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Abstract
A method of measuring the absolute pose parameters of a moving rigid body using a monocular camera is proposed, aiming at 
addressing calibration difficulties and inconsistencies of repeated measurements of the rigid-body pose for a camera having a 
varying focal length. The pro- posed method does not require calibration beforehand. Using more than six non-coplanar control 
points symmetrically arranged in the rigid-body and world coordinate systems, the matrices of ro- tation and translation between 
the camera and two coordinate systems are obtained and the abso- lute pose of the rigid body measured. In this paper, formulas of 
the absolute pose measurement of a moving rigid body are deduced systematically and the complete implementation is presented. 
Position and attitude measurement experiments carried out on a three-axis precision turntable show that the average absolute 
error in the attitude angle of a moving rigid body measured by an uncali- brated camera at different positions changes by no more 
than 0.2 degrees. Analysis of the three- dimensional coordinate errors of the centroid of a moving rigid body shows little deviation 
in meas- urements made at three camera positions, with the maximum deviation of the average absolute error being 0.53 cm and 
the maximum deviation of the standard deviation being 0.66 cm. The pro-posed method can measure the absolute pose of a rigid 
body and is insensitive to the position of the camera in the measurement process. This work thus provides guidance for the repeated 
measure- ment of the absolute pose of a moving rigid body using a monocular camera.turns affect the rate of entropy generation.
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1. Introduction 
Non-contact measurement technology for determining trajectory 
and attitude changes of rigid moving targets has become a focus of 
research with the rapid advance- ment of science and technology 
[1-3]. Visual technologies for measuring the pose of a tar- get are 
widely used in obtaining motion parameters and mainly involve 
monocular, bin- ocular, and multi-ocular measurements, with each 
technology having its advantages and disadvantages. However, 
whereas binocular and multi-ocular measurements suffer from a 
small field of view and difficulties in stereo matching, monocular 
measurements have a simple structure, large field of view, strong 
real-time performance, and good accuracy. Monocular systems 
are thus used widely to measure parameters of rigid-body motion 
[2–5].

There are two types of monocular visual measurement of pose 
according to the fea- tures selected, namely measurements of 
cooperative targets [9–11] and measurements of non-cooperative 
targets [12–15]. Among them, the spatial constraint relationship 
between target feature points in cooperative target pose 
measurement is controllable, which to some extent limits the 
application scope but reduces the difficulty of feature extraction, 
improves the extraction accuracy, and reduces the complexity of 
the pose calculation. At present, research on cooperative target 
measurement methods has focused mainly on co-operative target 
design, feature extraction, pose calculation methods, and pose 
calculation errors [16–20]. However, most of the results are based 
on calibrated camera parameters and there has been little research 
on the pose estimation problem of cameras having var- ying focal 
lengths. In some practical problems, such as the measurement of 
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multiple rigid- body motion parameters addressed in this article, 
the internal parameters of the camera need to be frequently adjusted 
and changed, and there are many factors that affect the calibration 
accuracy of the internal parameters of a camera. It is difficult to 
accurately de-termine the internal parameters in the absence of 
standard equipment. Therefore, research on uncalibrated camera 
pose estimation technology is also important. The main methods of 
solving the pose measurement problem of uncalibrated cameras are 
the classic two-step method, direct linear transform (DLT) method, 
Zhengyou Zhang calibration method, P4P and P5P methods, and 
AFUFPnP method proposed by Tsai and others [21-25]. The two-
step method is not suitable for dynamic measurement. P4P and 
P5P meth- ods face noise sensitivity problems because they use 
fewer control points to estimate in- ternal and external parameters. 
Zhengyou Zhang's calibration method requires the instal-lation of 
a planar chessboard on the measured object to ensure accuracy, 
which is incon- venient in the case of a moving rigid body. The 
AFUFPnP method is a pose estimation method based on the EPnP 
and POSIT algorithms. This method has high pose estimation 
accuracy and calculation efficiency but low execution efficiency 
[26, 27].

Against the above background, this article combines the 
foundations of previous re-search on pose measurement to 
theoretically derive a method of measuring the absolute pose of 
a moving rigid body and presents a complete implementation of 
the method. The method is validated in terms of its feasibility and 
experimental repeatability for different positional accuracies using 
a high-speed camera having a variable focal length.

2. Theoretical Derivation of Methods
2.1. Principle of The Absolute Pose Measurement for A Rigid 
Body
As shown in Figure 1, Body and World rigid bodies move relative 
to one another in space. For the convenience of expression, the 
body coordinate system OB-XBYBZB, world coordinate system 
OW-XWYWZW, and camera coordinate system OC-XCYCZC 
are respect - tively denoted B, W, and C hereafter. We let P and 
Q denote physical points on the body and world rigid bodies, 
respectively. We use superscripts to distinguish the coordinate 
values of the physical points P and Q in the different coordinate 
systems and subscripts to distinguish different points on the 
rigid body, For example, 𝑃3 represents the coordi- nate values 
of P3 point on the Body rigid body in the W system. We use 
minuscule letters to represent pixel points; e.g., p represents the 
pixel points projected by physical point P on the image. R and 
T represent conversion relationships between coordinate systems, 
where superscript is used to represent the target coordinate system 
in the conversion and subscript is used to represent the starting 
coordinate system; e.g., 𝑅𝐶  is the rotation matrix 85 for conversion 
from the C system to the W system, and 𝑇𝐵  is the translation matrix 
for the 86 conversion from the B system to the W system.

Figure 1: Principle of the absolute pose measurement for a rigid 
body using a monocular camera.

The aim of this article is to measure the motion pose of a rigid 
body in the B system relative to the W system, and the real-time 
spatial coordinate 𝑃𝑊 of the center of mass P of the B-system rigid 
body in the W system.
The imaging projection formulas are

Here,                   is the ratio of two vector modes, representing the 
spatial coordinates of the pixel point p in the C system.
It follows from (1) and (2) that

The motion pose of the rigid body can be solved by 𝑅𝐵 , if

According to reference [28], the attitude angle of a rigid body is

Here, 𝑄𝑧 , 𝑄𝑦 and 𝑄𝑥 are the rotation angles around the Z, Y, and X 
axes, with the order of rotation being Z, Y, and X.

It is seen from (3) and (4) that for 𝑃𝑊 and 𝑅𝐵, 𝑅𝐶, 𝑇𝐶, 𝑅𝐶 and 𝑇𝐶 need 
to be de-termined. 𝑅𝐶 and 𝑇𝐶  are determined from the control points 
on the W-system rigid body whereas 𝑅𝐶 and 𝑇𝐶 are determined 
from the control points on the B-system rigid body. The absolute 
pose problem of a moving rigid body is thus transformed into a 
problem of solving the rotation and translation matrices.
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2.2. Implementation Steps of the Measurement Method
Figure 2: is a flowchart of the method of measuring the rigid-body pose derived in Section 2.1.
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Figure 2: Flow chart of the method of measuring the rigid-body pose.

The measurement of the pose parameters of the rigid body 
involves the following steps. Groups of control points with each 
group having more than six non-coplanar points are first arranged 
in the W and B systems. R and T for the W–C and B–C conversions 
are then calibrated and calculated to calculate the coordinates of 
the B-system control points in the W system and to calculate the 
attitude changes of the B-system rigid body. Finally, the other 
parameters are measured. 

2.3. Determination of the Rotation and Translation Matrices
This paper considers a high-speed camera with a variable focal 
length. To facilitate repeated experiments, a DLT camera calibration 
method providing simple operation and high calculation efficiency 

is adopted to obtain the camera rotation and translation matrices 
[29]. The DLT method does not require an approximate initial 
value of the internal orientation element (i.e., it does not require 
the manual calculation of the initial value in contrast with other 
space rendezvous algorithms) and is suitable for the calibration 
pro- cessing of non-metric digital cameras [30]. 

As shown in Figure 1, N (N ≥ 6) control points are arranged 
on each of the B and W series. Taking the control points on the 
body rigid body as an example, if the spatial coor- dinates are, 
the corresponding pixel coordinates are. It follows from the 
collinearity equa- tion of the DLT method that
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where 𝐿𝑖(𝑖=1,2,⋯11) denotes coefficients representing the camera's 
internal and 137 external parameters.

Formula (7) shows that for the 11 unknowns, at least six points are 
required to deter- mine the 11 values. As the number of equations 
is greater than the number of unknowns, the least squares method 
is used to solve for L and thus obtain the external parameters of 
the camera.

The constraint conditions of the rotation matrix are not fully 
considered in obtaining the results using the proposed method, and 
the error in the results is thus bound to be large. To improve the 
accuracy, this paper uses Gauss–Newton iterative method to solve 
the 11 L equations and six constraint equations of the rotation 
matrix iteratively and then applies singular value decomposition 
to the obtained rotation matrix. If 𝑅 = 𝑈𝐷𝑉𝑇, then 𝑅𝐶 = 𝑈𝑉𝑇. 
Similarly, 𝑅𝐶 and 𝑇𝐶 can be determined. After this processing, the 
estimated attitude matrix strictly meets the inherent constraints of 
the rotation matrix, and the esti- mation error is effectively reduced.

3. Experiments and Data Analysis
The experimental platform used in this study mainly comprised 
a three-axis turnta- ble and camera. The SGT320E three-axis 
turntable had an accuracy of 0.0001 degrees and a mechanical 
structure in which a U-shaped outer frame rotated around the 
azimuth axis, an O-shaped middle frame rotated around the pitch 
axis, and an O-shaped inner frame rotated around the transverse 
roller axis. The outer frame, middle frame, and inner frame can 
all be considered rigid bodies, as shown in Figure 3. The three 
axes simultaneously had speed, position, and sinusoidal oscillation 
modes and did not interfere with each other, enabling the high-
precision measurement of pose. The Phantom M310 high-speed 
camera, produced by Vision Research in the United States, had 
adjustable resolution, shooting speed, and exposure time.

Figure 3: Schematic of the overall structure of the turntable.

3.1. Establishment of the Coordinate System and Arrangement 
of Control Points
For the convenience of arranging control points, the inner frame 
of the turntable was locked and formed a body rigid body with the 
middle frame, whereas the outer frame was a world rigid body. 
The origins of the B and W systems were both set at the center of 
the turntable. According to the construction of the turntable, this 
point was also the center of mass of the body rigid body, as shown 
in Figure 4. Figure 5 shows the scene of the experiment, which 
truly reflects the layout of each marking point. Eight control points 
were arranged on the Body rigid body (i.e., the middle frame) and 
eight control points were arranged on the World rigid body (i.e., 
the outer frame).

Figure 4: Coordinate systems of the three-dimensional turntable.
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Figure 5: Scene of the experiment.

As the geometric structure and dimensions of the three-dimensional 
turntable were fixed, the three-dimensional coordinates of the 
control and test points on the middle and outer frames could be 
measured easily.

3.2. Determination of Pose in the Turntable Measurement
For the convenience of experimental verification, the world rigid 
body (i.e., the outer frame of the turntable) is set stationary. As 
only the central axis rotates, the real-time motion attitude angle 
of the turntable changes only with the rotation angle around the 
X-axis,with the other two angles being zero.

Denoting the angle of rotation of the frame of the turntable around 
the X-axis as, the real-time position coordinates of any point on the 
body rigid body in the W system are

The center of mass of the body rigid body is at the origin of the B 
and W systems and can be inferred from equation (8).

3.3. Experiment on Measuring the Pose of a Rigid Body with 
A Camera
We set the body rigid body motion mode to swing mode, with the 
swing parameters being an amplitude of 20 degrees, frequency of 
0.5 Hz, and time of 10 s. To ensure that the high-speed camera 
recorded the entire motion of the turntable, the high-speed camera 
was operated at 500 frames/second, and 16.68 seconds of video 
was collected. The test scene is shown in Figure 5.

In verifying the ability to make repeated measurements adopting 
the proposed method, the camera was placed at three positions to 
measure the swing mode of the central axis of the turntable, with 
each position being 2.21 m from the rigid body, as shown in Figure 
6.

Figure 6: Camera positions in the repeated measurements.

3.3.1. Attitude Measurement and Analysis
We used the high-speed camera to record video frames of dynamic 
changes in the middle and outer frames of the turntable. To 
ensure that the pixel coordinate measurement did not affect the 
pose measurements, the pixel coordinates of the control points 
were determined using TEMA, an advanced motion analysis tool 
developed by Image Systems AB in Sweden. We adopted the 
DLT method mentioned earlier for measurements and then used 
formulas (4) and (6) to obtain the attitude of the turntable. Dynamic 
changes in the attitude of the turntable are shown in Figure 7.
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The first camera
position
𝑄𝑥/°

The second camera
position
𝑄𝑥/°

The third camera
position
𝑄𝑥/°

Mean absolute error 0.8092 0.6287 0.7359
standard deviation 0.6623 0.5671 0.6297

Table 1: Control point parameters measured by the total station instrument.

Figure 7 shows the change in the measured attitude angle of the 
rigid body when the camera is at a distance of 2.21 m. Figure 7a, 7b 
and 7c show the real-time change in the camera's attitude angle 𝑄𝑥 
of the middle frame of the turntable measured for different camera 
positions. Table 1 compares the mean absolute error and standard 
deviation of the camera's attitude angle measured for the three 
camera positions. Figure 7a, 7b and 7c and Table 1 reveal that the 
minimum error in the attitude angle 𝑄𝑥 measured by the camera at 
the second camera position. The mean absolute error difference of 
the attitude angle measured at three positions is not significant (not 
more than 0.2 degrees). Figure 7d re-flects the error of the camera 
in measuring the attitude angle 𝑄𝑥 at the first position. The error 
increases with the tilt of the rigid body relative to the camera lens. 
The mean absolute error is 0.8092 degrees, the standard deviation 

is 0.6623 degrees, and there are individual errors as large as 2.5 
degrees. Figure 7e and 7f show that although only one attitude 
angle 𝑄𝑥 is changing in theory, the angles 𝑄𝑦 and 𝑄𝑧 measured by 
the camera still include er- rors. The mean absolute error is 0.186 
degrees and the standard deviation is 0.641 degrees for 𝑄𝑦, and the 
mean absolute error is - 0.032 degrees and the standard deviation 
is 0.222 degrees for 𝑄𝑧.

3.3.2. Measurement and Analysis of The Position of The Center 
of Gravity of The Rigid Body
The DLT method mentioned earlier was used to measure 𝑅𝐶, 𝑇𝐶, 
𝑅𝐶, and 𝑇𝐶. The centroid coordinates of the rigid body were 𝑃𝐵 = 
[0 0 0]𝑇, and the real-time position changes were calculated using 
formula (3).

𝑊 𝑊

𝐵 𝐵
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Figures 8, 9, and 10 present the three-dimensional coordinate 
changes of the body's center of mass as measured by the monocular 
camera at the first position. It is seen that the error in the three-
dimensional position of the center of mass of the rigid body 
increased with the tilt of the rigid body relative to the camera lens. 
This is because the constraint of the non-coplanar control points 
on the rigid body decreased and the imaging quality of the control 

points deteriorated when the tilt ratio increased. The error in the X 
axis coordinate of the rigid body center was much smaller than the 
errors in the other two axis coordinates, because the middle-frame 
swinging motion of the rigid body involved rotation around the 
X-axis, and all control points had the best X-axis constraint during 
the motion.

The first camera position The second camera position The third camera position
X/m Y/m Z/m X/m Y/m Z/m X/m Y/m Z/m

Mean abso-lute er-ror 0.0212 0.0483 0.0634 0.0175 0.0420 0.0596 0.0204 0.0477 0.0621
Stand-ard de-viation 0.0257 0.0523 0.0621 0.0232 0.0492 0.0555 0.0260 0.0519 0.0618

Table 2: Errors in the centroid three-dimensional coordinates for different camera positions.

Table 2 gives the errors in the camera measurements made at the 
three camera posi-tions. The error in the coordinates of the center 
of mass was small for the three camera positions. The maximum 
deviation of the mean absolute error was 0.53 cm and the maxi-
mum deviation of the standard deviation was 0.66 cm, indicating 
that the measurement process was insensitive to the camera 
position and that repeated measurements could be made.

4. Conclusions
This article systematically derived a method of measuring the 
absolute pose of a moving rigid body using a monocular camera 
based on a camera imaging model. A turn-table test was conducted 
to verify that the proposed method could accurately measure 
position and attitude in repeated measurements within the visual 
range of the camera. The mean absolute error in the attitude angle 
measured at different camera positions var-ied by no more than 0.2 
degrees. The error in the attitude angle measured by the camera 
at the first camera position increased with the tilt angle of the 
rigid body relative to the camera lens. The mean absolute error 
was 0.8092 degrees, the standard deviation was 0.6623 degrees, 
and there were individual errors up to 2.5 degrees. An analysis of 
the error in the coordinates of the center of mass position showed 
that the deviation of the meas- urements across the three camera 
positions was small, the maximum deviation of the mean absolute 
error was 0.53 cm, and the maximum deviation of the standard 
deviation was 0.66 cm. The measurement was thus insensitive 
to the camera placement, and re- peated measurements could be 
made. Although the proposed method requires the place-ment of 
two sets of marker points, which may be infeasible, it is suitable 
for non-profes- sional and low-cost measurement applications.
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