixel located at the first row
and the first column.

The above discussion introduced the tuning parameters of
window size, stride level, and starting point. These parame-
ters update our input matrix and generate a new matrix with
different sizes. Let us denote window size to be w, stride
level to be l, and starting point to be p. Given an input ma-
trix with size sin by sin, the output matrix has new dimen-
sions computed as the following

⌊sin − p− w + 1

l
+ 1⌋ × ⌊sin − p− w + 1

l
+ 1⌋ (6)

For simplicity of this investigation, we assume input matri-
ces to be a square. In other words, in the application of this
paper, we process the input images to have the same width
and height, i.e. 128 by 128 pixels. For future work, this can
be generalized into different shapes.

Interaction-based Recurrent Neural Network
(IRNN)
I-score and Dagger Technique are proposed to replace com-
plicated designs such as Gated Recurrent Unit and Long
Short Term Memory in the text sentiment analysis. Many
text sentiment classification tasks are conducted using com-
plicated Recurrent Neural Networks (RNNs) and the reason
is to detect long-term dependencies in sequential or time-
series data sets. The proposed I-score and Dagger Tech-
nique can address this explainability problem. Not only can
I-score and Dagger Technique raise prediction performance,
the proposed methods can also address the semantics in lan-
guage problems, which provides explainability in Natural
Language Processing (NLP). This innovation leads to a fam-
ily of novel network architectures called Interaction-based
Recurrent Neural Network (IRNN).

Suppose the data set is a text document with length 8.
This means an instance or an observation in this text docu-
ment data set may have up to 8 variables or features (this
can be considered as a sentence with 8 words). The pro-
posed technique is summarized in Figure 5. A kernel of size

Figure 4: This executive diagram summarizes the key com-
ponents of the method: Interaction Convolutional Neural
Network, proposed in this paper. This design heavily relies
on the I-score and has an architecture that is interpretable at
each location of the image at each convolutional layer. More
importantly, the proposed design satisfies all three dimen-
sions (C1, C2, and C3 in the Introduction) of the definition
of interpretability and explainability.

Figure 5: Interaction-based Recurrent Neural Network.
This is the executive diagram for the basic design of the pro-
posed Interaction-based Recurrent Neural Network (IRNN).
The symbol “B” means the proposed Backward Drop-
ping Algorithm. The symbol “†” means the construction of
interaction-based feature engineer using local averages of
target variables based on the partition generated using high
I-score variables or features in training set. The methodol-
ogy in this figure shares the same philosophy and approach
in Figure 2, which implies that the proposed methodology
can be generalized into almost all applications with differ-
ent forms of data sets.

x1 x2 x3 x4 x5 x6 x7 x8

↓
B(x1, x2, x3, x4, x5) B(x2, x3, x4, x5, x6) B(x3, x4, x5, x6, x7) B(x4, x5, x6, x7, x8)

↓†
x†
1 x†

2 x†
3 x†

4

5 is selected and BDA (again denoted as B in Figure 5) is
used within a group of 5 variables. The dagger technique
is then adopted on the finely selected variables from each
group to create dagger features or interaction-based features.
This procedure is illustrated in 5.

Forward Propagation (Forward Pass). We briefly dis-
cuss the basic RNN that we will use in the application and
the diagram for the basic RNN. Suppose we have input fea-
tures X1, X2, .... These features are directly processed from
the text document which can be processed word index or
they can be embedded word vectors. The features are fed
into the hidden layer where the neurons (or units) are de-
noted as h1, h2, .... There is a weight connecting the previ-
ous neuron with the current neuron. We denote this weight
as W . Each current neuron has contribution from current
feature which is connected with a weight parameter U . For
any t in {1, 2, ..., T}, we can compute each hidden neuron
by using the following formula

ht = g(W · ht−1 + U ·Xt + b) (7)

Figure 4: This executive diagram summarizes the key components of the method: Interaction Convolutional Neural Network, proposed 
in this paper. This design heavily relies on the I-score and has an architecture that is interpretable at each location of the image at each 
convolutional layer. More importantly, the proposed design satisfies all three dimensions (C1, C2, and C3 in the Introduction) of the 
definition of interpretability and explain ability.

Figure 2: Interaction-based Convolutional Neural Net-
work. This is the executive diagram for the basic design of
the proposed Interaction-based Convolutional Neural Net-
work (ICNN). The symbol “B” means the proposed Back-
ward Dropping Algorithm (BDA). Suppose all variables are
dichotomous. For example, the first group B(x1, x2, x4, x5),
after running the BDA, may be reduced to {x1, x5}. The
symbol “†” means the construction of interaction-based fea-
ture engineer using local averages of target variables based
on the partition generated using high I-score variables or fea-
tures in training set. For the set {x1, x5}, dagger technique
can be used to construct x†

1, which is based on the partition
retained from the set {x1, x5}. Though this figure presents a
simple situation, most complex ICNN can be designed using
the same technique automatically. The proposed technique
here can be generalized to any large-scale data set.

x1 x2 x3

x4 x5 x6

x7 x8 x9

→ B(x1, x2, x4, x5) B(x2, x3, x5, x6)
B(x4, x5, x7, x8) B(x5, x6, x8, x9)

†→ x†
1 x†

2

x†
3 x†
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Interaction-based Convolutional Neural Network
(ICNN)
I-score, Backward Dropping Algorithm, and Dagger Tech-
nique are proposed to replace pre-trained kernel in Convo-
lutional Neural Network (CNN). While the original CNN
uses a pre-trained filter, the proposed techniques can auto-
matically extract features from image data set. How do we
understand the medical images and why does certain medi-
cal images carry diseased status? These questions can be an-
swered by Interaction-based Convolutional Neural Network
(ICNN), but they remain challenging for the original deep
CNNs due to the fact that pre-defined kernels or filters are
used without any feature selection method. This is because
the kernels and filters used suffer low predictivity and they
do not go through Backward Dropping Algorithm.

Suppose there is a 3-by-3 matrix (this can be considered
as one image) as shown in the Figure 2. First, a kernel of size
2-by-2 is defined and this 2-by-2 kernel coins 4 variables.
These 4 variables form a small group and Backward Drop-
ping Algorithm (BDA, and it is denoted as B) is used. Each
group, after BDA, finely selects a subset, of which the dag-
ger technique is used. This procedure is illustrated in Figure
2.

We can design an I-score implemented neural networks.
Since the pre-defined filters are replaced with proposed BDA
and dagger technique, we call the new design an Interaction-
based Convolutional Neural Network (ICNN).

Forward Propagation (Forward Pass). To illustrate the
procedure of model training. Let us consider a set of input
variables to be {X†

1 , X
†
2 , X

†
3}. In the proposed work, this is

referring to the variable modules, also notated as X†’s, that
we created using Interaction-based Feature Engineer (see
equation 2). For this discussion, we define a set of weights
{w1, w2, w3} to construct a linear transformation. The sym-
bol Σ below in the following diagram represents this linear
transformation that takes the form X†

1w1 +X†
2w2 +X†

3w3.
For simplicity of notation, we write Σ =

∑3
j=1 wjX

†
j in

short. Then we denote a(·) as an activation function. We

choose sigmoid to be this activation function a(·). This
means we have output ŷ to be defined as a(Σ). In other
words, let us write the following

ŷ := a(Σ) = a(
3∑

j=1

wjX
†
j ) = 1/(1 + exp(−(

3∑
j=1

wjX
†
j )))

(3)
The general form (assuming there are p variable modules) is
expressed below

ŷ := a(Σ) = a(

p∑
j=1

wjX
†
j ) = 1/(1 + exp(−(

p∑
j=1

wjX
†
j )))

(4)
Architecture. This architecture of neural network is

presented below. For simplicity of drawing this picture, we
assume there are 3 input variable modules, {X†

1 , X
†
2 , X

†
3}.

In practice, the number of variable modules (the total num-
ber of X†’s) depends on image data dimensions, window
size, stride level, and starting point (please see §4.3 in (Lo
and Yin 2021a)).

Figure 3: The above architecture presents a feed forward
neural network with three input variables. The input vari-
ables are {X†

1 , X
†
2 , X

†
3} which are variable modules created

using equation 2.

X†
1 ↘

X†
2 → a

(∑p
j=1 wjX

†
j

)
→ Ŷ

...
X†

p ↗

For the loss function, we used the binary cross-entropy
loss function. This loss function is designed to minimize
the distance between a target probability distribution P and
an estimated target distribution Q when the task is a two-
class classification problem. The cross-entropy loss function
is defined as the following

L(yi, ŷi) = − 1
n

∑n
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

(5)
where yi is the ground truth of response variable for the ith

observation and ŷi is the predicted value of response vari-
able for the ith observation. The linear transformation, non-
linear transformation, and the computation of the loss func-
tion completes the forward propagation.

Backward Propagation (Backward Pass). To search
for the optimal weights, we use an optimizer algorithm
called RMSprop (short for Root Mean Square Propagation,
a named suggested by Geoffrey Hinton). With the loss func-
tion computed above, we derive the gradient of the loss func-
tion to be ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we com-
pute vt,∇L := βvt−1,∇L + (1 − β)∇L2 while β is a tun-
ing parameter. Note that the square term on ∇L is element-
wise multiplication. Then we can update the weights using
wt := wt−1 − η · ∇L/√vt,∇L while η is learning rate.
The value of learning rate η is a tuning parameter and it is

ˆ



Adv Mach Lear Art Inte, 2022            Volume 3 | Issue 1 | 06www.opastonline.com

Forward Propagation (Forward Pass). 
We briefly dis- cuss the basic RNN that we will use in the 
application and the diagram for the basic RNN. Suppose we have 
input features X1 , X2 ,…. These features are directly processed for 
the text document which can be processed word index or they can 
be embedded word vectors. The features are fed into the hidden 
layer where the neurons (or units) are de- noted as h1 , h2 ,…… 
There is a weight connecting the previous neuron with the current 
neuron. We denote this weigh as W. Each current neuron has 
contribution from current feature which is connected with a weight 
parameter U. For any t in  {1, 2, ..., T }, we can compute each 
hidden neuron by using the following formula

where W and U are trainable parameters, b is the bias term, and 
g(.) can be an activation function. This choice of the where W and 
U are trainable parameters, b is the bias term, activation function 
is completely determined by the dataset and the end-user. A list of 
famous activation functions can be found in [25, 26]. In the end of 
the architecture, we can finally compute the predicted probability 
of Y given the hidden neurons by using the formula

where the weights W, U, and V are shareable in the entire 
architecture. Forward propagation of RNN is referring to the 
procedure when information flow from the input features to output 
predictor using equation 7 and equation 8.

Backward Propagation (Backward Pass)
The forward propagation allows us to pass information from input 
layer which are features extracted from text document to the out- 
put layer which is the predictor. To search for the optimal weights, 
we need to compute the loss function and optimize the loss function 
by updating the weights. Since the task is text classification, we 
only have one output in the output layer. In addition, the task is 
a two-class classification problem because Y can only take value 
of {0, 1}. This means we can use the loss function called cross-
entropy function, which is defined in equation 5. We write it again 
as follows

where yi is the true label for instance i and yi is the predicted value 
for instance i. Notice that in the proposed architecture we use 
I-score and the “dagger technique” to construct X † for the input 
features where T′ is smaller than T and it is a length dependent on 
tuning process. Next, we can use gradient descent (GD) to update 
the parameters. At each step s, we can update the weights by

where η is learning rate (usually a very small number), the symbol 
∇ means gradient, and ∇L(∇) is the gradient (partial derivative) of 
the loss function L(・). We can formally write the gradients in the 
following'

where ∇parameter means gradient or partial derivative with respect to 
that parameter.

Simulation: Why I-score captures more than AUC?
The following simulation is created to further investigate the 
advantage the proposed I-score has over the conventional measure 
AUC. In this experiment, suppose there are variables X1,...,X10 
∼iid Binomial(2, 0.5), which means Xi has support {0, 1, 2}. In 
other words, the sequence of all 10 independent variables defined 
above can only take values from {0, 1, 2}. The experiment creates 
a sample of 2,000 observations for this experiment. Suppose the 
model takes the following form

Y = X1 + X2 (mod 2)

while “mod” refers to modulo of 2, i.e. 1 + 1 = 2 ≡ 0, 1 + 2 = 3 
≡ 1, and so on. We can compute the AUC values and the I-score 
values for all 10 variables. In addition, we also compute both 
measures for the following models (this is to assume when we do 
not know the true form of the real model): (i) X1 + X2, (ii) X1 − 
X2, (ii) X1 ・ X2, (iv) X1/(X2 + ϵ). In model (iv), we add ϵ = 10−5 to 
ensure the division is legal. Any higher form of assumptions of the 
real model would just be a combination of model (i)-(iv), so we 
assume to use model (i)-(iv) first. To further illustrate the power 
of I-score statistics, we introduce a new variable specifically 

usually a very small number. This process starts with the
loss function and goes back to the beginning to update the
weights w = {w1, w2, w3}. Hence, it earns the name back-
ward propagation.

Computation of Dimensions. We first discuss three tun-
ing parameters and then we formally write out the dimension
of a new matrix after convolutional operation on an image
matrix.

• Window Size. Window size is the size of the local area
that we narrow down to run the Backward Dropping Al-
gorithm.

• Stride Level. The level of stride is how many rows or
columns that get skipped over. This tuning parameter al-
lows the algorithm to move faster but it makes sacrifice
by skipping some variables.

• Starting Point. Another tuning parameter that we rec-
ommend to adjust is the starting point. The starting point
represents the location of the first pixel that we start the
proposed operation. The vanilla starting point is to start
the rolling window from the pixel located at the first row
and the first column.

The above discussion introduced the tuning parameters of
window size, stride level, and starting point. These parame-
ters update our input matrix and generate a new matrix with
different sizes. Let us denote window size to be w, stride
level to be l, and starting point to be p. Given an input ma-
trix with size sin by sin, the output matrix has new dimen-
sions computed as the following

⌊sin − p− w + 1

l
+ 1⌋ × ⌊sin − p− w + 1

l
+ 1⌋ (6)

For simplicity of this investigation, we assume input matri-
ces to be a square. In other words, in the application of this
paper, we process the input images to have the same width
and height, i.e. 128 by 128 pixels. For future work, this can
be generalized into different shapes.

Interaction-based Recurrent Neural Network
(IRNN)
I-score and Dagger Technique are proposed to replace com-
plicated designs such as Gated Recurrent Unit and Long
Short Term Memory in the text sentiment analysis. Many
text sentiment classification tasks are conducted using com-
plicated Recurrent Neural Networks (RNNs) and the reason
is to detect long-term dependencies in sequential or time-
series data sets. The proposed I-score and Dagger Tech-
nique can address this explainability problem. Not only can
I-score and Dagger Technique raise prediction performance,
the proposed methods can also address the semantics in lan-
guage problems, which provides explainability in Natural
Language Processing (NLP). This innovation leads to a fam-
ily of novel network architectures called Interaction-based
Recurrent Neural Network (IRNN).

Suppose the data set is a text document with length 8.
This means an instance or an observation in this text docu-
ment data set may have up to 8 variables or features (this
can be considered as a sentence with 8 words). The pro-
posed technique is summarized in Figure 5. A kernel of size

Figure 4: This executive diagram summarizes the key com-
ponents of the method: Interaction Convolutional Neural
Network, proposed in this paper. This design heavily relies
on the I-score and has an architecture that is interpretable at
each location of the image at each convolutional layer. More
importantly, the proposed design satisfies all three dimen-
sions (C1, C2, and C3 in the Introduction) of the definition
of interpretability and explainability.

Figure 5: Interaction-based Recurrent Neural Network.
This is the executive diagram for the basic design of the pro-
posed Interaction-based Recurrent Neural Network (IRNN).
The symbol “B” means the proposed Backward Drop-
ping Algorithm. The symbol “†” means the construction of
interaction-based feature engineer using local averages of
target variables based on the partition generated using high
I-score variables or features in training set. The methodol-
ogy in this figure shares the same philosophy and approach
in Figure 2, which implies that the proposed methodology
can be generalized into almost all applications with differ-
ent forms of data sets.
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5 is selected and BDA (again denoted as B in Figure 5) is
used within a group of 5 variables. The dagger technique
is then adopted on the finely selected variables from each
group to create dagger features or interaction-based features.
This procedure is illustrated in 5.

Forward Propagation (Forward Pass). We briefly dis-
cuss the basic RNN that we will use in the application and
the diagram for the basic RNN. Suppose we have input fea-
tures X1, X2, .... These features are directly processed from
the text document which can be processed word index or
they can be embedded word vectors. The features are fed
into the hidden layer where the neurons (or units) are de-
noted as h1, h2, .... There is a weight connecting the previ-
ous neuron with the current neuron. We denote this weight
as W . Each current neuron has contribution from current
feature which is connected with a weight parameter U . For
any t in {1, 2, ..., T}, we can compute each hidden neuron
by using the following formula

ht = g(W · ht−1 + U ·Xt + b) (7)

Figure 5: Interaction-based Recurrent Neural Network. This is the executive diagram for the basic design of the proposed Interaction-
based Recurrent Neural Network (IRNN). The symbol “B” means the proposed Backward Dropping Algorithm. The symbol “†” means 
the construction of interaction-based feature engineer using local averages of target variables based on the partition generated using high
I-score variables or features in training set. The methodology in this figure shares the same philosophy and approach in Figure 2, which 
implies that the proposed methodology can be generalized into almost all applications with different forms of data sets.

usually a very small number. This process starts with the
loss function and goes back to the beginning to update the
weights w = {w1, w2, w3}. Hence, it earns the name back-
ward propagation.

Computation of Dimensions. We first discuss three tun-
ing parameters and then we formally write out the dimension
of a new matrix after convolutional operation on an image
matrix.

• Window Size. Window size is the size of the local area
that we narrow down to run the Backward Dropping Al-
gorithm.

• Stride Level. The level of stride is how many rows or
columns that get skipped over. This tuning parameter al-
lows the algorithm to move faster but it makes sacrifice
by skipping some variables.

• Starting Point. Another tuning parameter that we rec-
ommend to adjust is the starting point. The starting point
represents the location of the first pixel that we start the
proposed operation. The vanilla starting point is to start
the rolling window from the pixel located at the first row
and the first column.

The above discussion introduced the tuning parameters of
window size, stride level, and starting point. These parame-
ters update our input matrix and generate a new matrix with
different sizes. Let us denote window size to be w, stride
level to be l, and starting point to be p. Given an input ma-
trix with size sin by sin, the output matrix has new dimen-
sions computed as the following

⌊sin − p− w + 1

l
+ 1⌋ × ⌊sin − p− w + 1

l
+ 1⌋ (6)

For simplicity of this investigation, we assume input matri-
ces to be a square. In other words, in the application of this
paper, we process the input images to have the same width
and height, i.e. 128 by 128 pixels. For future work, this can
be generalized into different shapes.

Interaction-based Recurrent Neural Network
(IRNN)
I-score and Dagger Technique are proposed to replace com-
plicated designs such as Gated Recurrent Unit and Long
Short Term Memory in the text sentiment analysis. Many
text sentiment classification tasks are conducted using com-
plicated Recurrent Neural Networks (RNNs) and the reason
is to detect long-term dependencies in sequential or time-
series data sets. The proposed I-score and Dagger Tech-
nique can address this explainability problem. Not only can
I-score and Dagger Technique raise prediction performance,
the proposed methods can also address the semantics in lan-
guage problems, which provides explainability in Natural
Language Processing (NLP). This innovation leads to a fam-
ily of novel network architectures called Interaction-based
Recurrent Neural Network (IRNN).

Suppose the data set is a text document with length 8.
This means an instance or an observation in this text docu-
ment data set may have up to 8 variables or features (this
can be considered as a sentence with 8 words). The pro-
posed technique is summarized in Figure 5. A kernel of size

Figure 4: This executive diagram summarizes the key com-
ponents of the method: Interaction Convolutional Neural
Network, proposed in this paper. This design heavily relies
on the I-score and has an architecture that is interpretable at
each location of the image at each convolutional layer. More
importantly, the proposed design satisfies all three dimen-
sions (C1, C2, and C3 in the Introduction) of the definition
of interpretability and explainability.

Figure 5: Interaction-based Recurrent Neural Network.
This is the executive diagram for the basic design of the pro-
posed Interaction-based Recurrent Neural Network (IRNN).
The symbol “B” means the proposed Backward Drop-
ping Algorithm. The symbol “†” means the construction of
interaction-based feature engineer using local averages of
target variables based on the partition generated using high
I-score variables or features in training set. The methodol-
ogy in this figure shares the same philosophy and approach
in Figure 2, which implies that the proposed methodology
can be generalized into almost all applications with differ-
ent forms of data sets.
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5 is selected and BDA (again denoted as B in Figure 5) is
used within a group of 5 variables. The dagger technique
is then adopted on the finely selected variables from each
group to create dagger features or interaction-based features.
This procedure is illustrated in 5.

Forward Propagation (Forward Pass). We briefly dis-
cuss the basic RNN that we will use in the application and
the diagram for the basic RNN. Suppose we have input fea-
tures X1, X2, .... These features are directly processed from
the text document which can be processed word index or
they can be embedded word vectors. The features are fed
into the hidden layer where the neurons (or units) are de-
noted as h1, h2, .... There is a weight connecting the previ-
ous neuron with the current neuron. We denote this weight
as W . Each current neuron has contribution from current
feature which is connected with a weight parameter U . For
any t in {1, 2, ..., T}, we can compute each hidden neuron
by using the following formula

ht = g(W · ht−1 + U ·Xt + b) (7)(7)
where W and U are trainable parameters, b is the bias term,
and g(·) can be an activation function. This choice of the
activation function is completely determined by the dataset
and the end-user. A list of famous activation functions can be
found in (Lo and Yin 2021b). In the end of the architecture,
we can finally compute the predicted probability of Y given
the hidden neurons by using the formula

Ŷ = g(V · hT + b) (8)

where the weights W , U , and V are shareable in the entire
architecture. Forward propagation of RNN is referring to the
procedure when information flow from the input features to
output predictor using equation 7 and equation 8.

Backward Propagation (Backward Pass). The forward
propagation allows us to pass information from input layer
which are features extracted from text document to the out-
put layer which is the predictor. To search for the optimal
weights, we need to compute the loss function and optimize
the loss function by updating the weights. Since the task is
text classification, we only have one output in the output
layer. In addition, the task is a two-class classification prob-
lem because Y can only take value of {0, 1}. This means
we can use the loss function called cross-entropy function,
which is defined in equation 5. We write it again as follows

L(Y, Ŷ ) = − 1

n

n∑
i=1

yi log ŷi − (1− yi) log(1− ŷi)

where yi is the true label for instance i and ŷi is the predicted
value for instance i. Notice that in the proposed architecture
we use I-score and the “dagger technique” to construct X†

for the input features where T ′ is smaller than T and it is a
length dependent on tuning process. Next, we can use gra-
dient descent (GD) to update the parameters. At each step s,
we can update the weights by

Vs = Vs−1 − η · ∇V L(Y, Ŷ )

Us = Us−1 − η · ∇UL(Y, Ŷ )

Ws = Ws−1 − η · ∇WL(Y, Ŷ )

(9)

where η is learning rate (usually a very small number), the
symbol ∇ means gradient, and ∇L(·) is the gradient (partial
derivative) of the loss function L(·). We can formally write
the gradients in the following

∇V L(Y, Ŷ ) = ∂
∂V L(Y, Ŷ )

∇UL(Y, Ŷ ) = ∂
∂UL(Y, Ŷ )

∇WL(Y, Ŷ ) = ∂
∂W L(Y, Ŷ )

(10)

where ∇parameter means gradient or partial derivative with re-
spect to that parameter.

Simulation: Why I-score captures more than AUC?
The following simulation is created to further investigate the
advantage the proposed I-score has over the conventional
measure AUC. In this experiment, suppose there are vari-
ables X1, ..., X10 ∼iid Binomial(2, 0.5), which means Xi

has support {0, 1, 2}. In other words, the sequence of all
10 independent variables defined above can only take values

from {0, 1, 2}. The experiment creates a sample of 2,000 ob-
servations for this experiment. Suppose the model takes the
following form

Y = X1 +X2(mod 2)

while “mod” refers to modulo of 2, i.e. 1 + 1 = 2 ≡ 0,
1 + 2 = 3 ≡ 1, and so on. We can compute the AUC val-
ues and the I-score values for all 10 variables. In addition,
we also compute both measures for the following models
(this is to assume when we do not know the true form of
the real model): (i) X1 + X2, (ii) X1 − X2, (ii) X1 · X2,
(iv) X1/(X2 + ϵ). In model (iv), we add ϵ = 10−5 to en-
sure the division is legal. Any higher form of assumptions
of the real model would just be a combination of model (i)-
(iv), so we assume to use model (i)-(iv) first. To further il-
lustrate the power of I-score statistics, we introduce a new
variable specifically constructed by taking the advantage of
partition retention, i.e. X† := ȳj while j ∈ ΠX1,X2

(the
novel dagger technique that is defined using variable parti-
tion is widely used in application, see equation 2). The sim-
ulation has 2,000 observations. We make a 50-50 split. The
first 1,000 observations are used to create partitions and the
local average of the target variable Y that is required in cre-
ating X† feature is only taken from the first 1,000 observa-
tions. In the next 1,000 observations, we can directly observe
{X1, X2} and retain the partition. For each of the partition,
we then go to training set (the first 1,000 observations) and
use the ȳj values created using only the training set. In other
words, the We present the simulation results in Table 4.

Application in Healthcare: Deploying XAI
Method in COVID Early Detection

In the sixteen months since the WHO Emergency Commit-
tee declared a global health emergency on January 30th,
2020 based on the outbreak of novel coronavirus SARS-
Cov-2 (previously 2019-nCov, also known as COVID-19),
the disease has spread to nearly every country in the world
(Velavan and Meyer 2020; Li et al. 2007; Wang et al. 2021).
This disease has extreme impact on the health and life form
of many of us on a global scale. The fight we took to over-
come COVID-19 is essential especially when it comes to
detect the infected candidates at an early stage. Investiga-
tion through radiography images is the most basic proce-
dure at diagnosing abnormalities of infected patients. Sev-
eral deep learning algorithms for detection of COVID-19
diseases on CT scans have been proposed. Bai et al. (2020)
provided the model output to radiologists, and demonstrated
that AI-assistance significantly improved radiologist diag-
nostic accuracy from 85% to 90% in distinguishing COVID
classes from non-COVID classes (Bai et al. 2020). Minaee
et al. (2020) (Minaee et al. 2020) have demonstrated us-
ing deep CNNs including ResNet18, ResNet50, DenseNet-
121 to classify COVID-19 disease using X-ray images. They
have achieved sensitivity rate of 98% and specificity of 90%.
on 5,000 Chest X-ray images.

A brief summary of comparison of conventional methods
literature and the proposed method is presented in Table 5.
A detailed report of the proposed methodology is presented
in related studies (Lo and Yin 2021a,b).

(8)

where W and U are trainable parameters, b is the bias term,
and g(·) can be an activation function. This choice of the
activation function is completely determined by the dataset
and the end-user. A list of famous activation functions can be
found in (Lo and Yin 2021b). In the end of the architecture,
we can finally compute the predicted probability of Y given
the hidden neurons by using the formula

Ŷ = g(V · hT + b) (8)

where the weights W , U , and V are shareable in the entire
architecture. Forward propagation of RNN is referring to the
procedure when information flow from the input features to
output predictor using equation 7 and equation 8.

Backward Propagation (Backward Pass). The forward
propagation allows us to pass information from input layer
which are features extracted from text document to the out-
put layer which is the predictor. To search for the optimal
weights, we need to compute the loss function and optimize
the loss function by updating the weights. Since the task is
text classification, we only have one output in the output
layer. In addition, the task is a two-class classification prob-
lem because Y can only take value of {0, 1}. This means
we can use the loss function called cross-entropy function,
which is defined in equation 5. We write it again as follows

L(Y, Ŷ ) = − 1

n

n∑
i=1

yi log ŷi − (1− yi) log(1− ŷi)

where yi is the true label for instance i and ŷi is the predicted
value for instance i. Notice that in the proposed architecture
we use I-score and the “dagger technique” to construct X†

for the input features where T ′ is smaller than T and it is a
length dependent on tuning process. Next, we can use gra-
dient descent (GD) to update the parameters. At each step s,
we can update the weights by

Vs = Vs−1 − η · ∇V L(Y, Ŷ )

Us = Us−1 − η · ∇UL(Y, Ŷ )

Ws = Ws−1 − η · ∇WL(Y, Ŷ )

(9)

where η is learning rate (usually a very small number), the
symbol ∇ means gradient, and ∇L(·) is the gradient (partial
derivative) of the loss function L(·). We can formally write
the gradients in the following

∇V L(Y, Ŷ ) = ∂
∂V L(Y, Ŷ )

∇UL(Y, Ŷ ) = ∂
∂UL(Y, Ŷ )

∇WL(Y, Ŷ ) = ∂
∂W L(Y, Ŷ )

(10)

where ∇parameter means gradient or partial derivative with re-
spect to that parameter.

Simulation: Why I-score captures more than AUC?
The following simulation is created to further investigate the
advantage the proposed I-score has over the conventional
measure AUC. In this experiment, suppose there are vari-
ables X1, ..., X10 ∼iid Binomial(2, 0.5), which means Xi

has support {0, 1, 2}. In other words, the sequence of all
10 independent variables defined above can only take values

from {0, 1, 2}. The experiment creates a sample of 2,000 ob-
servations for this experiment. Suppose the model takes the
following form

Y = X1 +X2(mod 2)

while “mod” refers to modulo of 2, i.e. 1 + 1 = 2 ≡ 0,
1 + 2 = 3 ≡ 1, and so on. We can compute the AUC val-
ues and the I-score values for all 10 variables. In addition,
we also compute both measures for the following models
(this is to assume when we do not know the true form of
the real model): (i) X1 + X2, (ii) X1 − X2, (ii) X1 · X2,
(iv) X1/(X2 + ϵ). In model (iv), we add ϵ = 10−5 to en-
sure the division is legal. Any higher form of assumptions
of the real model would just be a combination of model (i)-
(iv), so we assume to use model (i)-(iv) first. To further il-
lustrate the power of I-score statistics, we introduce a new
variable specifically constructed by taking the advantage of
partition retention, i.e. X† := ȳj while j ∈ ΠX1,X2

(the
novel dagger technique that is defined using variable parti-
tion is widely used in application, see equation 2). The sim-
ulation has 2,000 observations. We make a 50-50 split. The
first 1,000 observations are used to create partitions and the
local average of the target variable Y that is required in cre-
ating X† feature is only taken from the first 1,000 observa-
tions. In the next 1,000 observations, we can directly observe
{X1, X2} and retain the partition. For each of the partition,
we then go to training set (the first 1,000 observations) and
use the ȳj values created using only the training set. In other
words, the We present the simulation results in Table 4.

Application in Healthcare: Deploying XAI
Method in COVID Early Detection

In the sixteen months since the WHO Emergency Commit-
tee declared a global health emergency on January 30th,
2020 based on the outbreak of novel coronavirus SARS-
Cov-2 (previously 2019-nCov, also known as COVID-19),
the disease has spread to nearly every country in the world
(Velavan and Meyer 2020; Li et al. 2007; Wang et al. 2021).
This disease has extreme impact on the health and life form
of many of us on a global scale. The fight we took to over-
come COVID-19 is essential especially when it comes to
detect the infected candidates at an early stage. Investiga-
tion through radiography images is the most basic proce-
dure at diagnosing abnormalities of infected patients. Sev-
eral deep learning algorithms for detection of COVID-19
diseases on CT scans have been proposed. Bai et al. (2020)
provided the model output to radiologists, and demonstrated
that AI-assistance significantly improved radiologist diag-
nostic accuracy from 85% to 90% in distinguishing COVID
classes from non-COVID classes (Bai et al. 2020). Minaee
et al. (2020) (Minaee et al. 2020) have demonstrated us-
ing deep CNNs including ResNet18, ResNet50, DenseNet-
121 to classify COVID-19 disease using X-ray images. They
have achieved sensitivity rate of 98% and specificity of 90%.
on 5,000 Chest X-ray images.

A brief summary of comparison of conventional methods
literature and the proposed method is presented in Table 5.
A detailed report of the proposed methodology is presented
in related studies (Lo and Yin 2021a,b).
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where W and U are trainable parameters, b is the bias term,
and g(·) can be an activation function. This choice of the
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∇UL(Y, Ŷ ) = ∂
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The following simulation is created to further investigate the
advantage the proposed I-score has over the conventional
measure AUC. In this experiment, suppose there are vari-
ables X1, ..., X10 ∼iid Binomial(2, 0.5), which means Xi

has support {0, 1, 2}. In other words, the sequence of all
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Y = X1 +X2(mod 2)

while “mod” refers to modulo of 2, i.e. 1 + 1 = 2 ≡ 0,
1 + 2 = 3 ≡ 1, and so on. We can compute the AUC val-
ues and the I-score values for all 10 variables. In addition,
we also compute both measures for the following models
(this is to assume when we do not know the true form of
the real model): (i) X1 + X2, (ii) X1 − X2, (ii) X1 · X2,
(iv) X1/(X2 + ϵ). In model (iv), we add ϵ = 10−5 to en-
sure the division is legal. Any higher form of assumptions
of the real model would just be a combination of model (i)-
(iv), so we assume to use model (i)-(iv) first. To further il-
lustrate the power of I-score statistics, we introduce a new
variable specifically constructed by taking the advantage of
partition retention, i.e. X† := ȳj while j ∈ ΠX1,X2

(the
novel dagger technique that is defined using variable parti-
tion is widely used in application, see equation 2). The sim-
ulation has 2,000 observations. We make a 50-50 split. The
first 1,000 observations are used to create partitions and the
local average of the target variable Y that is required in cre-
ating X† feature is only taken from the first 1,000 observa-
tions. In the next 1,000 observations, we can directly observe
{X1, X2} and retain the partition. For each of the partition,
we then go to training set (the first 1,000 observations) and
use the ȳj values created using only the training set. In other
words, the We present the simulation results in Table 4.

Application in Healthcare: Deploying XAI
Method in COVID Early Detection

In the sixteen months since the WHO Emergency Commit-
tee declared a global health emergency on January 30th,
2020 based on the outbreak of novel coronavirus SARS-
Cov-2 (previously 2019-nCov, also known as COVID-19),
the disease has spread to nearly every country in the world
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This disease has extreme impact on the health and life form
of many of us on a global scale. The fight we took to over-
come COVID-19 is essential especially when it comes to
detect the infected candidates at an early stage. Investiga-
tion through radiography images is the most basic proce-
dure at diagnosing abnormalities of infected patients. Sev-
eral deep learning algorithms for detection of COVID-19
diseases on CT scans have been proposed. Bai et al. (2020)
provided the model output to radiologists, and demonstrated
that AI-assistance significantly improved radiologist diag-
nostic accuracy from 85% to 90% in distinguishing COVID
classes from non-COVID classes (Bai et al. 2020). Minaee
et al. (2020) (Minaee et al. 2020) have demonstrated us-
ing deep CNNs including ResNet18, ResNet50, DenseNet-
121 to classify COVID-19 disease using X-ray images. They
have achieved sensitivity rate of 98% and specificity of 90%.
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A brief summary of comparison of conventional methods
literature and the proposed method is presented in Table 5.
A detailed report of the proposed methodology is presented
in related studies (Lo and Yin 2021a,b).
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we can finally compute the predicted probability of Y given
the hidden neurons by using the formula
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where the weights W , U , and V are shareable in the entire
architecture. Forward propagation of RNN is referring to the
procedure when information flow from the input features to
output predictor using equation 7 and equation 8.

Backward Propagation (Backward Pass). The forward
propagation allows us to pass information from input layer
which are features extracted from text document to the out-
put layer which is the predictor. To search for the optimal
weights, we need to compute the loss function and optimize
the loss function by updating the weights. Since the task is
text classification, we only have one output in the output
layer. In addition, the task is a two-class classification prob-
lem because Y can only take value of {0, 1}. This means
we can use the loss function called cross-entropy function,
which is defined in equation 5. We write it again as follows
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where yi is the true label for instance i and ŷi is the predicted
value for instance i. Notice that in the proposed architecture
we use I-score and the “dagger technique” to construct X†

for the input features where T ′ is smaller than T and it is a
length dependent on tuning process. Next, we can use gra-
dient descent (GD) to update the parameters. At each step s,
we can update the weights by

Vs = Vs−1 − η · ∇V L(Y, Ŷ )

Us = Us−1 − η · ∇UL(Y, Ŷ )
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(9)

where η is learning rate (usually a very small number), the
symbol ∇ means gradient, and ∇L(·) is the gradient (partial
derivative) of the loss function L(·). We can formally write
the gradients in the following
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spect to that parameter.

Simulation: Why I-score captures more than AUC?
The following simulation is created to further investigate the
advantage the proposed I-score has over the conventional
measure AUC. In this experiment, suppose there are vari-
ables X1, ..., X10 ∼iid Binomial(2, 0.5), which means Xi

has support {0, 1, 2}. In other words, the sequence of all
10 independent variables defined above can only take values

from {0, 1, 2}. The experiment creates a sample of 2,000 ob-
servations for this experiment. Suppose the model takes the
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Y = X1 +X2(mod 2)

while “mod” refers to modulo of 2, i.e. 1 + 1 = 2 ≡ 0,
1 + 2 = 3 ≡ 1, and so on. We can compute the AUC val-
ues and the I-score values for all 10 variables. In addition,
we also compute both measures for the following models
(this is to assume when we do not know the true form of
the real model): (i) X1 + X2, (ii) X1 − X2, (ii) X1 · X2,
(iv) X1/(X2 + ϵ). In model (iv), we add ϵ = 10−5 to en-
sure the division is legal. Any higher form of assumptions
of the real model would just be a combination of model (i)-
(iv), so we assume to use model (i)-(iv) first. To further il-
lustrate the power of I-score statistics, we introduce a new
variable specifically constructed by taking the advantage of
partition retention, i.e. X† := ȳj while j ∈ ΠX1,X2

(the
novel dagger technique that is defined using variable parti-
tion is widely used in application, see equation 2). The sim-
ulation has 2,000 observations. We make a 50-50 split. The
first 1,000 observations are used to create partitions and the
local average of the target variable Y that is required in cre-
ating X† feature is only taken from the first 1,000 observa-
tions. In the next 1,000 observations, we can directly observe
{X1, X2} and retain the partition. For each of the partition,
we then go to training set (the first 1,000 observations) and
use the ȳj values created using only the training set. In other
words, the We present the simulation results in Table 4.

Application in Healthcare: Deploying XAI
Method in COVID Early Detection

In the sixteen months since the WHO Emergency Commit-
tee declared a global health emergency on January 30th,
2020 based on the outbreak of novel coronavirus SARS-
Cov-2 (previously 2019-nCov, also known as COVID-19),
the disease has spread to nearly every country in the world
(Velavan and Meyer 2020; Li et al. 2007; Wang et al. 2021).
This disease has extreme impact on the health and life form
of many of us on a global scale. The fight we took to over-
come COVID-19 is essential especially when it comes to
detect the infected candidates at an early stage. Investiga-
tion through radiography images is the most basic proce-
dure at diagnosing abnormalities of infected patients. Sev-
eral deep learning algorithms for detection of COVID-19
diseases on CT scans have been proposed. Bai et al. (2020)
provided the model output to radiologists, and demonstrated
that AI-assistance significantly improved radiologist diag-
nostic accuracy from 85% to 90% in distinguishing COVID
classes from non-COVID classes (Bai et al. 2020). Minaee
et al. (2020) (Minaee et al. 2020) have demonstrated us-
ing deep CNNs including ResNet18, ResNet50, DenseNet-
121 to classify COVID-19 disease using X-ray images. They
have achieved sensitivity rate of 98% and specificity of 90%.
on 5,000 Chest X-ray images.

A brief summary of comparison of conventional methods
literature and the proposed method is presented in Table 5.
A detailed report of the proposed methodology is presented
in related studies (Lo and Yin 2021a,b).
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constructed by taking the advantage of partition retention, i.e. X† 
:= yj while j ∈ ΠX1,X2 (the novel dagger technique that is defined 
using variable partition is widely used in application, see equation 
2). The simulation has 2,000 observations. We make a 50-50 split. 
The first 1,000 observations are used to create partitions and the 
local average of the target variable Y that is required in creating X† 

feature is only taken from the first 1,000 observations.

Application in Healthcare: Deploying XAI Method in 
COVID Early Detection
In the sixteen months since the WHO Emergency Commit- tee 
declared a global health emergency on January 30th, 2020 based 
on the outbreak of novel coronavirus SARS- Cov-2 (previously 
2019-nCov, also known as COVID-19), the disease has spread 
to nearly every country in the world [27, 28]. This disease has 
extreme impact on the health and life form of many of us on a 
global scale. The fight we took to overcome COVID-19 is essential 

especially when it comes to detect the infected candidates at an 
early stage. Investigation through radiography images is the most 
basic procedure at diagnosing abnormalities of infected patients. 
Several deep learning algorithms for detection of COVID-19 
diseases on CT scans have been proposed. Bai et al. provided the 
model output to radiologists, and demonstrated that AI-assistance 
significantly improved radiologist diagnostic accuracy from 
85% to 90% in distinguishing COVID classes from non-COVID 
classes [29]. Minaee et al. (2020) have demonstrated using deep 
CNNs including ResNet18, ResNet50, DenseNet-121 to classify 
COVID-19 disease using X-ray images [30]. They have achieved 
sensitivity rate of 98% and specificity of 90%. on 5,000 Chest 
X-ray images.

A brief summary of comparison of conventional methods literature 
and the proposed method is presented in Table 5. A detailed report 
of the proposed methodology is presented in related studies [25, 26].

Table 4: Simulation Results. This table presents the simulation results for the model Y = X1 + X2 (mod 2) when X1, X2 ∼ Bin(2, 
0.5). The measure of AUC values has a major drawback: it cannot successfully detect the useful information. Even with the 
correct variables selected (all guessed models only use the important variables {X1, X2}), AUC measure subjects to serious attack 
from incorrect model assumption. This flaw renders applications of using AUC measure to select models less ideal and sub-
optimal. However, the proposed I-score is capable of indicating the most important variables, X1 and X2, disregard the forms of 
the underlying model. Moreover, the dagger technique of building X† using partitions generated by the variable set X1 and X2 
completely recovers full information of the true model even before any machine learning or model selection procedure, which is 
a novel invention that the literature has not yet seen.

Average AUC SD. of AUC Average I-score SD. of I-score

Important X1 0.50 0.01 0.78 0.71

X2 0.50 0.01 0.78 0.67

Noisy

X3 0.50 0.01 0.43 0.38

X4 0.50 0.01 0.44 0.42

X5 0.50 0.01 0.56 0.55

X6 0.50 0.01 0.93 0.98

X7 0.50 0.01 0.56 0.52

X8 0.50 0.01 0.42 0.40

X9 0.50 0.01 0.36 0.40

X10 0.50 0.01 0.45 0.44

Guessed
models (using
{X1

 ,X2})

model (i): X1 + X2 0.51 0.01 544.81 9.61

model (ii): X1 - X2 0.51 0.01 548.18 9.48

model (iii):X1 + X2 0.51 0.03 264.81 11.60

model (iv): X1/(X2 + ϵ) 0.51 0.03 233.50 9.07

X† (see eq. 2) 1 0 999.11 0.60

{X1 ,X2} NA NA 281.36 6.82

True model X1 + X2 (mod 2) 1 0 999.11 0.60
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Table 5: The table presents experimental results of COVID-19 data set from literature. A number of different ultradeep CNNs 
are used to classify COVID patients from non-COVID people. The performance is summarized below. The average number of 
parameters of the ultra-deep CNNs can exceed 25 million parameters with top AUC to be at 99.2%. The proposed methods have 
average number of parameters to be less than 100k with top AUC of 99.8%. This is a 99% reduction on number of parameters 
without sacrificing the prediction performance.

Previous Work Number of Param. AUC
DenseNet161 (Minaee et al. 2020) 0.8 - 40 mil. param. 97.6%
ResNet18 (Minaee et al. 2020) 11 mil. param. 98.9%
ResNet50 (Minaee et al. 2020) 25 mil. param. 99.0%
SqueezeNet (Minaee et al. 2020) ∼ 1.2 mil. param.* 99.2%
Average > 25 mil. 97% - 99.2%
Proposed average 100k param.(a 99% reduction on num. of param.) 98.3% - 99.8%

Visualization and Interpretation
The proposed methods generate highlights that affect the target 
outcome in the image frame. The study of COVID-19 images can 
be processed using the proposed methods of Iscore, BDA, and the 

dagger technique. The visualization can be seen in Figure 6.

For classification tasks that involve COVID-19 and its many lung 
cancer variations, the proposed methods can also

Table 6: Multi-class Lung Cancer Variants Diagnosis. This table presents experiment results for multi-class lung cancer variants 
classification. In total, there are 4 classes (0: Healthy, 1: COVID-19, 2: Pneumonia, 3: Tuberculosis). The average prediction 
performance for 4-class diagnosis is 89% with 26 million parameters in a variety of different neural networks designs. The 
average prediction performance for 4-class diagnosis is 98% with a shy of 15,000 parameters in proposed network architectures. 
Proposed I-score enhanced deep learning methods deliver 90% error re- duction while reduce the number of training parameters 
in neural networks by 99% in diagnosing lung cancer variants under multi-class prediction tasks. 

Model AUC (Test Set) No. of Parameters
Benchmarks:
ResNet (Punn and Agarwal 2021) 0.82 - 0.90 11-25 million
Inception (Punn and Agarwal 2021) 0.89 - 0.91 23-56 million
DenseNet (Punn and Agarwal 2021) 0.93 - 0.94 0.8-40 million
Average Average 0.89 26 million
Proposed:
ICNN (Θ1: {starting point: 6, window size: 2 by 2, stride: 2}) 0.97 12,000
ICNN (Θ2: {starting point: 4, window size: 3 by 3, stride: 3}) 0.98 13,000
ICNN (use Θ1, Θ2 to gen. features, then concatenate them) 0.98 20,000
(For the above ICNN, see Panel A of Figure 4)

IRNN (see Panel B of Figure 4) 0.99 15,000
Average 0.98 15,000
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Table 4: Simulation Results. This table presents the simu-
lation results for the model Y = X1 + X2(mod 2) when
X1, X2 ∼ Bin(2, 0.5). The measure of AUC values has
a major drawback: it cannot successfully detect the use-
ful information. Even with the correct variables selected
(all guessed models only use the important variables
{X1, X2}), AUC measure subjects to serious attack from
incorrect model assumption. This flaw renders applica-
tions of using AUC measure to select models less ideal
and sub-optimal. However, the proposed I-score is capa-
ble of indicating the most important variables, X1 and
X2, disregard the forms of the underlying model. More-
over, the dagger technique of building X† using par-
titions generated by the variable set X1 and X2 com-
pletely recovers full information of the true model even
before any machine learning or model selection proce-
dure, which is a novel invention that the literature has
not yet seen.

Average AUC SD. of AUC Average I-score SD. of I-score

Important X1 0.50 0.01 0.78 0.71
X2 0.50 0.01 0.78 0.67

Noisy

X3 0.50 0.01 0.43 0.38
X4 0.50 0.01 0.44 0.42
X5 0.50 0.01 0.56 0.55
X6 0.50 0.01 0.93 0.98
X7 0.50 0.01 0.56 0.52
X8 0.50 0.01 0.42 0.40
X9 0.50 0.01 0.36 0.40
X10 0.50 0.01 0.45 0.44

Guessed
models (using
{X1, X2})

model (i): X1 +X2 0.51 0.01 544.81 9.61
model (ii): X1 −X2 0.51 0.01 548.18 9.48
model (iii): X1 ·X2 0.51 0.03 264.81 11.60

model (iv): X1/(X2 + ϵ) 0.51 0.03 233.50 9.07
X† (see eq. 2) 1 0 999.11 0.60
{X1, X2} NA NA 281.36 6.82

True model X1 +X2 (mod 2) 1 0 999.11 0.60

Table 5: The table presents experimental results of COVID-
19 data set from literature. A number of different ultra-
deep CNNs are used to classify COVID patients from non-
COVID people. The performance is summarized below. The
average number of parameters of the ultra-deep CNNs can
exceed 25 million parameters with top AUC to be at 99.2%.
The proposed methods have average number of parameters
to be less than 100k with top AUC of 99.8%. This is a 99%
reduction on number of parameters without sacrificing the
prediction performance.

Previous Work Number of Param. AUC
DenseNet161 (Minaee et al. 2020) 0.8 - 40 mil. param. 97.6%
ResNet18 (Minaee et al. 2020) 11 mil. param. 98.9%
ResNet50 (Minaee et al. 2020) 25 mil. param. 99.0%
SqueezeNet (Minaee et al. 2020) ∼ 1.2 mil. param.* 99.2%
Average > 25 mil. 97% - 99.2%
Proposed average 100k param. 98.3% - 99.8%

(a 99% reduction
on num. of param.)

Visualization and Interpretation
The proposed methods generate highlights that affect the tar-
get outcome in the image frame. The study of COVID-19
images can be processed using the proposed methods of I-
score, BDA, and the dagger technique. The visualization can
be seen in Figure 6.

For classification tasks that involve COVID-19 and its
many lung cancer variations, the proposed methods can also

Table 6: Multi-class Lung Cancer Variants Diagnosis.
This table presents experiment results for multi-class lung
cancer variants classification. In total, there are 4 classes (0:
Healthy, 1: COVID-19, 2: Pneumonia, 3: Tuberculosis). The
average prediction performance for 4-class diagnosis is 89%
with 26 million parameters in a variety of different neu-
ral networks designs. The average prediction performance
for 4-class diagnosis is 98% with a shy of 15,000 param-
eters in proposed network architectures. Proposed I-score
enhanced deep learning methods deliver 90% error re-
duction while reduce the number of training parameters
in neural networks by 99% in diagnosing lung cancer
variants under multi-class prediction tasks.

Model AUC (Test Set) No. of Parameters
Benchmarks:
ResNet (Punn and Agarwal 2021) 0.82 - 0.90 11-25 million
Inception (Punn and Agarwal 2021) 0.89 - 0.91 23-56 million
DenseNet (Punn and Agarwal 2021) 0.93 - 0.94 0.8-40 million
Average 0.89 26 million
Proposed:
ICNN (Θ1: {starting point: 6, window size: 2 by 2, stride: 2}) 0.97 12,000
ICNN (Θ2: {starting point: 4, window size: 3 by 3, stride: 3}) 0.98 13,000
ICNN (use Θ1, Θ2 to gen. features, then concatenate them) 0.98 20,000
(For the above ICNN, see Panel A of Figure 4)
IRNN (see Panel B of Figure 4) 0.99 15,000
Average 0.98 15,000

Figure 6: This figure presents visualization summary for
10 randomly sampled images from COVID class and non-
COVID class (each has 10). Panel A is for COVID patients
and Panel B is non-COVID people. The first row plots the
original images that are sized 128 by 128. The 1st Conv.
Layer generates 61×61 = 3, 721 new variables. We plot the
same 10 images from both classes using these 3,721 vari-
ables in the second row. We also print the predicted COVID
probabilities on top left corner of each image. The plot of
the original images for COVID-19 patients has grey and
cloudy textures in chest area. This is due to inflammatory
fluid when patients exhibit pneumonia-like symptoms. This
shaded (as seen in Panel A) prevents us from observing the
clear location of lungs. This is different in Panel B where
the lung areas are dark and almost black which means the
lung is filled with air (i.e. normal cases). The black white
contrast in the two panels is directly related to how much
inflammatory fluid there is in human lungs which translate
to greyscale on pictures. The same contrast can be seen us-
ing the new variables (these are X†’s based on equation 2)
in the 1st Conv. Layer (sized 61 by 61). For COVID-19 pa-
tients, the lung area is cloudy and unclear while the healthy
cases it is clearly visible.

Panel A: Panel B
True Label: COVID True Label: Non-COVID
Input Images: 128 by 128 Input Images: 128 by 128
(Randomly select 10 samples) (Randomly select 10 samples)

1st Conv. Layer: 61 by 61 1st Conv. Layer: 61 by 61
(Starting Point = 6, Window 2 by 2, Stride = 2) (Starting Point = 6, Window 2 by 2, Stride = 2)
Remark: 61× 61 = 3, 721 variables Remark: 61× 61 = 3, 721 variables
Same 10 images above with 3,721 variables Same 10 images above with 3,721 variables
Labels predicted using Model 1 Labels predicted using Model 1

Figure 7: Visualization for Multi-class Classification Using I-score Enhanced Deep Learning. This figure presents 4 samples (each 
row is a sample with different label). There are 4 classes (0: Healthy, 1: COVID, 2: Other Pneumonia, 3: Tuberculosis). To present the 
highlighted region for dis- eased diagnosis, we use proposed “dagger technique” to create dagger features. Then we check the numerical 
values of these dagger features, which then indicate marginal dagger signals of diseased status per class. We observe that pro- posed 
class-specific dagger features can make correct diagnosis amongst different lung cancer variants.

be applied to create the following visualization (see Figure
7).

Figure 7: Visualization for Multi-class Classification Us-
ing I-score Enhanced Deep Learning. This figure presents
4 samples (each row is a sample with different label). There
are 4 classes (0: Healthy, 1: COVID, 2: Other Pneumonia,
3: Tuberculosis). To present the highlighted region for dis-
eased diagnosis, we use proposed “dagger technique” to cre-
ate dagger features. Then we check the numerical values of
these dagger features, which then indicate marginal dagger
signals of diseased status per class. We observe that pro-
posed class-specific dagger features can make correct diag-
nosis amongst different lung cancer variants.

True label: 0 (Healthy), no diseased signals detected

True label: 1 (Variant: COVID-19), dagger features from Class 1 show signals (yellow region)

True label: 2 (Variant: Pneumonia), dagger features from Class 2 show signals (orange region)

True label: 3 (Variant: Tuberculosis), dagger features from Class 3 show signals (red region)

Conclusions
Explainable AI System for Early COVID-19 and
COVID-Variant Screening As the most important contri-
bution of this paper, an Explainable Artificial Intelligence
(XAI) system is proposed to assist radiologists for the ini-
tial screening of COVID-19 and other related variants using
chest X-ray images for treatment and disease control. This
innovation can be widely adapted in the application of how
AI systems are deployed in hospitals and healthcare systems.
We anticipate that other related diseases with viral pneumo-
nia signs can use the same detection methods proposed in
our paper, which ensure the development of testing proce-
dures with accountability, responsibility, and transparency
to human users and patients.

A Heuristic and Theoretical Framework of XAI. This
paper introduces a heuristic and theoretical framework
for addressing the XAI problems in large-scale and high-
dimensional data sets. We provide three dimensions as
necessary conditions and premises required for a mea-
sure to be regarded as explainable and interpretable.

An I-score Enhanced Deep Learning Framework. To
address the XAI problems heuristically described above, this
paper introduced a novel design of an explainable and self-

interpretable Interaction-based Convolutional Neural Net-
work (ICNN) and Interaction-based Recurrent Neural Net-
work (IRNN). Our work provide a flexible approach to con-
tribute to the major issues about explainability, interpretabil-
ity, transparency, and trustworthiness in black-box algo-
rithms. We introduce and implement a non-parametric and
interaction-based feature selection methodology and use this
as replacement of pre-defined filters that are widely used in
ultra-deep CNNs.

Any CNN architecture that adapts the proposed technol-
ogy with transformation from two-dimensional array to the
proposed “dagger technique” features can be regarded as
Interaction-based Convolutional Neural Network (ICNN) or
from one-dimensional array to the same proposed ”dagger
technique” can be regarded as Interaction-based Recurrent
Neural Network (IRNN) with sequential model assumption.
We encourage both the statistics and computer science com-
munities to further explore this area to deliver more trans-
parency, trustworthiness, and accountability to deep learning
algorithms and to build a world with truly Responsible A.I..
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Figure 8: Visualization for Multi-class Classification Using I-score Enhanced Deep Learning. This figure presents 4 samples (each 
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highlighted region for diseased diagnosis, we use proposed “dagger technique” to create dagger features. Then we check the numerical 
values of these dagger features, which then indicate marginal dagger signals of diseased status per class. We observe that proposed class-
specific dagger features can make correct diagnosis amongst different lung cancer variants [].

be applied to create the following visualization (Figure7).
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Conclusions
Explainable AI System for Early COVID-19 and COVID-
Variant Screening
As the most important contribution of this paper, an Explainable 
Artificial Intelligence (XAI) system is proposed to assist radiologists 
for the initial screening of COVID-19 and other related variants 
using chest X-ray images for treatment and disease control. This 
innovation can be widely adapted in the application of how AI 
systems are deployed in hospitals and healthcare systems. We 
anticipate that other related diseases with viral pneumonia signs 
can use the same detection methods proposed in our paper, which 
ensure the development of testing procedures with accountability, 
responsibility, and transparency to human users and patients.

A Heuristic and Theoretical Framework of XAI. This paper 
introduces a heuristic and theoretical framework for addressing 
the XAI problems in large-scale and high- dimensional data sets. 
We provide three dimensions as necessary conditions and 
premises required for a measure to be regarded as explainable 
and interpretable.

An I-score Enhanced Deep Learning Framework. To address the 
XAI problems heuristically described above, this paper introduced 
a novel design of an explainable and self-interpretable Interaction-
based Convolutional Neural Net- work (ICNN) and Interaction-
based Recurrent Neural Net- work (IRNN). Our work provides a 
flexible approach to con- tribute to the major issues about explain 
ability, interpretability, transparency, and trustworthiness in black-
box algorithms. We introduce and implement a non-parametric 
and interaction-based feature selection methodology and use this 
as replacement of pre-defined filters that are widely used in ultra-
deep CNNs.

Any CNN architecture that adapts the proposed technology with 
transformation from two-dimensional array to the proposed 
“dagger technique” features can be regarded as Interaction-based 
Convolutional Neural Network (ICNN) or from one-dimensional 
array to the same proposed “dagger technique” can be regarded 
as Interaction-based Recurrent Neural Network (IRNN) with 
sequential model assumption. We encourage both the statistics 
and computer science com- munities to further explore this area 
to deliver more transparency, trustworthiness, and accountability 
to deep learning algorithms and to build a world with truly 
Responsible A.I. [31, 32].
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