
Journal of Robotics and Automation Research

 Volume 1 | Issue 1 | 01

A Cooperative Augmented Reality Framework Grounded on Distributive Visual
Simultaneous Localization and Mapping

Research Article

Tesfaye Adisu1*, and Abaysew Ayele2

1Department of Mechatronics Engineering, Near East
University, Nicosia/TRNC, Mersin 10-Turkey.

2Department of Biotechnology, Sharda University, greater
Noida-20130, uttar Pradesh, India

*Corresponding author
Tesfaye Adisu, Department of Mechatronics Engineering, Near East
University, Nicosia / TRNC, Mersin 10 – Turkey.

Introduction
A visual Simultaneous Localization and Mapping (SLAM) has
been using as for marker less tracking during in augmented reality
implementations. The term SLAM was formerly developed by
Hugh Durrant and John J. Leonard which it’s concerned with the
applications of building a map of unknown environment by a mobile
robot while concurrently navigating the environment using the map
[1]. The robotics community also defined the SLAM problem as
an agent of map creator of an unknown site using sensor(s) while
concurrently localizing itself in the environment. To localize the
agent properly, an accurate map is required. To produce a precise
map, self-localization has to been done in appropriate way.

A choice of a sensor for SLAM process is also valuable. Most
Visual SLAM approaches relied on detecting features and generating
sparse maps using inexpensive, universal mobile agents such as
image processing tools and cameras [2]. Dense maps offer more
benefits over sparse maps such like, better agent communications,
better object recognition, and better scene interaction for augmented
reality applications.

Many researchers explored on how to use multiple agents (distributed
SLAM) to perform SLAM. It upsurges the robustness of SLAM
process and minimizes disastrous failures. Challenges in distributed
SLAM are limited communication bandwidth when sharing
information between agents and map’s computation overlaps. In
this newly proposed framework, agents generate a local quisi-dense
map applying direct featureless SLAM method. The framework
also extracts features and uses them to detect loop closure in local
maps and to compute map overlaps between agents. Agents do not

use any prior of their original poses knowledge to determine map
overlaps [3].

Literature Views
SLAM is a procedure by which a robot can build a map of the
required environment and concurrently locate itself with respect to
the map. Different authors like Smith et al. has been introduced the
earliest probabilistic SLAM algorithm [3]. Extended Kalman (EKF)
filter has the weakness of computational complexity, nonlinearity
and data association. In large-scale environments, it is difficult
to avoid inconsistency [2]. Also Smith et al. presented an EKF
(Extended Kalman Filter) oriented solution for the SLAM problem,
that it incrementally estimates the landmark position and agent pose
distribution [4].

Covariance matrix raises with quantity of landmarks. A Monte Carlo
Sampling (particle filter) based approach by Montemerlo et al. named
Fast SLAM, to address above limitations and supported non-linear
process models and non-Gaussian pose distributions [5].Davidson
et.al. Have also presented a Monocular Visual SLAM (Mono SLAM)
a method of capturing the path of a liberally moving camera while
producing a sparsed map [6]. EKF-SLAM & Particle (PF) Filtering
combined for estimating and featuring initialization. Klein et al in
[6]. Offered, PTAM (Parallel Tracking and Mapping), which is one
of the utmost momentous solutions for visual SLAM. This SLAM
solution predominantly focused on accurate & fast mapping in an
alike environment to Mono SLAM. Its implementations decoupled
localizations and mapping, into two threads. The future tracking and
front-end thread performs estimation, while the back-end performs
mapping and also removing unnecessary key-frames.

J Robot Auto Res, 2020 www.opastonline.com

Abstract
Distributive Simultaneous Localizations and Mapping (SLAM) helps for multiple agents for exploring and building a global
map predicting their locations. The challenge is difficult to identify local map overlaps these agents, especially when their initial
relative positions are unknown. So, to address this problem, a collaborative (AR) framework with liberally moving agents were
used without know how of their initial comparative positions. Each agent in the framework used a camera only as the input
device for its SLAM route.

Submitted: 22 Oct 2020; Accepted: 31 Oct 2020; Published: 05 Nov 2020

Keywords: Algorithm, Augmented Reality, Distributive SLAM, Framework, Localization Nodes, Robotics.

Furthermore, Global Bundle Adjustment (GBA) adjusted the pose
of entire key frames. BA changed the pose of key frames allowing
a reasonable rate of exploration [7]. GBA worked well for with
offline Structure from Motion (SfM). GBA is relatively expensive,
although it’s recently adopted for monocular visual SLAM solutions.
For uniting information, increasing number of image features per
frame is more beneficial economically than increasing number of
closely placed camera frames [8]. Moreover, GBA helps to upsurge
the number of key features on the map, leading to dense it.

Approaches and Methods
Distributed SLAM (DSLAM): In DSLAM, distributed network
which is subject to failures of nodes and links, sensor efficacy,
computational resources and communication bandwidths could
be limited, although are crucial for map updates and initiate
intra-communications. To overcome these challenges, a proper
and intelligent approach is required for a DSLAM system. If the
proportional locations of these agents are provided by the global
positioning sensors (GPS) or agents know their locations, they
can generate a unique reliable map. It’s also comparatively easier
to govern map overlaps, if the relative original poses of all agents
will be known. However, the problem becomes difficult when the
kin locations of agents are unknown. Sometimes, agents continued
building local sub-maps until they meet each other [9].

System Overview
The proposed framework comprises of 2-types of disseminated nodes
that deployed on different machines; monitoring node and exploring
node. The framework has multiple exploring and a monitoring nodes
at a given time. These nodes used for communication to bypass
messages amidst each other.

Figure 1: Network of Nodes; Exploring (E) nodes connected to a
monitoring (M) node and some e-nodes were linked to each other.

E-nodes are accountable for producing a local map of the environment/
site and send it periodically to M-node (i.e. it continuously monitors
the map’s updates to investigate potential map overlaps). If it gets an
overlap among two/pair explorer nodes, it sends a command signal
to link those nodes and as to merge their maps. As illustrated Figure
1, legally e-nodes are always attached to the monitoring node. If a
map overlap occurs, 2-exploring nodes can also be allied to each
other. So, in this paper, a poly-user AR application to exhibit the
collaborative AR potential of their framework development by
different authors has been reviewed. And also an AR window to each
exploring node, allowing users to interact in the same environment
was added.

Exploring Node
Using a solitary camera as the merely input device, each e-node does
semi-dense visual SLAM [10]. It also preserves a list of key-frames
and a pose graph to characterize its local map.

Key Frames
The ith key frame, consists of an absolute pose ξwi ϵ R7 , an image
Ii, a map comprising z coordinate reciprocals corresponding to
non-negligible intensity gradient pixels Di (an inverse depth map),
inverse depth variance map Vi and a list of features Fi. Figure 3,
below contains a visual representation of Ki of two key frames.
Features of Ki are computed when we introduce Ki into the pose
graph. In Ki, i corresponds to a 32 bit globally unique identifier. We
combine the globally unique node identifier and a locally unique
frame identifier to generate a globally unique key frame identifier
as shown in Figure 2.

Figure 2: Globally Unique keyframe identifier based on node
identifier

Figure 3: we matched features b/n key frames Ki and kj superimposed
on the images Ii and Ij (top). We also show the pseudo color encoded
Di and Dj (bottom left) and pseudo color encoded Vi and Vj (bottom
right)

Pose Graph
Pose graph edges ɛji contain similarity transformations ξji , and ∑ji
constraints. Here, ξji ϵ R7, ∑ji, are relative pose transformations, and
the representing covariance matrix among ith and jth key frames
respectively. Both absolute pose ξwi & likewise transformation ξji
were programmed with a translation (3-components) and with scale
orientation using (4-components).

SLAM Process and Features
The SLAM procedure concurrently tracks the camera alongside the
present key-frame Ki and improves its Di and Vi based on its new
observations. Once if this camera meaningfully deviates from the
Ki, either a new key-frame is created or/and, if an existing-key frame
is selected from the map. Next, if a new key-frame was created, the
preceding key-frame used for tracking is implanted into the pose
graph. The pose graph is unceasingly optimized in the background
[2]. In our framework, SURF features and SIFT descriptors are used
[11, 12]. Real-time performance, given we only compute features
in key frames. So that, pth the feature in Ki key frame, satisfies,

 Vi(Xp) <T*Di(Xp)2 (1)

where Xp represents feature location. For every salient feature in Fi,
the corresponding 3D location Xp and the descriptor dp are computed

 Volume 1 | Issue 1 | 02J Robot Auto Res, 2020 www.opastonline.com

Intra-Communications of Monitoring Nodes and Exploring
Nodes
There are two intra nodes communications; exploring node-to-
monitoring and exploring-to-exploring nodes. Between exploring
and monitoring nodes, there are three communication channels.
E-node sent its new key frame Ki along with features Fi through
the key-frames’ channel. Hereafter, every pose graph optimization,
the pose graph is sent through pose graph channel. Exploring nodes
receive commands through instructions channel. When receiving a
ring closure instruction from M-node with ξji, the e-node checked
whether there would be an existing edge ξji between ki and kj vertices
of the pose graph. If an existing edge is found, it would discarded
the loop closure command. Else, it has been inserted the new edge
and completed the procedure by doing another iteration of pose
graph’s optimization.

On the other hand, as displayed in Figure 1 above, the two
overlapping e-nodes can link/communicate with each other. Map
overlap correspondences are monitored by the M-node. Once the
connection is made, each e-node send its map to its counterpart
through map merge channel. Once the map is established, the key-
frame correspondences was directly transformed into new constraints
between pose graphs of ei and ej. Figure 4 shows how ei and ej before
merging; were generating their own maps.

Figure 4: Map construction process of two e-nodes. Each exploring
node had its own coordinate system.

RHS’s map of Figure 5 shows, two e-nodes merged map result.
Once merging completed, each e-node listens to its counterpart for
new keyframes and the pose graph, to increasingly update its map.

Figure 5: Resultant maps of two e-nodes after merging procedure.
In e-node on the left, three maps are merged. In e-node on the RHS,
two maps were merged. It’s map and keyframes are shown in yellow

and green respectively. The maps and keyframes delivered from the
other node are shown in blue and pink, respectively. Constraints of
the pose graph were not displayed here to avoid too much disordered
junk in the figure.

Modules of Exploring Node
Figure 6 shows the modules between nodes’ communications and
the distributed framework. The Exploring node contains of five main
modules: tracking, input stream, mapping, constraint-search and
optimization modules. Each of these modules runs in its own thread.
The input stream module accepts all incoming messages including
image frames, key frames, map, pose graph, and commands. And
then all image frames were transferred to the track-module. Pose
graph, keyframes, and map transferred to optimization module so
that before iterative optimization, they can be merged into map.
Commands are treated in the input unit itself. The tracking module
accepts the new frame from input stream module and tracks it
against the current keyframe. If the current keyframe could no
longer be applied to track the present frame, a new key frame will
be generated. The old keyframe can be added up to the map through
mapping unit module. The constraint searching module can be used
to recover from track failures.

Figure 6: The distributed framework. The arrows led back to the
e-node box represent communication between the 2-exploring nodes.

Monitoring node
This nodes’ map overlap detection/identification module is
responsible for detecting and computing corresponding relative pose
between nodes. It also detects loop closure of each exploring node.
Monitoring node maintains an N number of key frame databases DBi.
Here N equals to the number of exploring nodes in the framework.
All incoming key frames Ki, are matched against all these key frame
databases. The matching takes place in parallel in M number of
threads. The thread number M (< N) is arranged based on available
system resources.

Key frame database
Each keyframe database entails keyframes of 1-exploring node.
Each incoming keyframe Ki is matched with entries in the database
using (fast approximate nearest neighbor) FLANN [13] thru feature
matching method. If there are more than 10 number of matches
with another keyframe K, it is concluded that there is an overlap
between keyframes Ki and kj. If these keyframes belong to same
e-node, a loop closure, is found. Otherwise, the result is submitted
to the Fusion Graph.

Fusion graph: All obtainable e-nodes are represented as vertices
in the fusion graph as depicted in Fig. 7 below.

 Volume 1 | Issue 1 | 03J Robot Auto Res, 2020 www.opastonline.com

Figure 7: The fusion graph displaying e-nodes (ei) & the number of
matching features (cij) as the weight of each edge. In this example,
cjk is higher than other edges (indicated by the thicker edge), so ej
and ek is merged first. Moreover, cj’s map is also sent to ek following
direction of the edge.

Assume there is an overlap between key frames Kr and ks and kr
ei

k and ksϵej
k, where ei

k represent key frames in ith e-node. Then, the
fusion-graph comprises an edge amid ei & ej. The number of features
coordinated between ei and ej are represented using cij as shown in
Figure 7. Note that bene the edge amid ei and ej could symbolize
matching features amid many key frame pairs. Assume, the fusion-
graph edge having the largest cij satisfies,

 Max(cij)>m (2)

while m: an empirical-threshold. Nevertheless, the m-nodes conclude,
map overlap avails between e-nodes ei and ej. Empirically, 120 shared
features are found to be a good value for m. The RANSAC algorithm
[14] is used to make the computation robust to outliers. Figure 3
indicates a set of matched features between the 2-keyframes, ki and kj.

Communication with Exploring nodes: When the m-node detects a
map overlay between e-nodes ei and ej, it concerns a merge order via
the commands channel to both of the nodes. The command contains
the relative pose ξji between two nodes. Additionally, the command
also comprises the map overlap key frame correspondences used to
compute the relative pose between ei & ej. Likewise, a loop closure
instruction was issued to an e-node es, when both overlapping key
frames ki and kj.belong to es. Fusion graph does not look for map
overlaps between nodes that are already found overlapping. This
prevents issuing merge command to ei and ej again.

Modules of the monitoring node: As in Figure 6, the M-node has
3 main modules. The input stream module is receiving key frames
and pose graphs from exploring nodes. These key frames submitted
to the map overlay detection, which processes these key frames
against multiple key frame’s databases. The fusion graph used to
order e-nodes for map merging.

Result and Discussion
Experimental Setup
For the new systems setup for distributive SLAM, a monocular
visual SLAM dataset is needed, with multiple trajectories covering
a single scene. Authors made the DIST-Mono dataset to evaluate
our system. Authors’ experimental setup was designed to describe
the real truth of camera gesture. As shown in Figure 8 researchers

have mounted a Point Grey Firefly MV global shutter camera on a
Computer Numeric Controller (CNC) machine. A 1m × 1.5m scene
containing wooden objects was also prepared. And the camera was
moved along a path roughly 4 minutes each time, while capturing
periodically its location ground truth. 640×480 resolution camera
frames was also captured at 60Hz and ground truth at 40Hz. The
CNC machine has 0.2mm accuracy in all 3-axes. An open-source
ROS node was also developed in this case to capture the ground
truth from the TinyG CNC controller.

Figure 8: Experimental arrangement viewing a camera straddled on
a CNC machine permitting us to capture real information.

Dist Mono Dataset
The dataset contains of 5 sub-datasets. Three camera motion paths
were defined, Path-A, Path-B & Path-C. All these paths were on
a plane inclined above the scene as depicted in Figure 9a. These
paths have roughly 10% overlay and 3 dissimilar starting points.
Two datasets using Path-A, were generated by rotating the camera
around its z-axis. In S01-B-0, the camera scene Y-axis and optical
axis was on a vertical plane. In S01-B-P20, the researcher rotated the
camera about its y-axis by 20◦ which is demonstrated in Figure 9b.

(a) Motion paths are in the plane inclined above the scene

(b) 20◦ clockwise rotation

Figure 9: Camera gesture and its preliminary turning for datasets

Similarly, we created datasets S01-B-0, S01-B-N20, and S01-C-0
as shown in Table 1

 Volume 1 | Issue 1 | 04J Robot Auto Res, 2020 www.opastonline.com

Table 1: DIST-Mono dataset

Dataset Path Intial camera rotation
SO1-A-0 Path A 0

SO1-A-P20 Path A 20 CW
SO1-B-0 Path B 0

SO1-B-N20 Path B 20 CCW
S01-C-0 Path c 0

Experimental procedures
Experiments I: Two of these datasets were then used to deploy two
exploring nodes on two separate physical computers. The monitoring
node is deployed on a third computer. All these computers run
on Ubuntu 14.04 operating system. They were linked via a wired
router. This experiment was reoccurred 100 times, and the resultant
transform amidst merged 2-maps is compared with the available
ground fact. The yielding comparative transformation amidst
datasets S01-A-P20 and S01-B-0 was recorded as depicted in Table
II (in this table, μ was the average of 96 subsequent trials, and σ is
the standard deviation). The average error in translation and average
error in the rotation were 2.7cm and 5.3◦, respectively. Moreover,
it merged/combined maps in successful way in 96 trials out of the
100 repetitive attempts. The framework been unsuccessful to detect
map overlaps only in the remaining 4-attempts. Once the framework
merged 2-maps; one e-node displayed its map as in the right-hand
side map of Figure 5.

Experiments II: Alike Experiments I, the researcher used dataset
SCENE-A-0 and dataset SCENE-B-N20 in 2 unlike e-nodes. After
merging of map, each e-node exported its key frame’s poses in TUM
dataset [26] pose format. Most importantly, these poses comprise key
frames from both exploring nodes. Absolute Translation RMSE was
computed against the ground truth. To support the non-deterministic
landscape of the distributed system, here the researchers has run
experiment for 5-times, & the median outcome was recorded. In the
same way, they performed 3-extra experiments with other dataset’s
combinations as depicted in Table 3. Given monocular visual SLAM,
systems do not capture the scale, then, they have manually calculated
to minimize the RMSE error in all experiments.

(a) First exploring node

(b) Second exploring node

Figure 10: Key frame poses against ground truth

Augmented Reality (AR) Application
As mentioned in section 3.1, the researchers added AR window to
each e-node to test their framework. The AR window, allows users
to add a virtual object (a simple cube, in taken example) into its
map. This permit them to prove the collaborative AR performance
of the distributed SLAM framework. Each e-node has its local map
therefore it can condense the augmented scene from its standpoint.
It has been also known its pose on the global map. This allows it to
render objects added by the other exploring nodes as well. Moreover,
exploring nodes can interact with one another using peer-to-peer
communication channels of the framework. Figure 11 displays AR
windows of 2-exploring nodes and 2 interactively added cubes.

Figure 11: Same set of virtual objects is viewed from 2 different
exploring nodes

Conclusion
In this research article, researchers have familiarized a distributed
simultaneous localization and mapping outline that has been
recognizing map overlaps grounded on an appearance-based method.
The framework operated with no prior know-how of relative starting
poses of its nodes. Via the AR application, they have been shown
that their framework can support collaborative Augmented Reality
applications. We also have developed a new publicly accessible
dataset and used that for an extensive evaluation of the entire system.
Their next step would be improving the exploring node’s SLAM
process by integrating features in pose graph optimization, which
would also help critically in supporting public datasets as well. ORB
descriptors instead of SIFT descriptors to improve performance
and reduce the network bandwidth usage would be evaluated. The
ultimate goal of this framework is to be ported to truly mobile,
resource limited platforms and for the computational nodes to run
on such mobile devices.

References
1.	 Leonard, Durrant-Whyte, International Journal of Robotics

Research ‘’Mobile Robot Localization by Tracking Geometric
Beacons’’, 1992.

2.	 R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain
spatial relationships in robotics,”in Autonomous Robot Vehicles,
I. Cox and G. Wilfong, Eds. Springer New York, 1990, pp.
167–193. [Online]. Available: http://dx.doi.org/10.1007/978-
1-4613-8997-2 14

3.	 (k) Ruwan. E and Mihran. T, ‘’A Collaborative Augmented
Reality Framework Based on Distributed Visual Slam,’’
Conference Paper • Sept. 2017.

4.	 M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit,
“Fastslam: A factored solution to the simultaneous localization
and mapping problem,”in In Proceedings of the AAAI National
Conference on Artificial Intelligence. AAAI, 2002, pp. 593–598.

 Volume 1 | Issue 1 | 05J Robot Auto Res, 2020 www.opastonline.com

5.	 A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 29, no. 6, pp. 1052–
1067, June 2007.

6.	 G. Klein and D. Murray, “Parallel tracking and mapping for
small AR workspaces,” in Mixed and Augmented Reality, 2007.
ISMAR 2007. 6th IEEE and ACM International Symposium
on, Nov 2007, pp. 225–234.

7.	 H. Strasdat, J. Montiel, and A. Davison, “Real-time monocular
slam: Why filter?” in Robotics and Automation (ICRA), 2010
IEEE International Conference on, May 2010, pp. 2657–2664.

8.	 E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh,
“Decentralised slam with low-bandwidth communication for
teams of vehicles,” in Field and Service Robotics. Springer,
2006, pp. 179–188.

9.	 J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry
for a monocular camera,” in Computer Vision (ICCV), 2013
IEEE International Conference on, Dec 2013, pp. 1449–1456.

10.	 H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speededup
robust features (surf),” Comput. Vis. Image Underst., vol. 110,

no. 3, pp. 346–359, Jun. 2008. [Online]. Available: http: //dx.doi.
org/10.1016/j.cviu.2007.09.014

11.	 D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110,
Nov. 2004. [Online]. Available: http://dx.doi.org/10.1023/
B:VISI.0000029664.99615.94

12.	 M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in International
Conference on Computer Vision Theory and Application
VISSAPP’09). INSTICC Press, 2009, pp. 331–340.

13.	 M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6,
pp. 381–395, Jun. 1981. [Online]. Available: http://doi.acm.
org/10.1145/ 358669.358692

14.	 J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in
Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012.

 Volume 1 | Issue 1 | 06J Robot Auto Res, 2020 www.opastonline.com

Copyright: ©2020 Tesfaye Adisu., This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

