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Abstract 
In this work, a new and improved optimization approach that minimize the unit noise gain in state-space of digital 
filters is presented. The main idea is the formulation of the unit noise gain in the form of several variables function 
then can get the equivalent state-space by optimization method. From this new generalized matrix, a new state space 
is derived and guaranty the minimization of unit noise gain. From various simulations operated on different order dig-
ital filters, we show the superiority of the proposed Several Variables Function Optimization (SVFO) algorithm over 
existing method.

Key Words: Digital filters, minimization, unit noise gain, Several Variables Function Optimization (SVFO), state-space representa-
tion, unit noise gain.

Introduction
The unit noise gain minimization of digital filters has been the 
subject of several researches during passed decades [1-7]. It is 
very important in the design of digital filters, to get a filter with 
minimum unit noise gain, where it is referred by the optimal filter 
structure [2, 8 and 9].

The problem of minimize the Round off noise subject to l2-scaling 
constraints in state-space of a digital filters solved by the literature 
[2, 10]. However, in this paper an improved optimizing method is 
presented. It is about finding a new formulation of the unit noise 
gain in the equivalent digital filters state-space, in term of several 
variables function, then extracting the equivalent state-space rep-
resentation by optimization method (11–14). A generalized matrix 
that is verified for any order equal or greater than 2 is suggested 
and its efficiency to guaranty the minimization of unit noise gain. 
Different simulations examples are considered and prove the ef-
fectiveness of the proposed SVFO based method over the existing 
ones.

Preliminaries
Consider the state-space representation of any digital filter given 
by

Where x (n) ∈ ℜn is the state vector, u (n) and y (n) are the scalar 
input and output respectively. A, B, C and D are real matrices with 
appropriate dimensions. Its corresponding transfer function H (z) 
is given as
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And are satisfying the Lyapunov matrix equations

K0 = AK0A
t + BBt,                                                                           (4)

W0 = AtW0A + CtC.

Minimization unit noise gain based on SVFO
It is well known that for any state-space digital filter modelling 
(1), conventionally denoted by (A,B,C,D), there is an infinity of 
realizations of the form (T−1AT,T−1B,CT,D), that are all equivalent 
under any non-singular state transformation T. The corresponding 
unit noise gain is given by

Where tr(X) denotes the trace of the matrix X.
The new realization with minimum unit noise gain (A,¯ B,¯ C,D¯) 
is given by

(A,¯ B,¯ C,D¯	 ) = (∆ T−1AT,T−1B,CT,D).

The problem of the unit noise gain digital filter minimization (2) 
is to reach (5) to a minimum value, and is subject to the constraint,

Let T = T0RT1, where K0 = T0T0
t, and R an arbitrary orthogonal 

matrix. The equation (6) becomes

Let the matrix T1 be

Where fi, i = 1,..,n are real functions that verify the following con-
dition:

We suggest to put the generalized order matrix         as

For all n ≥ 2. After substituting the expression of the matrix T in 
equation (5), the unit noise gain becomes a set of functions with 
several variables, for each matrix R.

To minimize the unit noise gain (G), it is necessary to take

Where ti, i = 1,..,n are real variables and orth(χ) is the orthonormal 
basis of matrix χ. The substitution the matrix T in 5 produces a 
function with several variables, it can be handle with the optimiza-
tion methods by using this way we can obtain the minimum of the 
unit noise gain (G) [11-14].

Numerical Examples
We take several examples of different orders to prove the efficacy 
of SVFO method, and compare it with previous works if any.

Example 1
Let a low-pass digital filter represented by the state-space matrices

From (4), the matrices K0 and W0 are constructed as

It’s the unit noise gain is (G0 = 33.18).
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(Ā, B̄, C̄, D)
∆
= (T−1AT, T−1B,CT,D).

The problem of the unit noise gain digital filter minimization (2) is to reach (5) to a minimum

value, and is subject to the constraint,

T−1K0T
−t =



1 ∗

. . .
∗ 1


 . (6)

Let T = T0RT1, where K0 = T0T
t
0 , and R an arbitrary orthogonal matrix. The equation (6)

becomes

T−1
1 T−t

1 =



1 ∗

. . .
∗ 1


 . (7)

3
Let the matrix T1 be

T−1
1 =




f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

...
...

f1(xn) f2(xn) · · · fn(xn)


 (8)

where fi, i = 1, .., n are real functions that verify the following condition:

f 2
1 + f 2

2 + ..+ f 2
n = 1.

We suggest to put the generalized order matrix T−1
1 as

T−1
1 =





1− (n− 1)x2

1 x1 · · · x1
1− (n− 1)x2

2 x2 · · · x2
...

...
...

...
1− (n− 1)x2

n xn · · · xn


 , (9)

for all n ≥ 2. After substituting the expression of the matrix T in equation (5), the unit noise

gain becomes a set of functions with several variables, for each matrix R.

To minimize the unit noise gain (G), it is necessary to take

R = orth(




t1 t1 · · · t1
t2 t2 · · · t2
...

...
...

...
tn tn · · · tn


), (10)

where ti, i = 1, .., n are real variables and orth(χ) is the orthonormal basis of matrix χ. The

substitution the matrix T in 5 produces a function with several variables, it can be handle with

the optimization methods (11–14), by using this way we can obtain the minimum of the unit
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4 Numerical Examples

We take several examples of different orders to prove the efficacy of SVFO method, and com-

pare it with previous works if any.

4.1 Example 1

Let a low-pass digital filter represented by the state-space matrices

A =

[
1.8857 −0.8961
1.0000 0

]
,

B =

[
1
0

]
,

C =
[
0.0090 0.0002

]
.

From (4), the matrices K0 and W0 are constructed as

K0 =

[
462.2966 459.7509
459.7509 462.2966

]
,

W0 =

[
0.0398 −0.0355
−0.0355 0.0320

]
.

Its the unit noise gain is (G0 = 33.18).

From the SVFO based approach, the matrix T is computed as

T =

[
1.2731 −20.8817
−1.2730 −22.0612

]
,

and the matrix R

R =

[
−0.7275 0.6861
0.6861 0.7275

]
,
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And the matrix R

Which yield to

And the controllability and observability Grampians are given by

The obtained minimum unit noise gain via the proposed approach 
is G¯ = 0.46.

Example 2
Consider the state-space of the third-order digital filter in (2)

With the matrices K0 and W0

This permits to compute the unit noise gain G0 = 10.07.
Achieving the Cholesky factorization of K0, we can obtain the ma-
trix T0 as
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Using the proposed the SVFO algorithm, the matrix T is

The new state-space representation corresponding to the minimum 
unit noise gain is
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The unit noise gain G¯ is then minimum and equal to 0.65.
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which yield to

Ā =


0.9428 0.0640
−0.1121 0.9428


,

B̄ =


0.4035
−0.0233


,

C̄ =

0.0112 −0.1941


,

and the controllability and observability gramians are given by

W̄ =


0.2313 −0.1072
−0.1072 0.2313



K̄ =


1.0000 −0.4632
−0.4632 1.0000


.

The obtained minimum unit noise gain via the proposed approach is Ḡ = 0.46.

4.2 Example 2

Consider the state-space of the third-order digital filter in (2)

A =




0 1 0
0 0 1

0.4537681314 −1.556161235 1.974861148


 ,

B =

0 0 1

T
,

C =

0.231752363 0.023016947 0.079306721


,

with the matrices K0 and W0

K0 =



17.0620 14.8866 9.6028
14.8866 17.0620 14.8866
9.6028 14.8866 17.0620


 ,

W0 =




0.0481 −0.1193 0.0954
−0.1193 0.3111 −0.2500
0.0954 −0.2500 0.2310


 .
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This permits to compute the unit noise gain G0 = 10.07.

Achieving the Cholesky factorization of K0, we can obtain the matrix T0 as

T0 =



4.1306 0 0
3.6040 2.0183 0
2.3248 3.2246 1.1222


 .

The proposed matrix T1 is given as

T1 =





1− 2x2
1 x1 x1

1− 2x2
2 x2 x2

1− 2x2
3 x3 x3


 .

Using the proposed the SVFO algorithm, the matrix T is

T =



−5.1161 0.1776 2.5208
−3.7938 0.9185 −0.4634
−2.3420 0.0248 −2.2613


 .

The new state-space representation corresponding to the minimum unit noise gain is

Ā =




0.6414 0.0853 0.4260
−0.0032 0.6284 −0.3467
−0.2031 0.4933 0.7051


 ,

B̄ =



−0.1663
−0.8275
−0.2791


 ,

C̄ =

−0.3916 0.0272 −0.1316


,

which yield to

W̄ =



0.2174 0.0093 0.1328
0.0093 0.2146 0.0995
0.1328 0.0995 0.2207


 ,

K̄ =



1.0000 0.0230 0.6153
0.0230 1.0000 0.4617
0.6153 0.4617 1.0000


 .

The unit noise gain Ḡ is then minimum and equal to 0.65.
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3.6040 2.0183 0
2.3248 3.2246 1.1222


 .

The proposed matrix T1 is given as

T1 =





1− 2x2
1 x1 x1

1− 2x2
2 x2 x2

1− 2x2
3 x3 x3


 .

Using the proposed the SVFO algorithm, the matrix T is

T =



−5.1161 0.1776 2.5208
−3.7938 0.9185 −0.4634
−2.3420 0.0248 −2.2613


 .

The new state-space representation corresponding to the minimum unit noise gain is

Ā =




0.6414 0.0853 0.4260
−0.0032 0.6284 −0.3467
−0.2031 0.4933 0.7051


 ,

B̄ =



−0.1663
−0.8275
−0.2791


 ,

C̄ =

−0.3916 0.0272 −0.1316


,

which yield to

W̄ =



0.2174 0.0093 0.1328
0.0093 0.2146 0.0995
0.1328 0.0995 0.2207


 ,

K̄ =



1.0000 0.0230 0.6153
0.0230 1.0000 0.4617
0.6153 0.4617 1.0000


 .

The unit noise gain Ḡ is then minimum and equal to 0.65.
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4.3 Example 3

Consider a fourth-order state-space of digital filter (15),

A =




0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

−0.3870 −1.4674 −2.4967 −2.2258


 ,

B =




0
0
0

0.2404


 ,

C =

0.0183 −0.2191 0.1419 −0.2714


.

The unit noise gain is G0 = 22.68, the obtained optimal filter structure achieved by the proposed

SVFO algorithm is given by the state matrices

Ā =



−0.4905 −0.4103 −0.3852 0.5444
0.4076 −0.5203 −0.2865 −0.1231
0.5523 0.3060 −0.6331 0.0926
−0.2634 0.0559 −0.2915 −0.5819


 ,

B̄ =



−0.1506
−0.5294
0.2394
0.7413


 ,

C̄ =

0.0202 −0.2784 −0.2560 −0.2001


,

with the minimum unit noise gain (Ḡ = 0.44), this yields to

W̄ =



0.0470 0.0341 0.0064 0.0309
0.0341 0.1640 0.0803 0.1148
0.0064 0.0803 0.1294 0.0356
0.0309 0.1148 0.0356 0.1002


 ,

K̄ =




1.0000 0.1947 −0.4545 −0.3319
0.1947 1.0000 0.4108 −0.1693
−0.4545 0.4108 1.0000 0.3952
−0.3319 −0.1693 0.3952 1.0000


 .
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Example 4
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ter(4,0.05), the unit noise gain G0 = 1.41 × 105. The state-space 
matrices of the corresponding digital filter are
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Example 5			 
Generating the digital filter of order 5 by the Matlab function [b,a] 
= butter(5,0.2), its corresponding unit noise is G0 = 278.44.
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4.4 Example 4

Let the low-pass filter in (16) where the numerator b and denominator a are computed using

the function of Matlab as [b, a] = butter(4, 0.05), the unit noise gain G0 = 1.41 × 105. The

state-space matrices of the corresponding digital filter are

Ā =




0.8782 0.0300 0.0794 −0.0694
−0.0633 0.9386 0.1266 0.0406
0.0038 −0.0851 0.8759 0.1256
0.1113 −0.1119 0.0352 0.8970


 ,

B̄ =




0.4637
−0.2107
0.1240
−0.0366


 ,

C̄ =

0.0754 0.1739 0.0327 0.0581


,

with the unit noise gain Ḡ = 0.26, where

W̄ =




0.0361 0.0783 −0.0104 0.0020
0.0783 0.1799 −0.0067 0.0138
−0.0104 −0.0067 0.0318 0.0191
0.0020 0.0138 0.0191 0.0153


 ,

K̄ =




1.0000 −0.1478 0.6383 0.5679
−0.1478 1.0000 0.1400 0.0695
0.6383 0.1400 1.0000 0.9627
0.5679 0.0695 0.9627 1.0000


 .

4.5 Example 5

Generating the digital filter of order 5 by the Matlab function [b, a] = butter(5, 0.2), its corre-

sponding unit noise is G0 = 278.44.
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The matrix K0 and W0 are

K0 =




147.7967 134.7808 100.1946 55.1312 12.4249
134.7808 147.7967 134.7808 100.1946 55.1312
100.1946 134.7808 147.7967 134.7808 100.1946
55.1312 100.1946 134.7808 147.7967 134.7808
12.4249 55.1312 100.1946 134.7808 147.7967



,

W0 =




0.2025 −0.4145 0.3599 −0.1469 0.0236
−0.4145 0.8764 −0.7701 0.3183 −0.0515
0.3599 −0.7701 0.6831 −0.2839 0.0462
−0.1469 0.3183 −0.2839 0.1188 −0.0194
0.0236 −0.0515 0.0462 −0.0194 0.0032



.

The proposed approach permits to get

Ā =




0.7216 −0.2565 −0.4525 0.0688 −0.0138
0.1976 0.6315 0.0544 −0.3064 0.0825
0.2442 −0.0585 0.5697 −0.2127 −0.1972
−0.1956 0.0207 0.2334 0.5168 0.4226
−0.0780 −0.3134 0.3040 0.0946 0.5359



,

B̄ =




0.0278
0.5385
−0.7271
−0.2392
−0.2035



,

C̄ =

−0.2940 0.0851 0.1032 −0.0869 −0.1317


,

the corresponding gain is Ḡ = 0.37, which yield to

W̄ =




0.2568 −0.0142 −0.0180 0.0118 0.0541
−0.0142 0.0375 0.0357 −0.0181 −0.0191
−0.0180 0.0357 0.0356 −0.0201 −0.0208
0.0118 −0.0181 −0.0201 0.0143 0.0141
0.0541 −0.0191 −0.0208 0.0141 0.0219



,

K̄ =




1.0000 −0.1223 −0.2500 −0.0659 0.0273
−0.1223 1.0000 −0.1132 −0.8761 −0.8598
−0.2500 −0.1132 1.0000 −0.0759 0.0169
−0.0659 −0.8761 −0.0759 1.0000 0.9643
0.0273 −0.8598 0.0169 0.9643 1.0000



.
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Example 6
Considering a digital filter of order 6, using the function [b,a] = 
butter(6,0.2), the corresponding unit noise gain is G0 = 2419 and 
the state-space representation obtained by the SVFO method is

With the gain G¯ = 0.56 and

Results and Interpretation
It is clear from the simulation results, in Table I, that the new state-
space structure (A,¯ B,¯ C,D¯ ) has a very low and minimum unit 
noise gain (G¯) than that (G0) of the initial state-space (A,B,C,D). 
For example 2, the works in obtained the same result as the authors 
results, but with more expensive calculations than those via pro-
posed solution [10, 15]. In the example 3, the obtained results via 
the proposed SVFO approach is best than in in sense of minimum 
unit noise gain (0.44 < 0.80 and 0.26 < 0.55). The present work 
gives good results for the order 5 and 6 as shown in example 5 
and example 6. Besides to that, the computational time is posed in 
Table I for eventual comparison with any future works, for the six 
examples [15, 16].

Conclusion
A new and improved method of optimization is proposed to min-
imize the unit noise gain of any digital filtrate proposed method 
converted the problem of the minimization unit noise gain from a 
matrix form to a function of several variables easier to deal with it 
and could be improved in future work.
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4.6 Example 6
Considering a digital filter of order 6, using the function [b, a] = butter(6, 0.2), the correspond-
ing unit noise gain is G0 = 2419 and the state-space representation obtained by the SVFO
method is

Ā =




0.8849 0.2374 0.7390 0.5474 0.0958 0.4193
−0.1351 0.6071 −0.6598 0.0089 −0.0836 −0.2739
−0.1929 −0.4667 0.0303 −0.1406 −0.6782 −0.1935
−0.4878 −0.2312 −0.1982 0.6907 0.2323 0.3063
0.0914 −0.0326 0.5936 0.0349 0.7170 0.1878
−0.2275 −0.0554 −0.5260 −0.1442 −0.1154 0.6494



,

B̄ =




−0.0106
0.4565
−0.0276
−0.2099
0.6727
0.3902



,

C̄ =

0.2338 0.0826 −0.0463 −0.1644 −0.1920 0.1575


,

with the gain Ḡ = 0.56 and

W̄ =




0.1167 0.0422 −0.0194 −0.0721 −0.0766 0.0471
0.0422 0.0623 −0.0235 −0.0014 −0.0471 0.0019
−0.0194 −0.0235 0.0202 −0.0393 0.0074 0.0094
−0.0721 −0.0014 −0.0393 0.2359 0.0873 −0.0840
−0.0766 −0.0471 0.0074 0.0873 0.0760 −0.0444
0.0471 0.0019 0.0094 −0.0840 −0.0444 0.0484



,

K̄ =




1.0000 0.2161 −0.3226 −0.0821 −0.1788 0.2098
0.2161 1.0000 −0.6518 0.2961 −0.0043 0.9139
−0.3226 −0.6518 1.0000 −0.3700 −0.1853 −0.6513
−0.0821 0.2961 −0.3700 1.0000 −0.1694 0.2895
−0.1788 −0.0043 −0.1853 −0.1694 1.0000 −0.0092
0.2098 0.9139 −0.6513 0.2895 −0.0092 1.0000



.
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4.6 Example 6
Considering a digital filter of order 6, using the function [b, a] = butter(6, 0.2), the correspond-
ing unit noise gain is G0 = 2419 and the state-space representation obtained by the SVFO
method is

Ā =




0.8849 0.2374 0.7390 0.5474 0.0958 0.4193
−0.1351 0.6071 −0.6598 0.0089 −0.0836 −0.2739
−0.1929 −0.4667 0.0303 −0.1406 −0.6782 −0.1935
−0.4878 −0.2312 −0.1982 0.6907 0.2323 0.3063
0.0914 −0.0326 0.5936 0.0349 0.7170 0.1878
−0.2275 −0.0554 −0.5260 −0.1442 −0.1154 0.6494



,

B̄ =




−0.0106
0.4565
−0.0276
−0.2099
0.6727
0.3902



,

C̄ =

0.2338 0.0826 −0.0463 −0.1644 −0.1920 0.1575


,

with the gain Ḡ = 0.56 and

W̄ =




0.1167 0.0422 −0.0194 −0.0721 −0.0766 0.0471
0.0422 0.0623 −0.0235 −0.0014 −0.0471 0.0019
−0.0194 −0.0235 0.0202 −0.0393 0.0074 0.0094
−0.0721 −0.0014 −0.0393 0.2359 0.0873 −0.0840
−0.0766 −0.0471 0.0074 0.0873 0.0760 −0.0444
0.0471 0.0019 0.0094 −0.0840 −0.0444 0.0484



,

K̄ =




1.0000 0.2161 −0.3226 −0.0821 −0.1788 0.2098
0.2161 1.0000 −0.6518 0.2961 −0.0043 0.9139
−0.3226 −0.6518 1.0000 −0.3700 −0.1853 −0.6513
−0.0821 0.2961 −0.3700 1.0000 −0.1694 0.2895
−0.1788 −0.0043 −0.1853 −0.1694 1.0000 −0.0092
0.2098 0.9139 −0.6513 0.2895 −0.0092 1.0000



.
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Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
Unit noise gain G0 33.19 10.07 22.68 1.42 × 105 278.44 2419
Unit noise gain 0.65 (10,15) 0.80 (15) 0.55 (16)
Unit noise gain G¯SVFO 0.46 0.65 0.44 0.26 0.366 0.56
Computational Time (sec.) 2.00 3.89 17.27 15.61 43.66 44.97
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