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Abstract
The issue of graph coloring is concerned with assigning colors to each vertex of an undirected graph so that adjacent vertices are 
not assigned the same color. Due to its NP-hard nature, a variety of heuristics and metaheuristics have been developed to tackle 
this problem. One of these approaches is the memetic algorithm, which was introduced as a solution for this problem. Another 
example is using a metaheuristic approach to address the round-robin sports scheduling problem. The algorithm suggested for 
this task comprises three primary components: (1) a randomized danger heuristic algorithm, (2) tabu search, and (3) a genetic 
algorithm with adaptive multi-parent crossover. To assess the performance of this algorithm, a set of test problems from different 
benchmark graphs in two categories were selected and compared with nine effective heuristics from existing literature. The 
results show that the algorithm performs exceptionally well on benchmark graphs that are known to be challenging. Additionally, 
a case study was conducted to demonstrate the effectiveness of the proposed algorithm.
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1. Introduction
The problem of graph coloring (GCP) is a renowned challenge 
in the branch of graph theory. It necessitates the assignment of 
colors to each vertex in an undirected graph G = (V, E) while 
ensuring that adjacent vertices do not share the same color. 
The objective of graph coloring is to minimize the number of 
colors required for a given graph G, which is denoted by the 
chromatic number. GCP has numerous applications in different 
fields such as map coloring, scheduling, timetabling, layout 
problems, register allocation, storage problems, and frequency 
assignments [1]. An intriguing use of graph coloring is in the 
scheduling of round-robin sports tournaments. In round-robin 
sports, there are n teams that need to compete against each other 
many times in predetermined rounds. There are two common 
types of round-robin sports, single round robins (SRRs) and 
double round robins (DRRs). In a single round-robin (SRR), 

each team competes against all other teams exactly once, which 
is equivalent to m =1. When m=equals 2, each team plays twice 
with every other team. DRRs are also called home-away matches. 
The problem of round-robin sports scheduling can be tackled 
using graph representations and graph coloring techniques. In 
this formulation, each match is considered a vertex, and two 
matches are adjacent if they cannot be scheduled in the same 
round. Each color represents a round, and each match is assigned 
to one round. For instance, a DRR problem with four teams is 
presented in Figure 1, where the only constraint considered is that 
they must compete once during each round. Several constraints 
can be taken into account in a round-robin sports problem. For 
instance, two teams may be prohibited from playing against each 
other in a particular round, or two teams may be required to play 
against each other in a specific round. 
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Figure 1. A graph for DRRs with several teams= 4

This constraint arises when two teams share the same stadium and cannot play home matches 
concurrently with other teams. To address this issue, an edge is added between the matches 
involving these two teams. Due to the NP-hard nature of the graph coloring problem (GCP), several 
heuristics and metaheuristic algorithms have been created to solve it. These include Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated 
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This constraint arises when two teams share the same stadium 
and cannot play home matches concurrently with other teams. To 
address this issue, an edge is added between the matches involving 
these two teams. Due to the NP-hard nature of the graph coloring 
problem (GCP), several heuristics and metaheuristic algorithms 
have been created to solve it. These include Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO), Simulated Annealing (SA), Tabu Search 
(TS), Neural Network Algorithm (NNA), DNA algorithm, and 
hybridizations of these algorithms with others. Additionally, the 
DSATUR algorithm is a popular algorithm that offers an upper 
limitation for the chromatic number in graph coloring problems. 
Within the case of the round-robin scheduling problem, there are 
several algorithms available in the literature, such as polygon 
and greedy algorithms. However, because of the intricacy of the 
problem, metaheuristic approaches such as those used in GCP, 
can also be applied to solve round-robin scheduling. As far as we 
know, a metaheuristic algorithm has not been utilized to address 
the round-robin sports scheduling problem. The current research 
suggests a memetic algorithm that comprises three primary 
stages. The first stage involves producing the initial population 
through a heuristic technique called the randomized danger 
algorithm, which utilizes a measure called dynamic vertex 
danger to assign rounds to matches. The generated individuals 
are then improved in the next phase using tabu search. In the 
third phase, new offspring are produced by a GA crossover called 
adaptive multi-parent, and the offspring are further optimized by 
tabu search. Finally, the best k-coloring is selected.

To evaluate the effectiveness of the proposed algorithm, we 
selected 41 test problems from two categories and compared 
our results with the most effective heuristics available in the 
literature. Additionally, we presented a real double-round-robin 
problem as a case study, where a football league with 16 teams 
and several constraints was considered. The rest of this paper is 
organized as follows. In Section 2, we present a literature review. 
Section 3 outlines our solution methodology and describes the 
randomized danger algorithm, tabu search, and GA crossover. 
Section 4 discusses the Taguchi method and other details 
proposed for tuning parameters. In Sections 5 and 6, we provide 
our experimental results and the case study, respectively. Finally, 

our conclusion is presented in Section 7.

2. Literature Review
A wide variety of algorithms can be found in the literature that 
can be used to address graph coloring problems (GCP) and 
related subproblems. Bui et al and Dowsland and Thompson 
proposed an ant colony optimization (ACO) algorithm as 
a solution to GCP, while Kole et al conducted a comparative 
analysis of three metaheuristic algorithms (ACO, simulated 
annealing (SA), and quantum annealing (QA)) within a single 
framework to solve GCP and determine the chromatic number 
[2,3]. The results showed that QA outperformed SA and ACO; 
however, it required more time than the latter two for larger 
graph instances. Nonetheless, all three algorithms exhibited 
favorable outcomes [4].

Lü and Hao introduced a memetic algorithm (MACOL) to address 
GCP [5]. Goudet et al proposed a memetic framework guided by 
deep learning for graph coloring problems and implemented it 
on GPU devices to solve the classical vertex k-coloring problem 
and the weighted vertex coloring problem [6]. In a related study, 
Marappan et al concentrated on developing a new Particle Swarm 
Optimization (PSO) model that minimizes the search space and 
number of generations required. Through behavioral analysis of 
this stochastic search model, it was discovered that premature 
convergence is primarily due to a decrease in particle velocity 
within the search space, leading to an implosion and eventual 
stagnation of swarm fitness [7]. To address this issue, Xu and 
Chen introduced a Cuckoo Quantum Evolutionary Algorithm 
(CQEA) that combines a cuckoo search strategy, a local search 
operation, and a perturbance strategy to improve the algorithm's 
global exploration capabilities and enhance its performance 
on GCP [8]. Moalic and Gondran introduced a new memetic 
algorithm for GCP called HEAD, which utilizes a local search 
algorithm (TabuCol) as an intensification operator and a crossover 
operator (GPX) to escape from local minima. Computational 
experiments on challenging DIMACS graphs showed that 
HEAD produced accurate results [9]. In another related study, 
Zhou et al proposed an improved probability learning-based 
local search algorithm for GCP [10]. Additionally, Marappan 
et al developed a new PSO model that minimizes the search 
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space and number of generations required for optimization. The 
decrease in particle velocity, leading to fitness stagnation, was 
identified as the primary cause of premature convergence in the 
stochastic search model [11]. Assi et al performed an analysis 
of the Genetic Algorithm (GA) approach for graph coloring 
in the timetable problem [12]. Meanwhile, Kusumawardani et 
al utilized a combination of a graph-coloring-based sequential 
greedy algorithm and a simulated annealing (SA) algorithm 
to address the Examination Timetabling Problem (ETP) using 
two real-world datasets [13]. Meraihi, et al presented a Chaotic 
Binary Salp Swarm Algorithm (CBSSA) to address GCP [14]. 
In a related study, Silva et al proposed a hybrid algorithm called 
iColourAnt, which employs ant colony optimization (ACO) and 
an efficient local search strategy to achieve suitable solutions 
for GCP. Experimental results indicated that iColourAnt 
outperformed its predecessor, ColourAnt [15]. Furthermore, 
Bandopadhyay et al generalized the Bounded Coloring 
Problem (BCP) and the Equitable Coloring Problem (ECP) and 
demonstrated that the vertex cover size can parameterize BCP 
and is FPT [16]. In addition to showing that the vertex cover size 
can parameterize the Bounded Coloring Problem (BCP) and is 

unlikely to have a polynomial kernel when parameterized by the 
deletion distance to clique, Bandopadhyay et al demonstrated that 
BCP is polynomial-time solvable for cluster graphs, generalizing 
a similar result for Equitable Coloring Problem (ECP) [16]. In 
general, the most popular algorithms for improving the solving 
of GCP are currently MA, ACO, GA, TS, SA, QA, PSO, and 
COA.

3. Solution Procedure
The memetic algorithm we propose is comprised of three 
primary elements. The first component involves generating the 
initial population using a heuristic known as the Randomized 
Danger Algorithm. Subsequently, a tabu search is applied to 
improve the individuals generated by the danger algorithm and 
reduce the number of conflicts. In the final phase, a specific 
GA crossover operation is utilized to generate new k-colorings. 
These individuals are further optimized by tabu search and 
combined with the population generated in phase two, and 
the best k-coloring is selected. A Pseudo-code of the memetic 
algorithm is illustrated in Figure 2.
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Algorithm 1: memetic algorithm procedure. 
Generate initial population by randomized danger algorithm. 
      Population = 1,..., .npopIP IP  
      npop = number of populations; 
for i=1: npop 
      TS1i = Tabu search (IPi); 
End for 
for i=1: npop 
      GAi = Crossover (TS1i); 
      TS2i = Tabu search (GAi); 
End for 
Combine TS1 with TS2; 
The best coloring= min  1 11 ,... 1 , 2 ,... 2 .npop npopTS TS TS TS  

Figure 2. A Pseudo-code for the memetic algorithm. 

 
Figure 2 : A Pseudo-code for the memetic algorithm.

3.1 Fitness Function
In the literature, there are various strategies available to solve 
graph coloring problems, including legal strategy, k-fixed partial 
legal strategy, penalty strategy, and k-fixed penalty strategy. 
For the graph coloring problem, the k-fixed penalty strategy is 
implemented. With this strategy, the number of colors is fixed, 
and the search space contains both legal and illegal k-colorings. 

The objective function is to minimize the number of conflicts. 
Given an undirected graph G=(V, E) with a vertex set V and an 
edge set E, A= is a k-coloring where Vi is the set of vertices that 
color i is assigned to. If a and b are two adjacent vertices in graph 
G, then we say a conflict exists, and the edge (a,b) is referred to 
as a conflicting edge. The objective function is to minimize the 
total number of conflicting edges, defined as follows:
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So, we say that a legal k-coloring is obtained if f (A) =0. 
 

3.2 Randomized danger algorithm 

The danger algorithm, introduced in 1996, is based on the concept of dynamic vertex danger measure, 
which prioritizes uncolored vertices. In our presented danger algorithm, we utilize a randomized 
approach to generate individuals for the population. The proposed heuristic comprises two phases, 
namely match danger and round danger. In match danger, we select an unassigned match with the 
highest danger value in each iteration. Then, in round danger, we choose a round with the lowest 
danger value and assign it to the chosen match from match danger. To prevent becoming trapped in a 
local optimum, we apply a randomized approach. Specifically, we randomly select a match from the 
top three highest values in match danger and a round from the top three lowest values in round 
danger. 
 

3.2.1 Match danger 

Algorithm 2: Match Danger 

Step 1: Compute different rounds (i) for each match. (Different-round (i) represents the number of 
different rounds assigned to the neighbors of the match (i)). 

Step 2: Compute unassigned (i) for each match. (Unassigned (i) represents the number of neighbors 
of the match (i) unassigned to any rounds). 
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3.2 Randomized Danger Algorithm
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concept of dynamic vertex danger measure, which prioritizes 
uncolored vertices. In our presented danger algorithm, we 
utilize a randomized approach to generate individuals for the 
population. The proposed heuristic comprises two phases, 
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namely match danger and round danger. In match danger, we 
select an unassigned match with the highest danger value in 
each iteration. Then, in round danger, we choose a round with 
the lowest danger value and assign it to the chosen match from 
match danger. To prevent becoming trapped in a local optimum, 
we apply a randomized approach. Specifically, we randomly 
select a match from the top three highest values in match danger 
and a round from the top three lowest values in round danger.

3.2.1 Match Danger
Algorithm 2: Match Danger
Step 1: Compute different rounds (i) for each match. (Different-

round (i) represents the number of different rounds assigned to 
the neighbors of the match (i)).
Step 2: Compute unassigned (i) for each match. (Unassigned (i) 
represents the number of neighbors of the match (i) unassigned 
to any rounds).
Step 3: Compute share (i) for each match. (Share (i) represents 
the number of rounds available to match (i) and its unassigned 
neighbors).
Step 4: Compute avail (i) for each match. (Avail (i) represents 
the number of rounds available for the match (i)).
Therefore, match danger (i) can be defined as follows:
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Finally, a round is selected randomly from the top three lowest 
values in round danger and is assigned to the chosen match in 
match danger. 

3.3 Tabu Search
In this step, we optimize the populations generated in the 
previous phase using tabu search. The proposed tabu search 

improves each individual separately until the stop condition is 
met. In each iteration, we select a conflict match and assign a 
round different from the current one. To avoid being trapped 
in a local optimum and increase the diversity of the algorithm, 
we define a tabu list. When a round is assigned to a specific 
match, it is forbidden to be assigned to that match for the next L 
iterations. Therefore, this move is added to the tabu list. L is the 
tabu tenure, which is defined as follows [15]: 
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3.4 Genetic Algorithm Crossover Operation
In a hybrid algorithm, the crossover is an important operator 
to produce new individuals and improve the current solution. 
Two types of crossover operations are commonly used for graph 
coloring: assignment crossover and partition crossover. In our 
approach, we utilize a partition crossover known as an adaptive 
multi-parent crossover, which was introduced by Lü and Hao 
[18]. The features distinguishing this crossover from others are 
the number of selected parents and the way rounds are assigned 
to matches. Individuals improved by tabu search are assigned to 
different classes and each match belongs to only one class. In the 
presented crossover, the first m parents are chosen (2 ≤ m ≤ npop), 

and the parents with maximal cardinality class are selected. 
Then, the first round is assigned to matches belonging to the 
maximal cardinality class and the matches are removed from all 
the m individuals. We repeat this procedure until all rounds are 
assigned to matches. For each remaining match, we randomly 
select a round. Also, a forbidden list is used to avoid focusing 
on a single parent. When a parent with maximal cardinality class 
is selected, this parent is forbidden to select until L iterations, 
where L is [m/2] [18]. After the adaptive multi-parent crossover 
is performed, the new offspring are further improved using the 
tabu search algorithm described in Section 3.3. The Pseudo-code 
of the proposed GA crossover operation is presented in Figure 4.
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The presented crossover operation is exemplified in Figure 5. 
In this example, there are 10 matches, 3 rounds, and 3 parents. 
In the first step, parent 1 had maximal cardinality, and matches  
{v2,v5,v6,v7,v9}, were selected and assigned to round 1. Moreover, 

all parents remove these matches, and parent 1 is added to the 
forbidden list. With a similar procedure, matches V1, V4, and 
V10 are assigned to round 2. Finally, matches V3 and V8 are 
assigned to round 3.
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Figure 5: An instance of adaptive multi-parent crossover could be provided as an example.

4. Parameter Tuning
The effectiveness of the proposed memetic algorithm for GCP 
is highly dependent on the selection of appropriate parameters 
for each phase of the algorithm. The study explains that 
these parameters have a significant impact on the algorithm's 
performance, and a well-tuned parameter configuration can help 
prevent the algorithm from getting stuck in a local optimum and 
increase diversity in the search space. This finding is consistent 
with a separate study from 2009. Each parameter has a range of 
potential values, and the Taguchi method is adopted to determine 
the optimal parameter levels, which include npop, ku, ka, k3, 
and k4, to ensure dependable computational outcomes.

According to [19], the values ku= 0.025, ka= 0.33, k3= 0.5, and 
k4= 0.025 work well over a large class of graphs in practice. 
However, these parameters should be tuned appropriately for 
graphs with particular structures to get better solutions. Also, 
In [18], the npop parameter is set to 20. According to this 
information, our Taguchi method is planned and the parameters 
of the memetic algorithm and their levels are shown in Table 1. 
In the proposed Taguchi method for each problem, 16 different 
plans in 4 replications are considered and the proposed memetic 
algorithm is run under these designs. Note that parameters k1, 
k2, M1, and M2 are considered to be constant and equal to 1 [19].
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 Figure 6 provides a visualization of how the selected parameters behave, while Table 2 displays the 
optimal parameter values that have been determined. 
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Table 2: The optimal levels for the parameters in the memetic algorithm have been established

5. Experimental Findings
In order to showcase the effectiveness of the proposed 
algorithm, a total of 41 distinct test problems were selected from 
two categories of the widely recognized DIMACS coloring 
benchmarks. In order to compare the results, nine other graph 
coloring algorithms that were previously introduced in literature 
were used. The proposed memetic algorithm was implemented 
in Matlab 7.11 and executed on a PC with a core i5 processor 
running at 1.8 GHz, and with 6 GB of RAM. The instances are 
categorized into two classes: Easy graphs are classified as class 
1, which can be solved by most heuristics, while difficult graphs 
fall under class 2 and require strong competitive algorithms to 
solve them. Tables 3 and 4 present these test problems, along 

with their characteristics, which belong to classes 1 and 2, 
respectively. For comparison, only test problems in class 2 
were compared to other algorithms in the literature. Tables 3 
and 4 provide information on the benchmark problems used in 
the study. Columns 2 and 3 provide the number of vertices and 
edges, respectively. Columns 4 and 5 present the density and 
ID class of these benchmark problems, which include random 
graphs (DSJC), random geometric graphs (DSJCR and R), 
Leighton graphs (LEI), class scheduling graphs (SCH), flat 
graphs (FLAT), and Latin square graphs (LAT). The last column 
reports the best-known results in the literature and Kbest, which 
represents the minimum number of colors obtained. 
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Table 3. Computational results on easy DIMACS benchmarks. 
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Density 
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DSJC125.5  125  3891  0.50  DSJC  17 
DSJC125.9  125  6961  0.89  DSJC  44 
DSJC250.1  250  3218  0.10  DSJC  8 
DSJC250.9  250  27897  0.90  DSJC  72 
R125.1  125  209  0.03  R  5 
R125.1C  125  7501  0.97  R  46 
R125.5  125  3838  0.5  R  36 
R250.1  250  867  0.03  R  8 
R250.1C  250  30227  0.97  R  64 
DSJR500.1  500  3555  0.03  DSJR  12 
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school1  385  19095  0.26  SCH  14 
school1_nsh  352  14612  0.24  SCH  14 
flat300_20_0  300  21375  0.48  FLAT  20 
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500  58862  0.47  DSJR  122 

10 
 

R250.5 
 

250  14849  0.48  R  65 
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13 
 

le450_15c 
 

450  16680  0.17  LEI  15 

14 
 

le450_15d 
 

450  16750  0.17  LEI  15 

15 
 

le450_25c 
 

450  17343  0.17  LEI  25 

16 
 

le450_25d 
 

450  17425  0.17  LEI  25 

17 
 

flat300_26_0 
 

300  21633  0.48  FLAT  26 

18 
 

flat300_28_0 
 

300  21695  0.48  FLAT  28 

19 
 

flat1000_50_0 
 

1000  245000  0.49  FLAT  50 

20 
 

flat1000_60_0 
 

1000  245830  0.49  FLAT  60 

21 
 

flat1000_76_0 
 

1000  246708  0.49  FLAT  82 

22 
 

latin_sqr_10 
 

900  307350  0.76  LAT  98 

 

Table 5 provides a summary of research findings reported in the literature for comparison and 
contains results for the challenging test problems. Table 6 presents the results of 22 test problems 
applying 9 methods and shows a comparison of these methods and our proposed memetic 
algorithm. The fifth row from the bottom shows so h ooAhnsee ooa ss ni AseA psn esae. The fourth 
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row from the bottom shows the number of best results obtained from each algorithm. The value of 
the percentage of best solution represents the percentage of best solutions obtained by each 
algorithm. This value is calculated as follows: 

Number of the best solutionsPercentage of best solutions .
Number of test problems

  (8) 

The second row from the bottom of the table calculates the total percentage of the best solution, which 
represents the percentage of the best solutions obtained by each algorithm. The calculation is performed as 
follows: 

Number of the best solutionsTotal percentage of best solutions = .
22

 (9) 

Finally, the last row shows the difference between each method and the best solution for each test 
problem. It is calculated only for methods with 22 test problems and is obtained as follows: 

   
 

22

1

obtained solution best solution
Gap(%) ,

best solution
n n

n n


                            (10) 

The index of test problems is denoted by n. Table 6 presents the performance of the proposed 
memetic algorithm compared to the most effective heuristic algorithms in the literature. Each 
instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing 
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm 
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5). 
The proposed algorithm yields better results than these algorithms (see the last four rows of Table 
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2, 
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively. 
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance, 
respectively, but our algorithm obtains better results in eleven and ten instances compared to these 
two algorithms, respectively. 
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in 
most instances. However, our algorithm performs even better than the algorithms in references 7, 8, 
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7 
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our 
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of 
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the 
above-mentioned three algorithms and has results closest to the best solutions reported in the 
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references 
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed 
memetic algorithm is recommended for the Iranian Football League case study.
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instance is solved 30 times and is stopped when a legal k-coloring is found or when the processing 
time reaches its timeout limit set at six CPU hours. The results show that the proposed algorithm 
outperforms algorithms introduced by references 1, 2, 5, and 6 (see rows 1, 2, 5, and 6 of Table 5). 
The proposed algorithm yields better results than these algorithms (see the last four rows of Table 
6). Additionally, the proposed algorithm performs even better than the algorithms in references 1, 2, 
5, and 6 for eight, sixteen, nine, and fourteen instances, respectively. 
Two algorithms proposed in references 3 and 4 obtain better solutions in two and one instance, 
respectively, but our algorithm obtains better results in eleven and ten instances compared to these 
two algorithms, respectively. 
The proposed algorithms in references 7, 8, and 9 perform well and obtain the best solutions in 
most instances. However, our algorithm performs even better than the algorithms in references 7, 8, 
and 9 for four, one, and two instances, respectively. Only in one instance, algorithms in references 7 
and 9 obtain better results than our memetic algorithm (see row 12 of Table 5). In addition, only our 
algorithm and algorithms in references 8 and 9 can achieve the nineteen best results (see the row of 
the number of best solutions in Table 6). Overall, our algorithm has a smaller gap compared to the 
above-mentioned three algorithms and has results closest to the best solutions reported in the 
literature, with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% associated with references 
7, 8, and 9, respectively (see the last row of Table 5). Based on the obtained results, the proposed 
memetic algorithm is recommended for the Iranian Football League case study.
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is found or when the processing time reaches its timeout limit set 
at six CPU hours. The results show that the proposed algorithm 
outperforms algorithms introduced by references 1, 2, 5, and 6 
(see rows 1, 2, 5, and 6 of Table 5). The proposed algorithm 
yields better results than these algorithms (see the last four rows 
of Table 6). Additionally, the proposed algorithm performs even 
better than the algorithms in references 1, 2, 5, and 6 for eight, 
sixteen, nine, and fourteen instances, respectively.

Two algorithms proposed in references 3 and 4 obtain better 
solutions in two and one instance, respectively, but our algorithm 
obtains better results in eleven and ten instances compared to 
these two algorithms, respectively.

The proposed algorithms in references 7, 8, and 9 perform well 
and obtain the best solutions in most instances. However, our 
algorithm performs even better than the algorithms in references 
7, 8, and 9 for four, one, and two instances, respectively. Only 
in one instance, algorithms in references 7 and 9 obtain better 
results than our memetic algorithm (see row 12 of Table 5). In 
addition, only our algorithm and algorithms in references 8 and 9 
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can achieve the nineteen best results (see the row of the number 
of best solutions in Table 6). Overall, our algorithm has a smaller 
gap compared to the above-mentioned three algorithms and has 
results closest to the best solutions reported in the literature, 
with a gap of 8.43% compared to 9.29%, 14.46%, and 15.01% 

associated with references 7, 8, and 9, respectively (see the last 
row of Table 5). Based on the obtained results, the proposed 
memetic algorithm is recommended for the Iranian Football 
League case study. 
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No. 
 

Problem 
 

Proposed 
algorithm 

 
Time 
(m) 

 Reference 

    1 2 3 4 5 6 7 8 9 
1 DSJC250.5 28 1 28 29 28 -- 28 -- 28 28 28 

2  DSJC500.1  12  2  12 13 -- 12 12 12 12 12 12 

3  DSJC500.5  48  25  49 50 49 48 48 49 48 48 48 

4  DSJC500.9  126  110  127 127 -- 126 126 127 127 126 126 

5  DSJC1000.1  20  114  21 21 -- 20 20 21 20 20 20 

6  DSJC1000.5  83  61  88 91 89 86 84 89 83 83 83 

7  DSJC1000.9  223  183  228 229 -- 224 224 227 224 223 223 

8  DSJR500.1c  85  17  85 85 85 85 86 85 85 85 85 

9  DSJR500.5  122  133  122 128 123 125 127 128 122 122 122 

10  R250.5  65  13  65 -- 65 -- -- 67 65 65 65 

11  R1000.1c  98  21  98 -- 98 -- -- 98 98 98 98 

12  R1000.5  243  330  237 -- 241 -- -- 254 234 245 238 

13  le450_15c  15  6  15 15 15 15 15 15 15 15 15 

14  le450_15d  15  9  15 15 15 15 15 15 15 15 15 

15  le450_25c  25  25  26 26 -- 25 26 26 25 25 25 

16  le450_25d  25  22  26 26 -- 25 26 26 25 25 25 

17  flat300_26_0  26  16  26 -- 26 -- 26 -- 26 26 26 

18  flat300_28_0  29  141  31 -- 31 28 31 29 31 29 31 

19  flat1000_50_0  50  18  50 -- 50 50 50 73 50 50 50 

20  flat1000_60_0  60  11  60 -- 60 60 60 79 60 60 60 

21  flat1000_76_0  82  73  87 -- 89 85 84 87 82 82 82 

22  latin_sqr_10  99  173  99 100 98 -- 104 -- 101 99 100 
                 

23 
 Number of test 

problems 
 

22 
 

---- 
 

22 14 16 16 19 19 22 22 22 

24 
 Number of the best 

solutions 

 
19 

 
---- 

 
11 3 10 12 10 5 18 19 19 

25 
 Percentage of the 

best solution 

 
86.36 

 
---- 

 
50.0 21.4 62.5 75.0 52.6 26.3 81.8 86.3 86.3 

26 

 
Total percentage of 
the best solution 

 

86.36 

 

---- 
 

50.0 13.6 45.5 54.5 45.5 22.7 81.8 86.4 86.4 

27  Gap (%)  8.43  ----  43.02 -- -- -- -- -- 15.01 9.29 14.46 

 

 

 

 

Table 5: Performance of proposed algorithm as compared to other approaches

6. Case Study: Iranian Football League
Here, a real-world double round-robin sports scheduling problem 
is presented as a case study. An interesting problem in DRR 
sports is soccer league competitions. Our considered problem 
is concerned with the Iranian football league called the Iran 

Premier League (IPL). In this league, there are 16 teams from 
different cities. Every team is required to compete against each 
of the other teams twice, once in their opponent's home venue 
and once in their home venue. There are 30 weeks (rounds) in 
the season, which means 15 weeks for each half-season. In each 
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round, there are 8 matches to play and in total 120 matches in a 
half season. Each team can play once in each round and when 
it plays with another team for the first time, the second play is 
made in the opposite half of the schedule. Also, several teams 
have the same stadium. So, when a team of the group plays 
at home, another team must play away. There is also another 

constraint. All teams must have good patterns and avoid breaks 
as much as possible. A break is said to occur when a team plays 
at home or away two or more times in consecutive rounds. Our 
goal is to minimize the number of breaks as much as possible. 
Table 6 displays the teams participating in the IPL along with 
their respective cities and stadiums. 
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Yadegare Emam 

16 
 

13 
 

Saipa 
 

Karaj 
 

Enghelab Karaj 

14 
 

Sepahan 
 

Esfahan 
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To address the DRR scheduling problem, the proposed memetic algorithm was utilized. Initially, the 
first matches were randomly arranged using a randomized danger algorithm. Then, the population 
was enhanced using Tabu search. Finally, a genetic algorithm crossover was applied to generate new 
k-colorings for the problem. 
The matches scheduled for the first half-season are shown in Table 7. For the second half season, The 
match schedule for the second half of the season closely resembles that of the first half, with the only 
difference being that the teams who played at home during a match in the first half season will play 
away during the corresponding match in the second half. The results indicate that there were 13 
interruptions in the schedule. 
 

 

 

 

 

 

 
Table 7. Scheduling the first half of the season in IPL. 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 
11-13 15-6 11-2 5-12 15-7 5-3 15-9 5-16 
12-9 5-11 12-13 8-3 11-14 11-15 12-14 11-12 
14-5 8-12 16-15 9-10 12-2 8-16 16-13 8-9 

10-15 9-4 10-7 14-15 16-9 9-7 10-5 14-4 
1-8 16-10 1-5 2-1 10-8 14-1 1-11 2-10 
4-7 2-14 4-8 7-16 1-6 2-4 4-6 1-15 
6-2 7-3 6-14 13-4 4-5 13-10 7-8 13-7 

3-16 13-1 3-9 6-11 3-13 6-12 3-2 6-3 
        

Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15  
15-8 5-9 15-13 5-13 15-5 11-9 15-2  
9-13 11-3 8-5 11-16 8-6 12-16 5-6  

Table 6: List of clubs in IPL

To address the DRR scheduling problem, the proposed memetic 
algorithm was utilized. Initially, the first matches were randomly 
arranged using a randomized danger algorithm. Then, the 
population was enhanced using Tabu search. Finally, a genetic 
algorithm crossover was applied to generate new k-colorings for 
the problem.

The matches scheduled for the first half-season are shown in 
Table 7. For the second half season, The match schedule for the 
second half of the season closely resembles that of the first half, 
with the only difference being that the teams who played at home 
during a match in the first half season will play away during the 
corresponding match in the second half. The results indicate that 
there were 13 interruptions in the schedule.
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Table 7. Scheduling the first half of the season in IPL. 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 
11-13 15-6 11-2 5-12 15-7 5-3 15-9 5-16 
12-9 5-11 12-13 8-3 11-14 11-15 12-14 11-12 
14-5 8-12 16-15 9-10 12-2 8-16 16-13 8-9 

10-15 9-4 10-7 14-15 16-9 9-7 10-5 14-4 
1-8 16-10 1-5 2-1 10-8 14-1 1-11 2-10 
4-7 2-14 4-8 7-16 1-6 2-4 4-6 1-15 
6-2 7-3 6-14 13-4 4-5 13-10 7-8 13-7 

3-16 13-1 3-9 6-11 3-13 6-12 3-2 6-3 
        

Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15  
15-8 5-9 15-13 5-13 15-5 11-9 15-2  
9-13 11-3 8-5 11-16 8-6 12-16 5-6  

17 
 

12-1 12-15 9-2 12-3 9-14 14-8 8-11  
16-2 14-10 16-14 14-7 16-1 2-5 9-1  
10-6 2-7 10-11 2-8 10-12 1-7 16-4  
4-11 1-4 4-12 1-10 7-11 4-10 10-3  
7-5 13-8 7-6 4-15 13-2 6-13 7-12  

3-14 6-16 3-1 6-9 3-4 3-15 13-14  
 

7. Conclusions  
The authors introduced a memetic algorithm that utilizes tabu searches and genetic algorithms to 
improve the efficiency of solving round-robin sports scheduling problems presented as graph 
coloring problems. The initial population was created using a randomized danger algorithm and 
then refined using tabu search. The algorithm produced new k-colorings with a GA crossover 
operation named adaptive multi-parent and further improved the offspring with tabu search. 
The effectiveness of the proposed memetic algorithm was improved using a Taguchi plan, which 
involved 16 different plans in 4 replications that considered the parameters npop, ku, ka, k3, and k4. 
The respective values of 20, 0.025, 0.25, 0.50, and 0.020 were selected for these parameters. To 
demonstrate the algorithm's validity, it was evaluated on the DIMACS challenge benchmarks with 
41 test problems from different benchmark graphs categorized into easy and difficult graphs. The 
results from 22 difficult graphs were compared to those of 9 effective heuristics in the literature, 
and the algorithm proved to be highly competitive on a set of benchmark graphs known to be 
challenging. The proposed memetic algorithm achieved the best solution and the smallest gap 
compared to other heuristics in the literature in 19 out of 22 test problems, reaching results closest 
to the best solutions in the literature. The gap was equal to 8.43% compared to 9.29%, 14.46%, and 
15.01% associated with references 7, 8, and 9, respectively. The algorithm was also applied to real-
world round-robin sports scheduling problems as an application of graph coloring problems, 
specifically in the Iran football premier league. In this league, 16 teams played against each other 
twice, once in each other's home and once away. The round-robin sports scheduling problem in the 
Iran football premier league has a specific constraint called the concurrent match constraint, which 
requires that when one team plays at home, another team with the same stadium must play away. 
Additionally, all teams must have good patterns of avoiding breaks as much as possible. This study 
aimed to schedule the matches in different rounds while minimizing the number of breaks and 
satisfying the given constraints. The results of the algorithm showed that the number of breaks was 
equal to 13. Round-robin sports scheduling is an intriguing area of research that currently lacks 
efficient algorithms for solving it. Developing a novel algorithm that can offer better solutions can 
be considered a potential future direction for researchers in this field. 
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The authors introduced a memetic algorithm that utilizes tabu 
searches and genetic algorithms to improve the efficiency of 
solving round-robin sports scheduling problems presented as 
graph coloring problems. The initial population was created 
using a randomized danger algorithm and then refined using 
tabu search. The algorithm produced new k-colorings with a GA 
crossover operation named adaptive multi-parent and further 
improved the offspring with tabu search.

The effectiveness of the proposed memetic algorithm was 
improved using a Taguchi plan, which involved 16 different 
plans in 4 replications that considered the parameters npop, ku, 
ka, k3, and k4. The respective values of 20, 0.025, 0.25, 0.50, 
and 0.020 were selected for these parameters. To demonstrate 
the algorithm's validity, it was evaluated on the DIMACS 
challenge benchmarks with 41 test problems from different 
benchmark graphs categorized into easy and difficult graphs. 
The results from 22 difficult graphs were compared to those of 
9 effective heuristics in the literature, and the algorithm proved 
to be highly competitive on a set of benchmark graphs known to 
be challenging. The proposed memetic algorithm achieved the 
best solution and the smallest gap compared to other heuristics 
in the literature in 19 out of 22 test problems, reaching results 
closest to the best solutions in the literature. The gap was equal 
to 8.43% compared to 9.29%, 14.46%, and 15.01% associated 
with references 7, 8, and 9, respectively. The algorithm was also 
applied to real-world round-robin sports scheduling problems 
as an application of graph coloring problems, specifically in the 
Iran football premier league. In this league, 16 teams played 

against each other twice, once in each other's home and once 
away. The round-robin sports scheduling problem in the Iran 
football premier league has a specific constraint called the 
concurrent match constraint, which requires that when one 
team plays at home, another team with the same stadium must 
play away. Additionally, all teams must have good patterns 
of avoiding breaks as much as possible. This study aimed to 
schedule the matches in different rounds while minimizing 
the number of breaks and satisfying the given constraints. The 
results of the algorithm showed that the number of breaks was 
equal to 13. Round-robin sports scheduling is an intriguing area 
of research that currently lacks efficient algorithms for solving 
it. Developing a novel algorithm that can offer better solutions 
can be considered a potential future direction for researchers in 
this field.  
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