
 Volume 3 | Issue 3 | 1J Math Techniques Comput Math, 2024

Citation: Javadi, B., Ledari, H. H., Amiri, N. M., Abdali, M. (2024). A Memetic Algorithm Designed for Solving Graph Coloring
Problems: A Round-Robin Sports Scheduling Case Study. J Math Techniques Comput Math, 3(3), 01-13.

A Memetic Algorithm Designed for Solving Graph Coloring Problems: A
Round-Robin Sports Scheduling Case Study

*Corresponding Author
Babak Javadi, Department of Industrial Engineering, Faculty of Engineering,
College of Farabi, University of Tehran, Iran

Submitted: 2024, Mar 01; Accepted: 2024, Mar 20; Published: 2024, Mar 29

Babak Javadi1*, Hamed Habibnejad-Ledari2, Nezam Mahdavi-Amiri3 and Mohammadreza Abdali1

1Department of Industrial Engineering, Faculty of
Engineering, College of Farabi, University of Tehran, Iran

2School of Industrial Engineering, College of Engineering,
University of Tehran, Tehran, Iran

3Faculty of Mathematical Science, Sharif University of
Technology, Tehran,Iran

Research Article

Abstract
The issue of graph coloring is concerned with assigning colors to each vertex of an undirected graph so that adjacent vertices are
not assigned the same color. Due to its NP-hard nature, a variety of heuristics and metaheuristics have been developed to tackle
this problem. One of these approaches is the memetic algorithm, which was introduced as a solution for this problem. Another
example is using a metaheuristic approach to address the round-robin sports scheduling problem. The algorithm suggested for
this task comprises three primary components: (1) a randomized danger heuristic algorithm, (2) tabu search, and (3) a genetic
algorithm with adaptive multi-parent crossover. To assess the performance of this algorithm, a set of test problems from different
benchmark graphs in two categories were selected and compared with nine effective heuristics from existing literature. The
results show that the algorithm performs exceptionally well on benchmark graphs that are known to be challenging. Additionally,
a case study was conducted to demonstrate the effectiveness of the proposed algorithm.

Keywords: Graph Coloring, Memetic Algorithm, Tabu Search, Genetic Algorithm, Round-Robin Sports Scheduling.

Journal of Mathematical Techniques and Computational Mathematics
ISSN: 2834-7706

1. Introduction
The problem of graph coloring (GCP) is a renowned challenge
in the branch of graph theory. It necessitates the assignment of
colors to each vertex in an undirected graph G = (V, E) while
ensuring that adjacent vertices do not share the same color.
The objective of graph coloring is to minimize the number of
colors required for a given graph G, which is denoted by the
chromatic number. GCP has numerous applications in different
fields such as map coloring, scheduling, timetabling, layout
problems, register allocation, storage problems, and frequency
assignments [1]. An intriguing use of graph coloring is in the
scheduling of round-robin sports tournaments. In round-robin
sports, there are n teams that need to compete against each other
many times in predetermined rounds. There are two common
types of round-robin sports, single round robins (SRRs) and
double round robins (DRRs). In a single round-robin (SRR),

each team competes against all other teams exactly once, which
is equivalent to m =1. When m=equals 2, each team plays twice
with every other team. DRRs are also called home-away matches.
The problem of round-robin sports scheduling can be tackled
using graph representations and graph coloring techniques. In
this formulation, each match is considered a vertex, and two
matches are adjacent if they cannot be scheduled in the same
round. Each color represents a round, and each match is assigned
to one round. For instance, a DRR problem with four teams is
presented in Figure 1, where the only constraint considered is that
they must compete once during each round. Several constraints
can be taken into account in a round-robin sports problem. For
instance, two teams may be prohibited from playing against each
other in a particular round, or two teams may be required to play
against each other in a specific round.

Volume 3 | Issue 3 | 2J Math Techniques Comput Math, 2024

2

1. Introduction

The problem of graph coloring (GCP) is a renowned challenge in the branch of graph theory. It
necessitates the assignment of colors to each vertex in an undirected graph G = (V, E) while
ensuring that adjacent vertices do not share the same color. The objective of graph coloring is to
minimize the number of colors required for a given graph G, which is denoted by the chromatic
number. GCP has numerous applications in different fields such as map coloring, scheduling,
timetabling, layout problems, register allocation, storage problems, and frequency assignments[1].
An intriguing use of graph coloring is in the scheduling of round-robin sports tournaments. In
round-robin sports, there are n teams that need to compete against each other many times in
predetermined rounds. There are two common types of round-robin sports, single round robins
(SRRs) and double round robins (DRRs). In a single round-robin (SRR), each team competes
against all other teams exactly once, which is equivalent to m =1. When m=equals 2, each team
plays twice with every other team. DRRs are also called home-away matches. The problem of
round-robin sports scheduling can be tackled using graph representations and graph coloring
techniques. In this formulation, each match is considered a vertex, and two matches are adjacent if
they cannot be scheduled in the same round. Each color represents a round, and each match is
assigned to one round. For instance, a DRR problem with four teams is presented in Figure 1, where
the only constraint considered is that they must compete once during each round. Several
constraints can be taken into account in a round-robin sports problem. For instance, two teams may
be prohibited from playing against each other in a particular round, or two teams may be required to
play against each other in a specific round.

(1,2)

(2,1)

(2,3)(3,2)

(4,2)

(4,3)

(4,1)

(3,1)

(1,3)

(3,4)

(2,4)

(1,4)

Figure 1. A graph for DRRs with several teams= 4

This constraint arises when two teams share the same stadium and cannot play home matches
concurrently with other teams. To address this issue, an edge is added between the matches
involving these two teams. Due to the NP-hard nature of the graph coloring problem (GCP), several
heuristics and metaheuristic algorithms have been created to solve it. These include Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated

Figure 1: A graph for DRRs with several teams= 4

This constraint arises when two teams share the same stadium
and cannot play home matches concurrently with other teams. To
address this issue, an edge is added between the matches involving
these two teams. Due to the NP-hard nature of the graph coloring
problem (GCP), several heuristics and metaheuristic algorithms
have been created to solve it. These include Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), Simulated Annealing (SA), Tabu Search
(TS), Neural Network Algorithm (NNA), DNA algorithm, and
hybridizations of these algorithms with others. Additionally, the
DSATUR algorithm is a popular algorithm that offers an upper
limitation for the chromatic number in graph coloring problems.
Within the case of the round-robin scheduling problem, there are
several algorithms available in the literature, such as polygon
and greedy algorithms. However, because of the intricacy of the
problem, metaheuristic approaches such as those used in GCP,
can also be applied to solve round-robin scheduling. As far as we
know, a metaheuristic algorithm has not been utilized to address
the round-robin sports scheduling problem. The current research
suggests a memetic algorithm that comprises three primary
stages. The first stage involves producing the initial population
through a heuristic technique called the randomized danger
algorithm, which utilizes a measure called dynamic vertex
danger to assign rounds to matches. The generated individuals
are then improved in the next phase using tabu search. In the
third phase, new offspring are produced by a GA crossover called
adaptive multi-parent, and the offspring are further optimized by
tabu search. Finally, the best k-coloring is selected.

To evaluate the effectiveness of the proposed algorithm, we
selected 41 test problems from two categories and compared
our results with the most effective heuristics available in the
literature. Additionally, we presented a real double-round-robin
problem as a case study, where a football league with 16 teams
and several constraints was considered. The rest of this paper is
organized as follows. In Section 2, we present a literature review.
Section 3 outlines our solution methodology and describes the
randomized danger algorithm, tabu search, and GA crossover.
Section 4 discusses the Taguchi method and other details
proposed for tuning parameters. In Sections 5 and 6, we provide
our experimental results and the case study, respectively. Finally,

our conclusion is presented in Section 7.

2. Literature Review
A wide variety of algorithms can be found in the literature that
can be used to address graph coloring problems (GCP) and
related subproblems. Bui et al and Dowsland and Thompson
proposed an ant colony optimization (ACO) algorithm as
a solution to GCP, while Kole et al conducted a comparative
analysis of three metaheuristic algorithms (ACO, simulated
annealing (SA), and quantum annealing (QA)) within a single
framework to solve GCP and determine the chromatic number
[2,3]. The results showed that QA outperformed SA and ACO;
however, it required more time than the latter two for larger
graph instances. Nonetheless, all three algorithms exhibited
favorable outcomes [4].

Lü and Hao introduced a memetic algorithm (MACOL) to address
GCP [5]. Goudet et al proposed a memetic framework guided by
deep learning for graph coloring problems and implemented it
on GPU devices to solve the classical vertex k-coloring problem
and the weighted vertex coloring problem [6]. In a related study,
Marappan et al concentrated on developing a new Particle Swarm
Optimization (PSO) model that minimizes the search space and
number of generations required. Through behavioral analysis of
this stochastic search model, it was discovered that premature
convergence is primarily due to a decrease in particle velocity
within the search space, leading to an implosion and eventual
stagnation of swarm fitness [7]. To address this issue, Xu and
Chen introduced a Cuckoo Quantum Evolutionary Algorithm
(CQEA) that combines a cuckoo search strategy, a local search
operation, and a perturbance strategy to improve the algorithm's
global exploration capabilities and enhance its performance
on GCP [8]. Moalic and Gondran introduced a new memetic
algorithm for GCP called HEAD, which utilizes a local search
algorithm (TabuCol) as an intensification operator and a crossover
operator (GPX) to escape from local minima. Computational
experiments on challenging DIMACS graphs showed that
HEAD produced accurate results [9]. In another related study,
Zhou et al proposed an improved probability learning-based
local search algorithm for GCP [10]. Additionally, Marappan
et al developed a new PSO model that minimizes the search

Volume 3 | Issue 3 | 3J Math Techniques Comput Math, 2024

space and number of generations required for optimization. The
decrease in particle velocity, leading to fitness stagnation, was
identified as the primary cause of premature convergence in the
stochastic search model [11]. Assi et al performed an analysis
of the Genetic Algorithm (GA) approach for graph coloring
in the timetable problem [12]. Meanwhile, Kusumawardani et
al utilized a combination of a graph-coloring-based sequential
greedy algorithm and a simulated annealing (SA) algorithm
to address the Examination Timetabling Problem (ETP) using
two real-world datasets [13]. Meraihi, et al presented a Chaotic
Binary Salp Swarm Algorithm (CBSSA) to address GCP [14].
In a related study, Silva et al proposed a hybrid algorithm called
iColourAnt, which employs ant colony optimization (ACO) and
an efficient local search strategy to achieve suitable solutions
for GCP. Experimental results indicated that iColourAnt
outperformed its predecessor, ColourAnt [15]. Furthermore,
Bandopadhyay et al generalized the Bounded Coloring
Problem (BCP) and the Equitable Coloring Problem (ECP) and
demonstrated that the vertex cover size can parameterize BCP
and is FPT [16]. In addition to showing that the vertex cover size
can parameterize the Bounded Coloring Problem (BCP) and is

unlikely to have a polynomial kernel when parameterized by the
deletion distance to clique, Bandopadhyay et al demonstrated that
BCP is polynomial-time solvable for cluster graphs, generalizing
a similar result for Equitable Coloring Problem (ECP) [16]. In
general, the most popular algorithms for improving the solving
of GCP are currently MA, ACO, GA, TS, SA, QA, PSO, and
COA.

3. Solution Procedure
The memetic algorithm we propose is comprised of three
primary elements. The first component involves generating the
initial population using a heuristic known as the Randomized
Danger Algorithm. Subsequently, a tabu search is applied to
improve the individuals generated by the danger algorithm and
reduce the number of conflicts. In the final phase, a specific
GA crossover operation is utilized to generate new k-colorings.
These individuals are further optimized by tabu search and
combined with the population generated in phase two, and
the best k-coloring is selected. A Pseudo-code of the memetic
algorithm is illustrated in Figure 2.

4

Computational experiments on challenging DIMACS graphs showed that HEAD produced accurate
results[9]. In another related study, Zhou et al proposed an improved probability learning-based
local search algorithm for GCP[10]. Additionally, Marappan et al developed a new PSO model that
minimizes the search space and number of generations required for optimization. The decrease in
particle velocity, leading to fitness stagnation, was identified as the primary cause of premature
convergence in the stochastic search model[11]. Assi et al performed an analysis of the Genetic
Algorithm (GA) approach for graph coloring in the timetable problem[12]. Meanwhile,
Kusumawardani et al utilized a combination of a graph-coloring-based sequential greedy algorithm
and a simulated annealing (SA) algorithm to address the Examination Timetabling Problem (ETP)
using two real-world datasets[13]. Meraihi, et al presented a Chaotic Binary Salp Swarm Algorithm
(CBSSA) to address GCP[14]. In a related study, Silva et al proposed a hybrid algorithm called
iColourAnt, which employs ant colony optimization (ACO) and an efficient local search strategy to
achieve suitable solutions for GCP. Experimental results indicated that iColourAnt outperformed its
predecessor, ColourAnt[15]. Furthermore, Bandopadhyay et al generalized the Bounded Coloring
Problem (BCP) and the Equitable Coloring Problem (ECP) and demonstrated that the vertex cover
size can parameterize BCP and is FPT[16]. In addition to showing that the vertex cover size can
parameterize the Bounded Coloring Problem (BCP) and is unlikely to have a polynomial kernel
when parameterized by the deletion distance to clique, Bandopadhyay et al demonstrated that BCP
is polynomial-time solvable for cluster graphs, generalizing a similar result for Equitable Coloring
Problem (ECP)[16]. In general, the most popular algorithms for improving the solving of GCP are
currently MA, ACO, GA, TS, SA, QA, PSO, and COA.

3. Solution procedure
The memetic algorithm we propose is comprised of three primary elements. The first component
involves generating the initial population using a heuristic known as the Randomized Danger
Algorithm. Subsequently, a tabu search is applied to improve the individuals generated by the danger
algorithm and reduce the number of conflicts. In the final phase, a specific GA crossover operation is
utilized to generate new k-colorings. These individuals are further optimized by tabu search and
combined with the population generated in phase two, and the best k-coloring is selected. A Pseudo-
code of the memetic algorithm is illustrated in Figure 2.

Algorithm 1: memetic algorithm procedure.
Generate initial population by randomized danger algorithm.
 Population = 1,..., .npopIP IP
 npop = number of populations;
for i=1: npop
 TS1i = Tabu search (IPi);
End for
for i=1: npop
 GAi = Crossover (TS1i);
 TS2i = Tabu search (GAi);
End for
Combine TS1 with TS2;
The best coloring= min  1 11 ,... 1 , 2 ,... 2 .npop npopTS TS TS TS

Figure 2. A Pseudo-code for the memetic algorithm.

Figure 2 : A Pseudo-code for the memetic algorithm.

3.1 Fitness Function
In the literature, there are various strategies available to solve
graph coloring problems, including legal strategy, k-fixed partial
legal strategy, penalty strategy, and k-fixed penalty strategy.
For the graph coloring problem, the k-fixed penalty strategy is
implemented. With this strategy, the number of colors is fixed,
and the search space contains both legal and illegal k-colorings.

The objective function is to minimize the number of conflicts.
Given an undirected graph G=(V, E) with a vertex set V and an
edge set E, A= is a k-coloring where Vi is the set of vertices that
color i is assigned to. If a and b are two adjacent vertices in graph
G, then we say a conflict exists, and the edge (a,b) is referred to
as a conflicting edge. The objective function is to minimize the
total number of conflicting edges, defined as follows:

5

3.1 Fitness function
 In the literature, there are various strategies available to solve graph coloring problems, including
legal strategy, k-fixed partial legal strategy, penalty strategy, and k-fixed penalty strategy. For the
graph coloring problem, the k-fixed penalty strategy is implemented. With this strategy, the number
of colors is fixed, and the search space contains both legal and illegal k-colorings.
The objective function is to minimize the number of conflicts. Given an undirected graph G=(V, E)
with a vertex set V and an edge set E, A= is a k-coloring where Vi is the set of vertices that color i is
assigned to. If a and b are two adjacent vertices in graph G, then we say a conflict exists, and the edge
(a,b) is referred to as a conflicting edge. The objective function is to minimize the total number of
conflicting edges, defined as follows:

 ,
() ,ab

a b E
f A 



 
(1)

where ab =
1, ,
0, .

i jif a V b V and i j
otherwise

  

(2)

So, we say that a legal k-coloring is obtained if f (A) =0.

3.2 Randomized danger algorithm

The danger algorithm, introduced in 1996, is based on the concept of dynamic vertex danger measure,
which prioritizes uncolored vertices. In our presented danger algorithm, we utilize a randomized
approach to generate individuals for the population. The proposed heuristic comprises two phases,
namely match danger and round danger. In match danger, we select an unassigned match with the
highest danger value in each iteration. Then, in round danger, we choose a round with the lowest
danger value and assign it to the chosen match from match danger. To prevent becoming trapped in a
local optimum, we apply a randomized approach. Specifically, we randomly select a match from the
top three highest values in match danger and a round from the top three lowest values in round
danger.

3.2.1 Match danger

Algorithm 2: Match Danger

Step 1: Compute different rounds (i) for each match. (Different-round (i) represents the number of
different rounds assigned to the neighbors of the match (i)).

Step 2: Compute unassigned (i) for each match. (Unassigned (i) represents the number of neighbors
of the match (i) unassigned to any rounds).

5

3.1 Fitness function
 In the literature, there are various strategies available to solve graph coloring problems, including
legal strategy, k-fixed partial legal strategy, penalty strategy, and k-fixed penalty strategy. For the
graph coloring problem, the k-fixed penalty strategy is implemented. With this strategy, the number
of colors is fixed, and the search space contains both legal and illegal k-colorings.
The objective function is to minimize the number of conflicts. Given an undirected graph G=(V, E)
with a vertex set V and an edge set E, A= is a k-coloring where Vi is the set of vertices that color i is
assigned to. If a and b are two adjacent vertices in graph G, then we say a conflict exists, and the edge
(a,b) is referred to as a conflicting edge. The objective function is to minimize the total number of
conflicting edges, defined as follows:

 ,
() ,ab

a b E
f A 



 
(1)

where ab =
1, ,
0, .

i jif a V b V and i j
otherwise

  

(2)

So, we say that a legal k-coloring is obtained if f (A) =0.

3.2 Randomized danger algorithm

The danger algorithm, introduced in 1996, is based on the concept of dynamic vertex danger measure,
which prioritizes uncolored vertices. In our presented danger algorithm, we utilize a randomized
approach to generate individuals for the population. The proposed heuristic comprises two phases,
namely match danger and round danger. In match danger, we select an unassigned match with the
highest danger value in each iteration. Then, in round danger, we choose a round with the lowest
danger value and assign it to the chosen match from match danger. To prevent becoming trapped in a
local optimum, we apply a randomized approach. Specifically, we randomly select a match from the
top three highest values in match danger and a round from the top three lowest values in round
danger.

3.2.1 Match danger

Algorithm 2: Match Danger

Step 1: Compute different rounds (i) for each match. (Different-round (i) represents the number of
different rounds assigned to the neighbors of the match (i)).

Step 2: Compute unassigned (i) for each match. (Unassigned (i) represents the number of neighbors
of the match (i) unassigned to any rounds).

So, we say that a legal k-coloring is obtained if f (A) =0.

3.2 Randomized Danger Algorithm
The danger algorithm, introduced in 1996, is based on the

concept of dynamic vertex danger measure, which prioritizes
uncolored vertices. In our presented danger algorithm, we
utilize a randomized approach to generate individuals for the
population. The proposed heuristic comprises two phases,

Volume 3 | Issue 3 | 4J Math Techniques Comput Math, 2024

namely match danger and round danger. In match danger, we
select an unassigned match with the highest danger value in
each iteration. Then, in round danger, we choose a round with
the lowest danger value and assign it to the chosen match from
match danger. To prevent becoming trapped in a local optimum,
we apply a randomized approach. Specifically, we randomly
select a match from the top three highest values in match danger
and a round from the top three lowest values in round danger.

3.2.1 Match Danger
Algorithm 2: Match Danger
Step 1: Compute different rounds (i) for each match. (Different-

round (i) represents the number of different rounds assigned to
the neighbors of the match (i)).
Step 2: Compute unassigned (i) for each match. (Unassigned (i)
represents the number of neighbors of the match (i) unassigned
to any rounds).
Step 3: Compute share (i) for each match. (Share (i) represents
the number of rounds available to match (i) and its unassigned
neighbors).
Step 4: Compute avail (i) for each match. (Avail (i) represents
the number of rounds available for the match (i)).
Therefore, match danger (i) can be defined as follows:

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

where ku and ka are non-negative constants and F is a monotonically increasing function defined as follows [18]:

where M1 is a positive constant, R is the number of rounds and k1
is a non-negative constant. Finally, a match is selected randomly
from the top three highest values match danger.

 3.2.2 Round Danger
Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different
assigned neighbors, overall unassigned matches having r

available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of
different assigned neighbors, overall unassigned matches having
r available as a round).
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different
neighbors).
So, round danger (r) can be defined as follows:

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

6

Step 3: Compute share (i) for each match. (Share (i) represents the number of rounds available to
match (i) and its unassigned neighbors).

Step 4: Compute avail (i) for each match. (Avail (i) represents the number of rounds available for
the match (i)).

Therefore, match danger (i) can be defined as follows:

u a
share ()match danger () = (different-round ()) + .unassigned () + .
avail ()

ii F i k i k
i

,
(3)

where ku and ka are non-negative constants and F is a monotonically increasing function defined as
follows [18]:

1

1()
()k

MF x
R x




,
(4)

where M1 is a positive constant, R is the number of rounds and k1 is a non-negative constant. Finally,
a match is selected randomly from the top three highest values match danger.

3.2.2 Round danger

Algorithm 3: round danger.

Step 1: compute the different neighbors (r) for each round.
(Different-neighbors (r) is the maximum number of different assigned neighbors, overall unassigned
matches having r available as a round).
Step 2: compute the m (r) for each round.
(m (r) is the match that achieves the maximum number of different assigned neighbors, overall
unassigned matches having r available as a round (.
Step 3: compute the no (r) for each round.
(No (r) is the number of times round r is assigned to different neighbors).
So, round danger (r) can be defined as follows:

3 4round danger ()= (different-neighbors ()) + .unassigned (()) - .no (),r G r k m r k r (5)
where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as
follows:

2

2() ,
()k

MG x
R x




 (6)

where M2 is a positive constant and k2 is a non-negative constant. Finally, a round is selected
randomly from the top three lowest values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu search

where k3 and k4 are non-negative constants and G is a monotonically increasing function defined as follows:

where M2 is a positive constant and k2 is a non-negative constant.
Finally, a round is selected randomly from the top three lowest
values in round danger and is assigned to the chosen match in
match danger.

3.3 Tabu Search
In this step, we optimize the populations generated in the
previous phase using tabu search. The proposed tabu search

improves each individual separately until the stop condition is
met. In each iteration, we select a conflict match and assign a
round different from the current one. To avoid being trapped
in a local optimum and increase the diversity of the algorithm,
we define a tabu list. When a round is assigned to a specific
match, it is forbidden to be assigned to that match for the next L
iterations. Therefore, this move is added to the tabu list. L is the
tabu tenure, which is defined as follows [15]:

7

In this step, we optimize the populations generated in the previous phase using tabu search. The
proposed tabu search improves each individual separately until the stop condition is met. In each
iteration, we select a conflict match and assign a round different from the current one. To avoid being
trapped in a local optimum and increase the diversity of the algorithm, we define a tabu list. When a
round is assigned to a specific match, it is forbidden to be assigned to that match for the next L
iterations. Therefore, this move is added to the tabu list. L is the tabu tenure, which is defined as
follows [15]:

 = (A) + rand (10),L f (7)
The tabu tenure, L, is a random number selected from the set {1, ..., 10} in our proposed tabu search.
Additionally, we define an aspiration criterion to consider moves in the tabu list that result in good
objective function values (OFV). The Pseudo-code of our proposed tabu search is illustrated in Figure
3.

Algorithm 4: tabu search procedure.
Set the tabu list= .
Generate initial solution (xnow) by randomized danger algorithm.
The tabu tenure L is initialized according to the chosen scheme
Set xbest = xnow and BestObj= OFV (xnow).
i=1
Repeat
 Compute all moves N by the 2-opt algorithm.
 Remove tabu moves from N (considering aspiration criterion).
 Choose the best move N (xnow) minimizing the objective function.
 If OFV (N (xnow)) < BestObj then
 Update the best solution
 set xbest = N (xnow)
 Set the move N (xnow) tabu for the next L iterations.
i=i+1
Until i= maximum number of iterations.

Figure 3. A Pseudo-code for tabu search.

3.4 Genetic algorithm crossover operation

In a hybrid algorithm, the crossover is an important operator to produce new individuals and improve
the current solution. Two types of crossover operations are commonly used for graph coloring:
assignment crossover and partition crossover. In our approach, we utilize a partition crossover known
as an adaptive multi-parent crossover, which was introduced by Lü and Hao[18]. The features
distinguishing this crossover from others are the number of selected parents and the way rounds are
assigned to matches. Individuals improved by tabu search are assigned to different classes and each
match belongs to only one class. In the presented crossover, the first m parents are chosen (2 ≤ m ≤
npop), and the parents with maximal cardinality class are selected. Then, the first round is assigned to
matches belonging to the maximal cardinality class and the matches are removed from all
the m individuals. We repeat this procedure until all rounds are assigned to matches. For each
remaining match, we randomly select a round. Also, a forbidden list is used to avoid focusing on a
single parent. When a parent with maximal cardinality class is selected, this parent is forbidden to

7

In this step, we optimize the populations generated in the previous phase using tabu search. The
proposed tabu search improves each individual separately until the stop condition is met. In each
iteration, we select a conflict match and assign a round different from the current one. To avoid being
trapped in a local optimum and increase the diversity of the algorithm, we define a tabu list. When a
round is assigned to a specific match, it is forbidden to be assigned to that match for the next L
iterations. Therefore, this move is added to the tabu list. L is the tabu tenure, which is defined as
follows [15]:

 = (A) + rand (10),L f (7)
The tabu tenure, L, is a random number selected from the set {1, ..., 10} in our proposed tabu search.
Additionally, we define an aspiration criterion to consider moves in the tabu list that result in good
objective function values (OFV). The Pseudo-code of our proposed tabu search is illustrated in Figure
3.

Algorithm 4: tabu search procedure.
Set the tabu list= .
Generate initial solution (xnow) by randomized danger algorithm.
The tabu tenure L is initialized according to the chosen scheme
Set xbest = xnow and BestObj= OFV (xnow).
i=1
Repeat
 Compute all moves N by the 2-opt algorithm.
 Remove tabu moves from N (considering aspiration criterion).
 Choose the best move N (xnow) minimizing the objective function.
 If OFV (N (xnow)) < BestObj then
 Update the best solution
 set xbest = N (xnow)
 Set the move N (xnow) tabu for the next L iterations.
i=i+1
Until i= maximum number of iterations.

Figure 3. A Pseudo-code for tabu search.

3.4 Genetic algorithm crossover operation

In a hybrid algorithm, the crossover is an important operator to produce new individuals and improve
the current solution. Two types of crossover operations are commonly used for graph coloring:
assignment crossover and partition crossover. In our approach, we utilize a partition crossover known
as an adaptive multi-parent crossover, which was introduced by Lü and Hao[18]. The features
distinguishing this crossover from others are the number of selected parents and the way rounds are
assigned to matches. Individuals improved by tabu search are assigned to different classes and each
match belongs to only one class. In the presented crossover, the first m parents are chosen (2 ≤ m ≤
npop), and the parents with maximal cardinality class are selected. Then, the first round is assigned to
matches belonging to the maximal cardinality class and the matches are removed from all
the m individuals. We repeat this procedure until all rounds are assigned to matches. For each
remaining match, we randomly select a round. Also, a forbidden list is used to avoid focusing on a
single parent. When a parent with maximal cardinality class is selected, this parent is forbidden to

The tabu tenure, L, is a random number selected from the set {1,
..., 10} in our proposed tabu search. Additionally, we define an
aspiration criterion to consider moves in the tabu list that result

in good objective function values (OFV). The Pseudo-code of
our proposed tabu search is illustrated in Figure 3.

Volume 3 | Issue 3 | 5J Math Techniques Comput Math, 2024

7

In this step, we optimize the populations generated in the previous phase using tabu search. The
proposed tabu search improves each individual separately until the stop condition is met. In each
iteration, we select a conflict match and assign a round different from the current one. To avoid being
trapped in a local optimum and increase the diversity of the algorithm, we define a tabu list. When a
round is assigned to a specific match, it is forbidden to be assigned to that match for the next L
iterations. Therefore, this move is added to the tabu list. L is the tabu tenure, which is defined as
follows [15]:

 = (A) + rand (10),L f (7)
The tabu tenure, L, is a random number selected from the set {1, ..., 10} in our proposed tabu search.
Additionally, we define an aspiration criterion to consider moves in the tabu list that result in good
objective function values (OFV). The Pseudo-code of our proposed tabu search is illustrated in Figure
3.

Algorithm 4: tabu search procedure.
Set the tabu list= .
Generate initial solution (xnow) by randomized danger algorithm.
The tabu tenure L is initialized according to the chosen scheme
Set xbest = xnow and BestObj= OFV (xnow).
i=1
Repeat
 Compute all moves N by the 2-opt algorithm.
 Remove tabu moves from N (considering aspiration criterion).
 Choose the best move N (xnow) minimizing the objective function.
 If OFV (N (xnow)) < BestObj then
 Update the best solution
 set xbest = N (xnow)
 Set the move N (xnow) tabu for the next L iterations.
i=i+1
Until i= maximum number of iterations.

Figure 3. A Pseudo-code for tabu search.

3.4 Genetic algorithm crossover operation

In a hybrid algorithm, the crossover is an important operator to produce new individuals and improve
the current solution. Two types of crossover operations are commonly used for graph coloring:
assignment crossover and partition crossover. In our approach, we utilize a partition crossover known
as an adaptive multi-parent crossover, which was introduced by Lü and Hao[18]. The features
distinguishing this crossover from others are the number of selected parents and the way rounds are
assigned to matches. Individuals improved by tabu search are assigned to different classes and each
match belongs to only one class. In the presented crossover, the first m parents are chosen (2 ≤ m ≤
npop), and the parents with maximal cardinality class are selected. Then, the first round is assigned to
matches belonging to the maximal cardinality class and the matches are removed from all
the m individuals. We repeat this procedure until all rounds are assigned to matches. For each
remaining match, we randomly select a round. Also, a forbidden list is used to avoid focusing on a
single parent. When a parent with maximal cardinality class is selected, this parent is forbidden to

Figure 3: A Pseudo-code for tabu search.

3.4 Genetic Algorithm Crossover Operation
In a hybrid algorithm, the crossover is an important operator
to produce new individuals and improve the current solution.
Two types of crossover operations are commonly used for graph
coloring: assignment crossover and partition crossover. In our
approach, we utilize a partition crossover known as an adaptive
multi-parent crossover, which was introduced by Lü and Hao
[18]. The features distinguishing this crossover from others are
the number of selected parents and the way rounds are assigned
to matches. Individuals improved by tabu search are assigned to
different classes and each match belongs to only one class. In the
presented crossover, the first m parents are chosen (2 ≤ m ≤ npop),

and the parents with maximal cardinality class are selected.
Then, the first round is assigned to matches belonging to the
maximal cardinality class and the matches are removed from all
the m individuals. We repeat this procedure until all rounds are
assigned to matches. For each remaining match, we randomly
select a round. Also, a forbidden list is used to avoid focusing
on a single parent. When a parent with maximal cardinality class
is selected, this parent is forbidden to select until L iterations,
where L is [m/2] [18]. After the adaptive multi-parent crossover
is performed, the new offspring are further improved using the
tabu search algorithm described in Section 3.3. The Pseudo-code
of the proposed GA crossover operation is presented in Figure 4.

8

select until L iterations, where L is 2
m 
  [18]. After the adaptive multi-parent crossover is performed,

the new offspring are further improved using the tabu search algorithm described in Section 3.3. The
Pseudo-code of the proposed GA crossover operation is presented in Figure 4.

Algorithm 5: GA crossover operation procedure.
Set the forbidden list= .
t eses A number of parents (m) randomly (2 ≤ m ≤ npop).
Set r=1
Repeat
 Select a parent with maximal cardinality class if it is not on the forbidden list.
 Assign round r to matches in Ahs maximal cardinality class and remove them from all parents.
 Include this parent no the forbidden list and update it.
Set r=r+1
Until r= maximum number of rounds.
Choose a round randomly for each unassigned match.
Improve niiepsfoo by tabu search.

Figure 4. A Pseudo-code for GA crossover operation.

The presented crossover operation is exemplified in Figure 5. In this example, there are 10 matches,
3 rounds, and 3 parents. In the first step, parent 1 had maximal cardinality, and matches
 2 5 6 7 9, , , ,V V V V V were selected and assigned to round 1. Moreover, all parents remove these matches,
and parent 1 is added to the forbidden list. With a similar procedure, matches V1, V4, and V10 are
assigned to round 2. Finally, matches V3 and V8 are assigned to round 3.

V3
V8

V3
V8

V3
V8

V2
V5
V6
V7
V9

V1
V4
V10

V3
V8

R1 R2 R3

V3
V8

V1
V4
V10

V3
V8 V10 V1

V4

V3
V8

V1
V4
V10

V2
V5
V6
V7
V9

V1
V4
V10

R1 R2 R3

L(m1)=0

V2
V5
V6
V7
V9

V3
V8

V1
V4
V10

V3
V8

V2
V6
V7
V10

V1
V4
V5
V9

V3
V5
V6
V8

V2
V7
V9

V1
V4
V10

V2
V5
V6
V7
V9

R1 R2 R3

L(m2)=0

L(m3)=0

L(m1)=1

L(m2)=0

L(m3)=0

New
offspring

L(m1)=0

L(m2)=0

L(m3)=1

Figure 4: A Pseudo-code for GA crossover operation.

The presented crossover operation is exemplified in Figure 5.
In this example, there are 10 matches, 3 rounds, and 3 parents.
In the first step, parent 1 had maximal cardinality, and matches
{v2,v5,v6,v7,v9}, were selected and assigned to round 1. Moreover,

all parents remove these matches, and parent 1 is added to the
forbidden list. With a similar procedure, matches V1, V4, and
V10 are assigned to round 2. Finally, matches V3 and V8 are
assigned to round 3.

Volume 3 | Issue 3 | 6J Math Techniques Comput Math, 2024

8

select until L iterations, where L is 2
m 
  [18]. After the adaptive multi-parent crossover is performed,

the new offspring are further improved using the tabu search algorithm described in Section 3.3. The
Pseudo-code of the proposed GA crossover operation is presented in Figure 4.

Algorithm 5: GA crossover operation procedure.
Set the forbidden list= .
t eses A number of parents (m) randomly (2 ≤ m ≤ npop).
Set r=1
Repeat
 Select a parent with maximal cardinality class if it is not on the forbidden list.
 Assign round r to matches in Ahs maximal cardinality class and remove them from all parents.
 Include this parent no the forbidden list and update it.
Set r=r+1
Until r= maximum number of rounds.
Choose a round randomly for each unassigned match.
Improve niiepsfoo by tabu search.

Figure 4. A Pseudo-code for GA crossover operation.

The presented crossover operation is exemplified in Figure 5. In this example, there are 10 matches,
3 rounds, and 3 parents. In the first step, parent 1 had maximal cardinality, and matches
 2 5 6 7 9, , , ,V V V V V were selected and assigned to round 1. Moreover, all parents remove these matches,
and parent 1 is added to the forbidden list. With a similar procedure, matches V1, V4, and V10 are
assigned to round 2. Finally, matches V3 and V8 are assigned to round 3.

V3
V8

V3
V8

V3
V8

V2
V5
V6
V7
V9

V1
V4
V10

V3
V8

R1 R2 R3

V3
V8

V1
V4
V10

V3
V8 V10 V1

V4

V3
V8

V1
V4
V10

V2
V5
V6
V7
V9

V1
V4
V10

R1 R2 R3

L(m1)=0

V2
V5
V6
V7
V9

V3
V8

V1
V4
V10

V3
V8

V2
V6
V7
V10

V1
V4
V5
V9

V3
V5
V6
V8

V2
V7
V9

V1
V4
V10

V2
V5
V6
V7
V9

R1 R2 R3

L(m2)=0

L(m3)=0

L(m1)=1

L(m2)=0

L(m3)=0

New
offspring

L(m1)=0

L(m2)=0

L(m3)=1

Figure 5: An instance of adaptive multi-parent crossover could be provided as an example.

4. Parameter Tuning
The effectiveness of the proposed memetic algorithm for GCP
is highly dependent on the selection of appropriate parameters
for each phase of the algorithm. The study explains that
these parameters have a significant impact on the algorithm's
performance, and a well-tuned parameter configuration can help
prevent the algorithm from getting stuck in a local optimum and
increase diversity in the search space. This finding is consistent
with a separate study from 2009. Each parameter has a range of
potential values, and the Taguchi method is adopted to determine
the optimal parameter levels, which include npop, ku, ka, k3,
and k4, to ensure dependable computational outcomes.

According to [19], the values ku= 0.025, ka= 0.33, k3= 0.5, and
k4= 0.025 work well over a large class of graphs in practice.
However, these parameters should be tuned appropriately for
graphs with particular structures to get better solutions. Also,
In [18], the npop parameter is set to 20. According to this
information, our Taguchi method is planned and the parameters
of the memetic algorithm and their levels are shown in Table 1.
In the proposed Taguchi method for each problem, 16 different
plans in 4 replications are considered and the proposed memetic
algorithm is run under these designs. Note that parameters k1,
k2, M1, and M2 are considered to be constant and equal to 1 [19].

9

Figure 5. An instance of adaptive multi-parent crossover could be provided as an example.

4. Parameter tuning
The effectiveness of the proposed memetic algorithm for GCP is highly dependent on the selection of
appropriate parameters for each phase of the algorithm. The study explains that these parameters have
a significant impact on the algorithm's performance, and a well-tuned parameter configuration can
help prevent the algorithm from getting stuck in a local optimum and increase diversity in the search
space. This finding is consistent with a separate study from 2009. Each parameter has a range of
potential values, and the Taguchi method is adopted to determine the optimal parameter levels, which
include npop, ku, ka, k3, and k4, to ensure dependable computational outcomes.
According to [19], the values ku= 0.025, ka= 0.33, k3= 0.5, and k4= 0.025 work well over a large class
of graphs in practice. However, these parameters should be tuned appropriately for graphs with
particular structures to get better solutions. Also, In [18], the npop parameter is set to 20. According
to this information, our Taguchi method is planned and the parameters of the memetic algorithm and
their levels are shown in Table 1. In the proposed Taguchi method for each problem, 16 different
plans in 4 replications are considered and the proposed memetic algorithm is run under these designs.
Note that parameters k1, k2, M1, and M2 are considered to be constant and equal to 1 [19].

Table 1. Memetic parameters and level values.

 level
parameter 1 2 3 4

npop 20 25 30 35

ku 0.020 0.025 0.030 0.035

ka 0.25 0.30 0.35 0.40

k3 0.40 0.45 0.50 0.55

k4 0.020 0.025 0.030 0.035

 Figure 6 provides a visualization of how the selected parameters behave, while Table 2 displays the
optimal parameter values that have been determined.

Table 1: Memetic parameters and level values

 Figure 6 provides a visualization of how the selected parameters behave, while Table 2 displays the optimal parameter values that
have been determined.

Volume 3 | Issue 3 | 7J Math Techniques Comput Math, 2024

10

Figure 6. Tuning parameters by Taguchi.

Table 2. The optimal levels for the parameters in the memetic algorithm have been established.
Parameter Best level

npop 20-35

ku 0.025

ka 0.25

k3 0.50

k4 0.020

5. Experimental findings
In order to showcase the effectiveness of the proposed algorithm, a total of 41 distinct test problems
were selected from two categories of the widely recognized DIMACS coloring benchmarks. In order

10

Figure 6. Tuning parameters by Taguchi.

Table 2. The optimal levels for the parameters in the memetic algorithm have been established.
Parameter Best level

npop 20-35

ku 0.025

ka 0.25

k3 0.50

k4 0.020

5. Experimental findings
In order to showcase the effectiveness of the proposed algorithm, a total of 41 distinct test problems
were selected from two categories of the widely recognized DIMACS coloring benchmarks. In order

Figure 6: Tuning parameters by Taguchi.

Table 2: The optimal levels for the parameters in the memetic algorithm have been established

5. Experimental Findings
In order to showcase the effectiveness of the proposed
algorithm, a total of 41 distinct test problems were selected from
two categories of the widely recognized DIMACS coloring
benchmarks. In order to compare the results, nine other graph
coloring algorithms that were previously introduced in literature
were used. The proposed memetic algorithm was implemented
in Matlab 7.11 and executed on a PC with a core i5 processor
running at 1.8 GHz, and with 6 GB of RAM. The instances are
categorized into two classes: Easy graphs are classified as class
1, which can be solved by most heuristics, while difficult graphs
fall under class 2 and require strong competitive algorithms to
solve them. Tables 3 and 4 present these test problems, along

with their characteristics, which belong to classes 1 and 2,
respectively. For comparison, only test problems in class 2
were compared to other algorithms in the literature. Tables 3
and 4 provide information on the benchmark problems used in
the study. Columns 2 and 3 provide the number of vertices and
edges, respectively. Columns 4 and 5 present the density and
ID class of these benchmark problems, which include random
graphs (DSJC), random geometric graphs (DSJCR and R),
Leighton graphs (LEI), class scheduling graphs (SCH), flat
graphs (FLAT), and Latin square graphs (LAT). The last column
reports the best-known results in the literature and Kbest, which
represents the minimum number of colors obtained.

Volume 3 | Issue 3 | 8J Math Techniques Comput Math, 2024

11

to compare the results, nine other graph coloring algorithms that were previously introduced in
literature were used. The proposed memetic algorithm was implemented in Matlab 7.11 and executed
on a PC with a core i5 processor running at 1.8 GHz, and with 6 GB of RAM. The instances are
categorized into two classes: Easy graphs are classified as class 1, which can be solved by most
heuristics, while difficult graphs fall under class 2 and require strong competitive algorithms to solve
them. Tables 3 and 4 present these test problems, along with their characteristics, which belong to
classes 1 and 2, respectively. For comparison, only test problems in class 2 were compared to other
algorithms in the literature. Tables 3 and 4 provide information on the benchmark problems used in
the study. Columns 2 and 3 provide the number of vertices and edges, respectively. Columns 4 and 5
present the density and ID class of these benchmark problems, which include random graphs (DSJC),
random geometric graphs (DSJCR and R), Leighton graphs (LEI), class scheduling graphs (SCH),
flat graphs (FLAT), and Latin square graphs (LAT). The last column reports the best-known results in
the literature and Kbest, which represents the minimum number of colors obtained.

Table 3. Computational results on easy DIMACS benchmarks.

Graph V

E

Density

ID class
Kbest

DSJC125.1 125 736 0.09 DSJC 5
DSJC125.5 125 3891 0.50 DSJC 17
DSJC125.9 125 6961 0.89 DSJC 44
DSJC250.1 250 3218 0.10 DSJC 8
DSJC250.9 250 27897 0.90 DSJC 72
R125.1 125 209 0.03 R 5
R125.1C 125 7501 0.97 R 46
R125.5 125 3838 0.5 R 36
R250.1 250 867 0.03 R 8
R250.1C 250 30227 0.97 R 64
DSJR500.1 500 3555 0.03 DSJR 12
R1000.1 1000 14348 0.03 R 20
le450_15a 450 8168 0.08 LEI 15
le450_15b 450 8169 0.08 LEI 15
le450_25a 450 8260 0.08 LEI 25
le450_25b 450 8263 0.08 LEI 25
school1 385 19095 0.26 SCH 14
school1_nsh 352 14612 0.24 SCH 14
flat300_20_0 300 21375 0.48 FLAT 20

Table 4. Computational results on difficult DIMACS benchmarks.

No.

Graph

V E Density ID class Kbest

11

to compare the results, nine other graph coloring algorithms that were previously introduced in
literature were used. The proposed memetic algorithm was implemented in Matlab 7.11 and executed
on a PC with a core i5 processor running at 1.8 GHz, and with 6 GB of RAM. The instances are
categorized into two classes: Easy graphs are classified as class 1, which can be solved by most
heuristics, while difficult graphs fall under class 2 and require strong competitive algorithms to solve
them. Tables 3 and 4 present these test problems, along with their characteristics, which belong to
classes 1 and 2, respectively. For comparison, only test problems in class 2 were compared to other
algorithms in the literature. Tables 3 and 4 provide information on the benchmark problems used in
the study. Columns 2 and 3 provide the number of vertices and edges, respectively. Columns 4 and 5
present the density and ID class of these benchmark problems, which include random graphs (DSJC),
random geometric graphs (DSJCR and R), Leighton graphs (LEI), class scheduling graphs (SCH),
flat graphs (FLAT), and Latin square graphs (LAT). The last column reports the best-known results in
the literature and Kbest, which represents the minimum number of colors obtained.

Table 3. Computational results on easy DIMACS benchmarks.

Graph V

E

Density

ID class
Kbest

DSJC125.1 125 736 0.09 DSJC 5
DSJC125.5 125 3891 0.50 DSJC 17
DSJC125.9 125 6961 0.89 DSJC 44
DSJC250.1 250 3218 0.10 DSJC 8
DSJC250.9 250 27897 0.90 DSJC 72
R125.1 125 209 0.03 R 5
R125.1C 125 7501 0.97 R 46
R125.5 125 3838 0.5 R 36
R250.1 250 867 0.03 R 8
R250.1C 250 30227 0.97 R 64
DSJR500.1 500 3555 0.03 DSJR 12
R1000.1 1000 14348 0.03 R 20
le450_15a 450 8168 0.08 LEI 15
le450_15b 450 8169 0.08 LEI 15
le450_25a 450 8260 0.08 LEI 25
le450_25b 450 8263 0.08 LEI 25
school1 385 19095 0.26 SCH 14
school1_nsh 352 14612 0.24 SCH 14
flat300_20_0 300 21375 0.48 FLAT 20

Table 4. Computational results on difficult DIMACS benchmarks.

No.

Graph

V E Density ID class Kbest

Table 3: Computational results on easy DIMACS benchmarks

12

1 DSJC250.5 250 15668 0.50 DSJC 28

2

DSJC500.1

500 12458 0.10 DSJC 12

3

DSJC500.5

500 62624 0.50 DSJC 48

4

DSJC500.9

500 112437 0.90 DSJC 126

5

DSJC1000.1

1000 49629 0.10 DSJC 20

6

DSJC1000.5

1000 249826 0.50 DSJC 83

7

DSJC1000.9

1000 449449 0.90 DSJC 223

8

DSJR500.1c

500 121275 0.97 DSJR 85

9

DSJR500.5

500 58862 0.47 DSJR 122

10

R250.5

250 14849 0.48 R 65

11

R1000.1c

1000 486090 0.97 R 98

12

R1000.5

1000 238267 0.48 R 234

13

le450_15c

450 16680 0.17 LEI 15

14

le450_15d

450 16750 0.17 LEI 15

15

le450_25c

450 17343 0.17 LEI 25

16

le450_25d

450 17425 0.17 LEI 25

17

flat300_26_0

300 21633 0.48 FLAT 26

18

flat300_28_0

300 21695 0.48 FLAT 28

19

flat1000_50_0

1000 245000 0.49 FLAT 50

20

flat1000_60_0

1000 245830 0.49 FLAT 60

21

flat1000_76_0

1000 246708 0.49 FLAT 82

22

latin_sqr_10

900 307350 0.76 LAT 98

Table 5 provides a summary of research findings reported in the literature for comparison and
contains results for the challenging test problems. Table 6 presents the results of 22 test problems
applying 9 methods and shows a comparison of these methods and our proposed memetic
algorithm. The fifth row from the bottom shows so h ooAhnsee ooa ss ni AseA psn esae. The fourth

Volume 3 | Issue 3 | 9J Math Techniques Comput Math, 2024

12

1 DSJC250.5 250 15668 0.50 DSJC 28

2

DSJC500.1

500 12458 0.10 DSJC 12

3

DSJC500.5

500 62624 0.50 DSJC 48

4

DSJC500.9

500 112437 0.90 DSJC 126

5

DSJC1000.1

1000 49629 0.10 DSJC 20

6

DSJC1000.5

1000 249826 0.50 DSJC 83

7

DSJC1000.9

1000 449449 0.90 DSJC 223

8

DSJR500.1c

500 121275 0.97 DSJR 85

9

DSJR500.5

500 58862 0.47 DSJR 122

10

R250.5

250 14849 0.48 R 65

11

R1000.1c

1000 486090 0.97 R 98

12

R1000.5

1000 238267 0.48 R 234

13

le450_15c

450 16680 0.17 LEI 15

14

le450_15d

450 16750 0.17 LEI 15

15

le450_25c

450 17343 0.17 LEI 25

16

le450_25d

450 17425 0.17 LEI 25

17

flat300_26_0

300 21633 0.48 FLAT 26

18

flat300_28_0

300 21695 0.48 FLAT 28

19

flat1000_50_0

1000 245000 0.49 FLAT 50

20

flat1000_60_0

1000 245830 0.49 FLAT 60

21

flat1000_76_0

1000 246708 0.49 FLAT 82

22

latin_sqr_10

900 307350 0.76 LAT 98

Table 5 provides a summary of research findings reported in the literature for comparison and
contains results for the challenging test problems. Table 6 presents the results of 22 test problems
applying 9 methods and shows a comparison of these methods and our proposed memetic
algorithm. The fifth row from the bottom shows so h ooAhnsee ooa ss ni AseA psn esae. The fourth

Table 4: Computational results on difficult DIMACS benchmarks

Table 5 provides a summary of research findings reported in the
literature for comparison and contains results for the challenging
test problems. Table 6 presents the results of 22 test problems
applying 9 methods and shows a comparison of these methods
and our proposed memetic algorithm. The fifth row from the

bottom shows each author's number of test problems. The
fourth row from the bottom shows the number of best results
obtained from each algorithm. The value of the percentage of
best solution represents the percentage of best solutions obtained
by each algorithm. This value is calculated as follows:

13

row from the bottom shows the number of best results obtained from each algorithm. The value of
the percentage of best solution represents the percentage of best solutions obtained by each
algorithm. This value is calculated as follows:

Number of the best solutionsPercentage of best solutions .
Number of test problems

 (8)

The second row from the bottom of the table calculates the total percentage of the best solution, which
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as
follows:

Number of the best solutionsTotal percentage of best solutions = .
22

 (9)

Finally, the last row shows the difference between each method and the best solution for each test
problem. It is calculated only for methods with 22 test problems and is obtained as follows:

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


 (10)

The index of test problems is denoted by n. Table 6 presents the performance of the proposed
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5).
The proposed algorithm yields better results than these algorithms (see the last four rows of Table
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2,
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively.
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance,
respectively, but our algorithm obtains better results in eleven and ten instances compared to these
two algorithms, respectively.
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in
most instances. However, our algorithm performs even better than the algorithms in references 7, 8,
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the
above-mentioned three algorithms and has results closest to the best solutions reported in the
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football League case study.

Table 5. Performance of proposed algorithm as compared to other approaches.

13

row from the bottom shows the number of best results obtained from each algorithm. The value of
the percentage of best solution represents the percentage of best solutions obtained by each
algorithm. This value is calculated as follows:

Number of the best solutionsPercentage of best solutions .
Number of test problems

 (8)

The second row from the bottom of the table calculates the total percentage of the best solution, which
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as
follows:

Number of the best solutionsTotal percentage of best solutions = .
22

 (9)

Finally, the last row shows the difference between each method and the best solution for each test
problem. It is calculated only for methods with 22 test problems and is obtained as follows:

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


 (10)

The index of test problems is denoted by n. Table 6 presents the performance of the proposed
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5).
The proposed algorithm yields better results than these algorithms (see the last four rows of Table
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2,
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively.
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance,
respectively, but our algorithm obtains better results in eleven and ten instances compared to these
two algorithms, respectively.
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in
most instances. However, our algorithm performs even better than the algorithms in references 7, 8,
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the
above-mentioned three algorithms and has results closest to the best solutions reported in the
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football League case study.

Table 5. Performance of proposed algorithm as compared to other approaches.

13

row from the bottom shows the number of best results obtained from each algorithm. The value of
the percentage of best solution represents the percentage of best solutions obtained by each
algorithm. This value is calculated as follows:

Number of the best solutionsPercentage of best solutions .
Number of test problems

 (8)

The second row from the bottom of the table calculates the total percentage of the best solution, which
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as
follows:

Number of the best solutionsTotal percentage of best solutions = .
22

 (9)

Finally, the last row shows the difference between each method and the best solution for each test
problem. It is calculated only for methods with 22 test problems and is obtained as follows:

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


 (10)

The index of test problems is denoted by n. Table 6 presents the performance of the proposed
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5).
The proposed algorithm yields better results than these algorithms (see the last four rows of Table
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2,
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively.
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance,
respectively, but our algorithm obtains better results in eleven and ten instances compared to these
two algorithms, respectively.
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in
most instances. However, our algorithm performs even better than the algorithms in references 7, 8,
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the
above-mentioned three algorithms and has results closest to the best solutions reported in the
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football League case study.

Table 5. Performance of proposed algorithm as compared to other approaches.

13

row from the bottom shows the number of best results obtained from each algorithm. The value of
the percentage of best solution represents the percentage of best solutions obtained by each
algorithm. This value is calculated as follows:

Number of the best solutionsPercentage of best solutions .
Number of test problems

 (8)

The second row from the bottom of the table calculates the total percentage of the best solution, which
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as
follows:

Number of the best solutionsTotal percentage of best solutions = .
22

 (9)

Finally, the last row shows the difference between each method and the best solution for each test
problem. It is calculated only for methods with 22 test problems and is obtained as follows:

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


 (10)

The index of test problems is denoted by n. Table 6 presents the performance of the proposed
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5).
The proposed algorithm yields better results than these algorithms (see the last four rows of Table
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2,
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively.
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance,
respectively, but our algorithm obtains better results in eleven and ten instances compared to these
two algorithms, respectively.
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in
most instances. However, our algorithm performs even better than the algorithms in references 7, 8,
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the
above-mentioned three algorithms and has results closest to the best solutions reported in the
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football League case study.

Table 5. Performance of proposed algorithm as compared to other approaches.

13

row from the bottom shows the number of best results obtained from each algorithm. The value of
the percentage of best solution represents the percentage of best solutions obtained by each
algorithm. This value is calculated as follows:

Number of the best solutionsPercentage of best solutions .
Number of test problems

 (8)

The second row from the bottom of the table calculates the total percentage of the best solution, which
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as
follows:

Number of the best solutionsTotal percentage of best solutions = .
22

 (9)

Finally, the last row shows the difference between each method and the best solution for each test
problem. It is calculated only for methods with 22 test problems and is obtained as follows:

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


 (10)

The index of test problems is denoted by n. Table 6 presents the performance of the proposed
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5).
The proposed algorithm yields better results than these algorithms (see the last four rows of Table
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2,
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively.
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance,
respectively, but our algorithm obtains better results in eleven and ten instances compared to these
two algorithms, respectively.
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in
most instances. However, our algorithm performs even better than the algorithms in references 7, 8,
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the
above-mentioned three algorithms and has results closest to the best solutions reported in the
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football League case study.

Table 5. Performance of proposed algorithm as compared to other approaches.

13

row from the bottom shows the number of best results obtained from each algorithm. The value of
the percentage of best solution represents the percentage of best solutions obtained by each
algorithm. This value is calculated as follows:

Number of the best solutionsPercentage of best solutions .
Number of test problems

 (8)

The second row from the bottom of the table calculates the total percentage of the best solution, which
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as
follows:

Number of the best solutionsTotal percentage of best solutions = .
22

 (9)

Finally, the last row shows the difference between each method and the best solution for each test
problem. It is calculated only for methods with 22 test problems and is obtained as follows:

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


 (10)

The index of test problems is denoted by n. Table 6 presents the performance of the proposed
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5).
The proposed algorithm yields better results than these algorithms (see the last four rows of Table
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2,
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively.
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance,
respectively, but our algorithm obtains better results in eleven and ten instances compared to these
two algorithms, respectively.
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in
most instances. However, our algorithm performs even better than the algorithms in references 7, 8,
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the
above-mentioned three algorithms and has results closest to the best solutions reported in the
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football League case study.

Table 5. Performance of proposed algorithm as compared to other approaches.

The second row from the bottom of the table calculates the total
percentage of the best solution, which represents the percentage

of the best solutions obtained by each algorithm. The calculation
is performed as follows:

Finally, the last row shows the difference between each method
and the best solution for each test problem. It is calculated only

for methods with 22 test problems and is obtained as follows:

The index of test problems is denoted by n. Table 6 presents
the performance of the proposed memetic algorithm compared
to the most effective heuristic algorithms in the literature. Each
instance is solved 30 times and is stopped when a legal k-coloring
is found or when the processing time reaches its timeout limit set
at six CPU hours. The results show that the proposed algorithm
outperforms algorithms introduced by references 1, 2, 5, and 6
(see rows 1, 2, 5, and 6 of Table 5). The proposed algorithm
yields better results than these algorithms (see the last four rows
of Table 6). Additionally, the proposed algorithm performs even
better than the algorithms in references 1, 2, 5, and 6 for eight,
sixteen, nine, and fourteen instances, respectively.

Two algorithms proposed in references 3 and 4 obtain better
solutions in two and one instance, respectively, but our algorithm
obtains better results in eleven and ten instances compared to
these two algorithms, respectively.

The proposed algorithms in references 7, 8, and 9 perform well
and obtain the best solutions in most instances. However, our
algorithm performs even better than the algorithms in references
7, 8, and 9 for four, one, and two instances, respectively. Only
in one instance, algorithms in references 7 and 9 obtain better
results than our memetic algorithm (see row 12 of Table 5). In
addition, only our algorithm and algorithms in references 8 and 9

Volume 3 | Issue 3 | 10J Math Techniques Comput Math, 2024

can achieve the nineteen best results (see the row of the number
of best solutions in Table 6). Overall, our algorithm has a smaller
gap compared to the above-mentioned three algorithms and has
results closest to the best solutions reported in the literature,
with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01%

associated with references 7, 8, and 9, respectively (see the last
row of Table 5). Based on the obtained results, the proposed
memetic algorithm is recommended for the Iranian Football
League case study.

14

No.

Problem

Proposed
algorithm

Time
(m)

 Reference

 1 2 3 4 5 6 7 8 9
1 DSJC250.5 28 1 28 29 28 -- 28 -- 28 28 28

2 DSJC500.1 12 2 12 13 -- 12 12 12 12 12 12

3 DSJC500.5 48 25 49 50 49 48 48 49 48 48 48

4 DSJC500.9 126 110 127 127 -- 126 126 127 127 126 126

5 DSJC1000.1 20 114 21 21 -- 20 20 21 20 20 20

6 DSJC1000.5 83 61 88 91 89 86 84 89 83 83 83

7 DSJC1000.9 223 183 228 229 -- 224 224 227 224 223 223

8 DSJR500.1c 85 17 85 85 85 85 86 85 85 85 85

9 DSJR500.5 122 133 122 128 123 125 127 128 122 122 122

10 R250.5 65 13 65 -- 65 -- -- 67 65 65 65

11 R1000.1c 98 21 98 -- 98 -- -- 98 98 98 98

12 R1000.5 243 330 237 -- 241 -- -- 254 234 245 238

13 le450_15c 15 6 15 15 15 15 15 15 15 15 15

14 le450_15d 15 9 15 15 15 15 15 15 15 15 15

15 le450_25c 25 25 26 26 -- 25 26 26 25 25 25

16 le450_25d 25 22 26 26 -- 25 26 26 25 25 25

17 flat300_26_0 26 16 26 -- 26 -- 26 -- 26 26 26

18 flat300_28_0 29 141 31 -- 31 28 31 29 31 29 31

19 flat1000_50_0 50 18 50 -- 50 50 50 73 50 50 50

20 flat1000_60_0 60 11 60 -- 60 60 60 79 60 60 60

21 flat1000_76_0 82 73 87 -- 89 85 84 87 82 82 82

22 latin_sqr_10 99 173 99 100 98 -- 104 -- 101 99 100

23
 Number of test

problems

22

22 14 16 16 19 19 22 22 22

24
 Number of the best

solutions

19

11 3 10 12 10 5 18 19 19

25
 Percentage of the

best solution

86.36

50.0 21.4 62.5 75.0 52.6 26.3 81.8 86.3 86.3

26

Total percentage of
the best solution

86.36

50.0 13.6 45.5 54.5 45.5 22.7 81.8 86.4 86.4

27 Gap (%) 8.43 ---- 43.02 -- -- -- -- -- 15.01 9.29 14.46

Table 5: Performance of proposed algorithm as compared to other approaches

6. Case Study: Iranian Football League
Here, a real-world double round-robin sports scheduling problem
is presented as a case study. An interesting problem in DRR
sports is soccer league competitions. Our considered problem
is concerned with the Iranian football league called the Iran

Premier League (IPL). In this league, there are 16 teams from
different cities. Every team is required to compete against each
of the other teams twice, once in their opponent's home venue
and once in their home venue. There are 30 weeks (rounds) in
the season, which means 15 weeks for each half-season. In each

Volume 3 | Issue 3 | 11J Math Techniques Comput Math, 2024

round, there are 8 matches to play and in total 120 matches in a
half season. Each team can play once in each round and when
it plays with another team for the first time, the second play is
made in the opposite half of the schedule. Also, several teams
have the same stadium. So, when a team of the group plays
at home, another team must play away. There is also another

constraint. All teams must have good patterns and avoid breaks
as much as possible. A break is said to occur when a team plays
at home or away two or more times in consecutive rounds. Our
goal is to minimize the number of breaks as much as possible.
Table 6 displays the teams participating in the IPL along with
their respective cities and stadiums.

15

6. Case study: Iranian football league
Here, a real-world double round-robin sports scheduling problem is presented as a case study. An
interesting problem in DRR sports is soccer league competitions. Our considered problem is
concerned with the Iranian football league called the Iran Premier League (IPL). In this league, there
are 16 teams from different cities. Every team is required to compete against each of the other teams
twice, once in their opponent's home venue and once in their home venue. There are 30 weeks
(rounds) in the season, which means 15 weeks for each half-season. In each round, there are 8
matches to play and in total 120 matches in a half season. Each team can play once in each round and
when it plays with another team for the first time, the second play is made in the opposite half of the
schedule. Also, several teams have the same stadium. So, when a team of the group plays at home,
another team must play away. There is also another constraint. All teams must have good patterns and
avoid breaks as much as possible. A break is said to occur when a team plays at home or away two or
more times in consecutive rounds. Our goal is to minimize the number of breaks as much as possible.
Table 6 displays the teams participating in the IPL along with their respective cities and stadiums.

Table 6. List of clubs in IPL.

No.

Team

City

Stadium

1 Damash Rasht Azodi

2

Esteghlal

Tehran

Azadi

3

Esteghlal Khuzestan

Ahvaz

Ghadir

4

Fajr Sepasi

Shiraz

Hafezieh

5

Foolad

Ahvaz

Ghadir

6

Gostaresh

Tabriz

Sahand

7

Malavan

Anzali

Takhti

8

Mes

Kerman

Shahid Bahonar

9

Naft

Tehran

Dastgerdi

10

Persepolis

Tehran

Azadi

11

Rah Ahan

Tehran

Takhti Tehran

12

Saba Qom

Qom

Yadegare Emam

16

13

Saipa

Karaj

Enghelab Karaj

14

Sepahan

Esfahan

Foolad Shahr

15

Tractor Sazi

Tabriz

Sahand

16

Zob ahan

Esfahan

Foolad Shahr

To address the DRR scheduling problem, the proposed memetic algorithm was utilized. Initially, the
first matches were randomly arranged using a randomized danger algorithm. Then, the population
was enhanced using Tabu search. Finally, a genetic algorithm crossover was applied to generate new
k-colorings for the problem.
The matches scheduled for the first half-season are shown in Table 7. For the second half season, The
match schedule for the second half of the season closely resembles that of the first half, with the only
difference being that the teams who played at home during a match in the first half season will play
away during the corresponding match in the second half. The results indicate that there were 13
interruptions in the schedule.

Table 7. Scheduling the first half of the season in IPL.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8
11-13 15-6 11-2 5-12 15-7 5-3 15-9 5-16
12-9 5-11 12-13 8-3 11-14 11-15 12-14 11-12
14-5 8-12 16-15 9-10 12-2 8-16 16-13 8-9

10-15 9-4 10-7 14-15 16-9 9-7 10-5 14-4
1-8 16-10 1-5 2-1 10-8 14-1 1-11 2-10
4-7 2-14 4-8 7-16 1-6 2-4 4-6 1-15
6-2 7-3 6-14 13-4 4-5 13-10 7-8 13-7

3-16 13-1 3-9 6-11 3-13 6-12 3-2 6-3

Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15
15-8 5-9 15-13 5-13 15-5 11-9 15-2
9-13 11-3 8-5 11-16 8-6 12-16 5-6

Table 6: List of clubs in IPL

To address the DRR scheduling problem, the proposed memetic
algorithm was utilized. Initially, the first matches were randomly
arranged using a randomized danger algorithm. Then, the
population was enhanced using Tabu search. Finally, a genetic
algorithm crossover was applied to generate new k-colorings for
the problem.

The matches scheduled for the first half-season are shown in
Table 7. For the second half season, The match schedule for the
second half of the season closely resembles that of the first half,
with the only difference being that the teams who played at home
during a match in the first half season will play away during the
corresponding match in the second half. The results indicate that
there were 13 interruptions in the schedule.

Volume 3 | Issue 3 | 12J Math Techniques Comput Math, 2024

16

13

Saipa

Karaj

Enghelab Karaj

14

Sepahan

Esfahan

Foolad Shahr

15

Tractor Sazi

Tabriz

Sahand

16

Zob ahan

Esfahan

Foolad Shahr

To address the DRR scheduling problem, the proposed memetic algorithm was utilized. Initially, the
first matches were randomly arranged using a randomized danger algorithm. Then, the population
was enhanced using Tabu search. Finally, a genetic algorithm crossover was applied to generate new
k-colorings for the problem.
The matches scheduled for the first half-season are shown in Table 7. For the second half season, The
match schedule for the second half of the season closely resembles that of the first half, with the only
difference being that the teams who played at home during a match in the first half season will play
away during the corresponding match in the second half. The results indicate that there were 13
interruptions in the schedule.

Table 7. Scheduling the first half of the season in IPL.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8
11-13 15-6 11-2 5-12 15-7 5-3 15-9 5-16
12-9 5-11 12-13 8-3 11-14 11-15 12-14 11-12
14-5 8-12 16-15 9-10 12-2 8-16 16-13 8-9

10-15 9-4 10-7 14-15 16-9 9-7 10-5 14-4
1-8 16-10 1-5 2-1 10-8 14-1 1-11 2-10
4-7 2-14 4-8 7-16 1-6 2-4 4-6 1-15
6-2 7-3 6-14 13-4 4-5 13-10 7-8 13-7

3-16 13-1 3-9 6-11 3-13 6-12 3-2 6-3

Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15
15-8 5-9 15-13 5-13 15-5 11-9 15-2
9-13 11-3 8-5 11-16 8-6 12-16 5-6

17

12-1 12-15 9-2 12-3 9-14 14-8 8-11
16-2 14-10 16-14 14-7 16-1 2-5 9-1
10-6 2-7 10-11 2-8 10-12 1-7 16-4
4-11 1-4 4-12 1-10 7-11 4-10 10-3
7-5 13-8 7-6 4-15 13-2 6-13 7-12

3-14 6-16 3-1 6-9 3-4 3-15 13-14

7. Conclusions
The authors introduced a memetic algorithm that utilizes tabu searches and genetic algorithms to
improve the efficiency of solving round-robin sports scheduling problems presented as graph
coloring problems. The initial population was created using a randomized danger algorithm and
then refined using tabu search. The algorithm produced new k-colorings with a GA crossover
operation named adaptive multi-parent and further improved the offspring with tabu search.
The effectiveness of the proposed memetic algorithm was improved using a Taguchi plan, which
involved 16 different plans in 4 replications that considered the parameters npop, ku, ka, k3, and k4.
The respective values of 20, 0.025, 0.25, 0.50, and 0.020 were selected for these parameters. To
demonstrate the algorithm's validity, it was evaluated on the DIMACS challenge benchmarks with
41 test problems from different benchmark graphs categorized into easy and difficult graphs. The
results from 22 difficult graphs were compared to those of 9 effective heuristics in the literature,
and the algorithm proved to be highly competitive on a set of benchmark graphs known to be
challenging. The proposed memetic algorithm achieved the best solution and the smallest gap
compared to other heuristics in the literature in 19 out of 22 test problems, reaching results closest
to the best solutions in the literature. The gap was equal to 8.43% compared to 9.29%, 14.46%, and
15.01% associated with references 7, 8, and 9, respectively. The algorithm was also applied to real-
world round-robin sports scheduling problems as an application of graph coloring problems,
specifically in the Iran football premier league. In this league, 16 teams played against each other
twice, once in each other's home and once away. The round-robin sports scheduling problem in the
Iran football premier league has a specific constraint called the concurrent match constraint, which
requires that when one team plays at home, another team with the same stadium must play away.
Additionally, all teams must have good patterns of avoiding breaks as much as possible. This study
aimed to schedule the matches in different rounds while minimizing the number of breaks and
satisfying the given constraints. The results of the algorithm showed that the number of breaks was
equal to 13. Round-robin sports scheduling is an intriguing area of research that currently lacks
efficient algorithms for solving it. Developing a novel algorithm that can offer better solutions can
be considered a potential future direction for researchers in this field.

References

[1] Smith, Derek H., Steve Hurley, and S. U. Thiel,
(1998). "Improving heuristics for the frequency

assignment problem." European Journal of
Operational Research 107.1: 76-86.

Table 7: Scheduling the first half of the season in IPL

7. Conclusions
The authors introduced a memetic algorithm that utilizes tabu
searches and genetic algorithms to improve the efficiency of
solving round-robin sports scheduling problems presented as
graph coloring problems. The initial population was created
using a randomized danger algorithm and then refined using
tabu search. The algorithm produced new k-colorings with a GA
crossover operation named adaptive multi-parent and further
improved the offspring with tabu search.

The effectiveness of the proposed memetic algorithm was
improved using a Taguchi plan, which involved 16 different
plans in 4 replications that considered the parameters npop, ku,
ka, k3, and k4. The respective values of 20, 0.025, 0.25, 0.50,
and 0.020 were selected for these parameters. To demonstrate
the algorithm's validity, it was evaluated on the DIMACS
challenge benchmarks with 41 test problems from different
benchmark graphs categorized into easy and difficult graphs.
The results from 22 difficult graphs were compared to those of
9 effective heuristics in the literature, and the algorithm proved
to be highly competitive on a set of benchmark graphs known to
be challenging. The proposed memetic algorithm achieved the
best solution and the smallest gap compared to other heuristics
in the literature in 19 out of 22 test problems, reaching results
closest to the best solutions in the literature. The gap was equal
to 8.43% compared to 9.29%, 14.46%, and 15.01% associated
with references 7, 8, and 9, respectively. The algorithm was also
applied to real-world round-robin sports scheduling problems
as an application of graph coloring problems, specifically in the
Iran football premier league. In this league, 16 teams played

against each other twice, once in each other's home and once
away. The round-robin sports scheduling problem in the Iran
football premier league has a specific constraint called the
concurrent match constraint, which requires that when one
team plays at home, another team with the same stadium must
play away. Additionally, all teams must have good patterns
of avoiding breaks as much as possible. This study aimed to
schedule the matches in different rounds while minimizing
the number of breaks and satisfying the given constraints. The
results of the algorithm showed that the number of breaks was
equal to 13. Round-robin sports scheduling is an intriguing area
of research that currently lacks efficient algorithms for solving
it. Developing a novel algorithm that can offer better solutions
can be considered a potential future direction for researchers in
this field.

Data availability
Data will be made available on request.

Declarations
Conflict of interest
The authors declare no conflict of interest.

References
1.	 Smith, Derek H., Steve Hurley, and S. U. Thiel, (1998).

"Improving heuristics for the frequency assignment
problem." European Journal of Operational Research
107.1: 76-86.

2.	 Bui, Thang N., et al., (2008). "An ant-based algorithm for
coloring graphs." Discrete Applied Mathematics 156.2:

Volume 3 | Issue 3 | 13J Math Techniques Comput Math, 2024

Copyright: ©2024 Babak Javadi, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

190-200.
3.	 Dowsland, Kathryn A., and Jonathan M. Thompson, (2008).

"An improved ant colony optimization heuristic for graph
coloring." Discrete Applied Mathematics 156.3: 313-324.

4.	 Kole, Arnab, Debashis De, and Anindya Jyoti Pal,
(2022). "Solving Graph Coloring Problem Using Ant
Colony Optimization, Simulated Annealing and Quantum
Annealing—A Comparative Study." Intelligence
Enabled Research: DoSIER 2021. Singapore: Springer
Singapore,1-15.

5.	 Lü, Zhipeng, and Jin-Kao Hao, (2010). "A memetic
algorithm for graph coloring." European Journal of
Operational Research 203.1: 241-250

6.	 Goudet, Olivier, Cyril Grelier, and Jin-Kao Hao, (2022). "A
deep learning guided memetic framework for graph coloring
problems." Knowledge-Based Systems 258: 109986.

7.	 Marappan, Raja, and Gopalakrishnan Sethumadhavan,
(2021). "Solving graph coloring problem using divide and
conquer-based turbulent particle swarm optimization."
Arabian Journal for Science and Engineering: 1-18.

8.	 Xu, Yongjian, and Yu Chen, (2020). "A Cuckoo Quantum
Evolutionary Algorithm for the Graph Coloring Problem."
Bio-Inspired Computing: Theories and Applications: 16th
International Conference, BIC-TA 2021, Taiyuan, China,
December 17–19, 2021, Revised Selected Papers, Part I.
Singapore: Springer Singapore.

9.	 Moalic, Laurent, and Alexandre Gondran, (2018).
"Variations on memetic algorithms for graph coloring
problems." Journal of Heuristics 24: 1-24.

10.	 Zhou, Yangming, Béatrice Duval, and Jin-Kao Hao, (2018).
"Improving probability learning based local search for
graph coloring." Applied Soft Computing 65: 542-553.

11.	 Marappan, Raja, and Gopalakrishnan Sethumadhavan,
(2021). "Solving graph coloring problem using divide and

conquer-based turbulent particle swarm optimization."
Arabian Journal for Science and Engineering: 1-18.

12.	 Assi, Maram, Bahia Halawi, and Ramzi A. Haraty, (2018).
"Genetic algorithm analysis using the graph coloring
method for solving the university timetable problem."
Procedia Computer Science 126: 899-906.

13.	 Kusumawardani, Dian, Ahmad Muklason, and Vicha
Azthanty Supoyo, (2019). "Examination timetabling
automation and optimization using greedy-simulated
annealing hyper-heuristics algorithm." 2019 12th
International Conference on Information & Communication
Technology and Systems (ICTS). IEEE.

14.	 Meraihi, Yassine, Mohammed Mahseur, and Dalila Acheli,
(2020). "A modified binary crow search algorithm for
solving the graph coloring problem." International Journal
of Applied Evolutionary Computation (IJAEC) 11.2: 28-46.

15.	 Silva, Anderson Faustino da, Luis Gustavo Araujo
Rodriguez, and João Fabrício Filho, (2020). "The improved
ColourAnt algorithm: a hybrid algorithm for solving the
graph coloring problem." International Journal of Bio-
Inspired Computation 16.1: 1-12.

16.	 Bandopadhyay, Susobhan, et al., (2023). "Structural
parameterizations of budgeted graph coloring." Theoretical
Computer Science 940: 209-221.

17.	 Philippe Galinier, Alain Hertz, and Nicolas Zufferey, An
adaptive memory algorithm for the k-coloring problem,
Discrete Applied Mathematics 156 (2008), no. 2, 267–279.

18.	 Lü, Zhipeng, and Jin-Kao Hao, (2010). "A memetic
algorithm for graph coloring." European Journal of
Operational Research 203.1: 241-250.

19.	 Glover, Fred W., Mark Parker, and Jennifer Ryan, (1993).
"Coloring by tabu branch and bound." Cliques, Coloring,
and Satisfiability 26: 285-307.

