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Introduction 
A visual Simultaneous Localization and Mapping (SLAM) has 
been using as for marker less tracking during in augmented reality 
implementations. The term SLAM was formerly developed by 
Hugh Durrant and John J. Leonard which it’s concerned with the 
applications of building a map of unknown environment by a mobile 
robot while concurrently navigating the environment using the map 
[1]. The robotics community also defined the SLAM problem as 
an agent of map creator of an unknown site using sensor(s) while 
concurrently localizing itself in the environment. To localize the 
agent properly, an accurate map is required. To produce a precise 
map, self-localization has to been done in appropriate way.

A choice of a sensor for SLAM process is also valuable. Most 
Visual SLAM approaches relied on detecting features and generating 
sparse maps using inexpensive, universal mobile agents such as 
image processing tools and cameras [2]. Dense maps offer more 
benefits over sparse maps such like, better agent communications, 
better object recognition, and better scene interaction for augmented 
reality applications. 

Many researchers explored on how to use multiple agents (distributed 
SLAM) to perform SLAM. It upsurges the robustness of SLAM 
process and minimizes disastrous failures. Challenges in distributed 
SLAM are limited communication bandwidth when sharing 
information between agents and map’s computation overlaps. In 
this newly proposed framework, agents generate a local quisi-dense 
map applying direct featureless SLAM method. The framework 
also extracts features and uses them to detect loop closure in local 
maps and to compute map overlaps between agents. Agents do not 

use any prior of their original poses knowledge to determine map 
overlaps [3].

Literature Views 
SLAM is a procedure by which a robot can build a map of the 
required environment and concurrently locate itself with respect to 
the map. Different authors like Smith et al. has been introduced the 
earliest probabilistic SLAM algorithm [3]. Extended Kalman (EKF) 
filter has the weakness of computational complexity, nonlinearity 
and data association. In large-scale environments, it is difficult 
to avoid inconsistency [2]. Also Smith et al. presented an EKF 
(Extended Kalman Filter) oriented solution for the SLAM problem, 
that it incrementally estimates the landmark position and agent pose 
distribution [4]. 

Covariance matrix raises with quantity of landmarks. A Monte Carlo 
Sampling (particle filter) based approach by Montemerlo et al. named 
Fast SLAM, to address above limitations and supported non-linear 
process models and non-Gaussian pose distributions [5].Davidson 
et.al. Have also presented a Monocular Visual SLAM (Mono SLAM) 
a method of capturing the path of a liberally moving camera while 
producing a sparsed map [6]. EKF-SLAM & Particle (PF) Filtering 
combined for estimating and featuring initialization. Klein et al in 
[6]. Offered, PTAM (Parallel Tracking and Mapping), which is one 
of the utmost momentous solutions for visual SLAM. This SLAM 
solution predominantly focused on accurate & fast mapping in an 
alike environment to Mono SLAM. Its implementations decoupled 
localizations and mapping, into two threads. The future tracking and 
front-end thread performs estimation, while the back-end performs 
mapping and also removing unnecessary key-frames. 
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Abstract
Distributive Simultaneous Localizations and Mapping (SLAM) helps for multiple agents for exploring and building a global 
map predicting their locations. The challenge is difficult to identify local map overlaps these agents, especially when their initial 
relative positions are unknown. So, to address this problem, a collaborative (AR) framework with liberally moving agents were 
used without know how of their initial comparative positions. Each agent in the framework used a camera only as the input 
device for its SLAM route. 
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Furthermore, Global Bundle Adjustment (GBA) adjusted the pose 
of entire key frames. BA changed the pose of key frames allowing 
a reasonable rate of exploration [7]. GBA worked well for with 
offline Structure from Motion (SfM). GBA is relatively expensive, 
although it’s recently adopted for monocular visual SLAM solutions. 
For uniting information, increasing number of image features per 
frame is more beneficial economically than increasing number of 
closely placed camera frames [8]. Moreover, GBA helps to upsurge 
the number of key features on the map, leading to dense it.

Approaches and Methods 
Distributed SLAM (DSLAM): In DSLAM, distributed network 
which is subject to failures of nodes and links, sensor efficacy, 
computational resources and communication bandwidths could 
be limited, although are crucial for map updates and initiate 
intra-communications. To overcome these challenges, a proper 
and intelligent approach is required for a DSLAM system. If the 
proportional locations of these agents are provided by the global 
positioning sensors (GPS) or agents know their locations, they 
can generate a unique reliable map. It’s also comparatively easier 
to govern map overlaps, if the relative original poses of all agents 
will be known. However, the problem becomes difficult when the 
kin locations of agents are unknown. Sometimes, agents continued 
building local sub-maps until they meet each other [9].

System Overview
The proposed framework comprises of 2-types of disseminated nodes 
that deployed on different machines; monitoring node and exploring 
node. The framework has multiple exploring and a monitoring nodes 
at a given time. These nodes used for communication to bypass 
messages amidst each other.

Figure 1: Network of Nodes; Exploring (E) nodes connected to a 
monitoring (M) node and some e-nodes were linked to each other.

E-nodes are accountable for producing a local map of the environment/
site and send it periodically to M-node (i.e. it continuously monitors 
the map’s updates to investigate potential map overlaps). If it gets an 
overlap among two/pair explorer nodes, it sends a command signal 
to link those nodes and as to merge their maps. As illustrated Figure 
1, legally e-nodes are always attached to the monitoring node. If a 
map overlap occurs, 2-exploring nodes can also be allied to each 
other. So, in this paper, a poly-user AR application to exhibit the 
collaborative AR potential of their framework development by 
different authors has been reviewed. And also an AR window to each 
exploring node, allowing users to interact in the same environment 
was added. 

Exploring Node 
Using a solitary camera as the merely input device, each e-node does 
semi-dense visual SLAM [10]. It also preserves a list of key-frames 
and a pose graph to characterize its local map.

Key Frames
The ith  key frame,  consists of an absolute pose ξwi ϵ R7 , an image  
Ii, a map comprising z coordinate reciprocals corresponding to 
non-negligible intensity gradient pixels Di (an inverse depth map), 
inverse depth variance map Vi and a list of features Fi. Figure 3, 
below contains a visual representation of Ki of two key frames. 
Features of Ki are computed when we introduce Ki into the pose 
graph. In Ki, i corresponds to a 32 bit globally unique identifier. We 
combine the globally unique node identifier and a locally unique 
frame identifier to generate a globally unique key frame identifier 
as shown in Figure 2.

Figure 2: Globally Unique keyframe identifier based on node 
identifier

Figure 3: we matched features b/n key frames Ki and kj superimposed 
on the images Ii and Ij (top). We also show the pseudo color encoded 
Di and Dj (bottom left) and pseudo color encoded Vi and Vj (bottom 
right)

Pose Graph
Pose graph edges ɛji contain similarity transformations ξji , and ∑ji 
constraints. Here, ξji ϵ R7, ∑ji, are relative pose transformations, and 
the representing covariance matrix among  ith and jth key frames 
respectively. Both absolute pose ξwi & likewise transformation  ξji 
were programmed with a translation (3-components) and with scale 
orientation using (4-components).

SLAM Process and Features 
The SLAM procedure concurrently tracks the camera alongside the 
present key-frame Ki and improves its Di and Vi based on its new 
observations. Once if this camera meaningfully deviates from the 
Ki, either a new key-frame is created or/and, if an existing-key frame 
is selected from the map. Next, if a new key-frame was created, the 
preceding key-frame used for tracking is implanted into the pose 
graph. The pose graph is unceasingly optimized in the background 
[2]. In our framework, SURF features and SIFT descriptors are used 
[11, 12]. Real-time performance, given we only compute features 
in key frames. So that, pth the  feature in Ki key frame, satisfies,

                                    Vi(Xp) <T*Di(Xp)2                                  (1)

where Xp represents feature location. For every salient feature in Fi, 
the corresponding 3D location Xp and the descriptor dp are computed
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Intra-Communications of Monitoring Nodes and Exploring 
Nodes 
There are two intra nodes communications; exploring node-to-
monitoring and exploring-to-exploring nodes. Between exploring 
and monitoring nodes, there are three communication channels. 
E-node sent its new key frame Ki along with features Fi through 
the key-frames’ channel. Hereafter, every pose graph optimization, 
the pose graph is sent through pose graph channel. Exploring nodes 
receive commands through instructions channel. When receiving a 
ring closure instruction from M-node with ξji, the e-node checked 
whether there would be an existing edge ξji  between ki and kj vertices 
of the pose graph. If an existing edge is found, it would discarded 
the loop closure command. Else, it has been inserted the new edge 
and completed the procedure by doing another iteration of pose 
graph’s optimization. 

On the other hand, as displayed in Figure 1 above, the two 
overlapping e-nodes can link/communicate with each other. Map 
overlap correspondences are monitored by the M-node. Once the 
connection is made, each e-node send its map to its counterpart 
through map merge channel. Once the map is established, the key-
frame correspondences was directly transformed into new constraints 
between pose graphs of ei and ej. Figure 4 shows how ei and ej before 
merging; were generating their own maps.

Figure 4: Map construction process of two e-nodes. Each exploring 
node had its own coordinate system. 

RHS’s map of Figure 5 shows, two e-nodes merged map result. 
Once merging completed, each e-node listens to its counterpart for 
new keyframes and the pose graph, to increasingly update its map.

Figure 5: Resultant maps of two e-nodes after merging procedure. 
In e-node on the left, three maps are merged. In e-node on the RHS, 
two maps were merged. It’s map and keyframes are shown in yellow 

and green respectively. The maps and keyframes delivered from the 
other node are shown in blue and pink, respectively. Constraints of 
the pose graph were not displayed here to avoid too much disordered 
junk in the figure.

Modules of Exploring Node
Figure 6 shows the modules between nodes’ communications and 
the distributed framework. The Exploring node contains of five main 
modules: tracking, input stream, mapping, constraint-search and 
optimization modules. Each of these modules runs in its own thread. 
The input stream module accepts all incoming messages including 
image frames, key frames, map, pose graph, and commands. And 
then all image frames were transferred to the track-module. Pose 
graph, keyframes, and map transferred to optimization module so 
that before iterative optimization, they can be merged into map. 
Commands are treated in the input unit itself. The tracking module 
accepts the new frame from input stream module and tracks it 
against the current keyframe. If the current keyframe could no 
longer be applied to track the present frame, a new key frame will 
be generated. The old keyframe can be added up to the map through 
mapping unit module. The constraint searching module can be used 
to recover from track failures.

Figure 6: The distributed framework. The arrows led back to the 
e-node box represent communication between the 2-exploring nodes.

Monitoring node
This nodes’ map overlap detection/identification module is 
responsible for detecting and computing corresponding relative pose 
between nodes. It also detects loop closure of each exploring node. 
Monitoring node maintains an N number of key frame databases DBi. 
Here N equals to the number of exploring nodes in the framework. 
All incoming key frames Ki, are matched against all these key frame 
databases. The matching takes place in parallel in M number of 
threads. The thread number M (< N) is arranged based on available 
system resources.

Key frame database
Each keyframe database entails keyframes of 1-exploring node. 
Each incoming keyframe Ki is matched with entries in the database 
using (fast approximate nearest neighbor) FLANN [13] thru feature 
matching method. If there are more than 10 number of matches 
with another keyframe K, it is concluded that there is an overlap 
between keyframes Ki and kj. If these keyframes belong to same 
e-node, a loop closure, is found. Otherwise, the result is submitted 
to the Fusion Graph. 

Fusion graph: All obtainable e-nodes are represented as vertices 
in the fusion graph as depicted in Fig. 7 below. 
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Figure 7: The fusion graph displaying e-nodes (ei) & the number of 
matching features (cij) as the weight of each edge. In this example, 
cjk is higher than other edges (indicated by the thicker edge), so ej 
and ek is merged first. Moreover, cj’s map is also sent to ek following 
direction of the edge.

Assume there is an overlap between key frames Kr and ks and kr 
ei

k and ksϵej
k, where ei

k represent key frames in ith e-node. Then, the 
fusion-graph comprises an edge amid ei & ej. The number of features 
coordinated between ei and ej are represented using cij as shown in 
Figure 7. Note that bene the edge amid ei and ej could symbolize 
matching features amid many key frame pairs. Assume, the fusion-
graph edge having the largest cij satisfies,

                                      Max(cij)>m                                           (2)

while m: an empirical-threshold. Nevertheless, the m-nodes conclude, 
map overlap avails between e-nodes ei and ej. Empirically, 120 shared 
features are found to be a good value for m. The RANSAC algorithm 
[14] is used to make the computation robust to outliers. Figure 3 
indicates a set of matched features between the 2-keyframes, ki and kj.

Communication with Exploring nodes: When the m-node detects a 
map overlay between e-nodes ei and ej, it concerns a merge order via 
the commands channel to both of the nodes. The command contains 
the relative pose ξji between two nodes. Additionally, the command 
also comprises the map overlap key frame correspondences used to 
compute the relative pose between ei & ej. Likewise, a loop closure 
instruction was issued to an e-node es, when both overlapping key 
frames ki and kj.belong to es. Fusion graph does not look for map 
overlaps between nodes that are already found overlapping. This 
prevents issuing merge command to ei and ej  again. 

Modules of the monitoring node: As in Figure 6, the M-node has 
3 main modules. The input stream module is receiving key frames 
and pose graphs from exploring nodes. These key frames submitted 
to the map overlay detection, which processes these key frames 
against multiple key frame’s databases. The fusion graph used to 
order e-nodes for map merging.

Result and Discussion 
Experimental Setup 
For the new systems setup for distributive SLAM, a monocular 
visual SLAM dataset is needed, with multiple trajectories covering 
a single scene. Authors made the DIST-Mono dataset to evaluate 
our system. Authors’ experimental setup was designed to describe 
the real truth of camera gesture. As shown in Figure 8 researchers 

have mounted a Point Grey Firefly MV global shutter camera on a 
Computer Numeric Controller (CNC) machine. A 1m × 1.5m scene 
containing wooden objects was also prepared. And the camera was 
moved along a path roughly 4 minutes each time, while capturing 
periodically its location ground truth. 640×480 resolution camera 
frames was also captured at 60Hz and ground truth at 40Hz. The 
CNC machine has 0.2mm accuracy in all 3-axes. An open-source 
ROS node was also developed in this case to capture the ground 
truth from the TinyG CNC controller.

Figure 8: Experimental arrangement viewing a camera straddled on 
a CNC machine permitting us to capture real information.

Dist Mono Dataset 
The dataset contains of 5 sub-datasets. Three camera motion paths 
were defined, Path-A, Path-B & Path-C. All these paths were on 
a plane inclined above the scene as depicted in Figure 9a. These 
paths have roughly 10% overlay and 3 dissimilar starting points. 
Two datasets using Path-A, were generated by rotating the camera 
around its z-axis. In S01-B-0, the camera scene Y-axis and optical 
axis was on a vertical plane. In S01-B-P20, the researcher rotated the 
camera about its y-axis by 20◦ which is demonstrated in Figure 9b. 

(a) Motion paths are in the plane inclined above the scene

(b) 20◦ clockwise rotation

Figure 9: Camera gesture and its preliminary turning for datasets

Similarly, we created datasets S01-B-0, S01-B-N20, and S01-C-0 
as shown in Table 1
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Table 1: DIST-Mono dataset

Dataset Path Intial camera rotation
SO1-A-0 Path A 0

SO1-A-P20 Path A 20 CW
SO1-B-0 Path B 0

SO1-B-N20 Path B 20 CCW
S01-C-0 Path c 0

Experimental procedures 
Experiments I: Two of these datasets were then used to deploy two 
exploring nodes on two separate physical computers. The monitoring 
node is deployed on a third computer. All these computers run 
on Ubuntu 14.04 operating system. They were linked via a wired 
router. This experiment was reoccurred 100 times, and the resultant 
transform amidst merged 2-maps is compared with the available 
ground fact. The yielding comparative transformation amidst 
datasets S01-A-P20 and S01-B-0 was recorded as depicted in Table 
II (in this table, μ was the average of 96 subsequent trials, and σ is 
the standard deviation). The average error in translation and average 
error in the rotation were 2.7cm and 5.3◦, respectively. Moreover, 
it merged/combined maps in successful way in 96 trials out of the 
100 repetitive attempts. The framework been unsuccessful to detect 
map overlaps only in the remaining 4-attempts. Once the framework 
merged 2-maps; one e-node displayed its map as in the right-hand 
side map of Figure 5. 

Experiments II: Alike Experiments I, the researcher used dataset 
SCENE-A-0 and dataset SCENE-B-N20 in 2 unlike e-nodes. After 
merging of map, each e-node exported its key frame’s poses in TUM 
dataset [26] pose format. Most importantly, these poses comprise key 
frames from both exploring nodes. Absolute Translation RMSE was 
computed against the ground truth. To support the non-deterministic 
landscape of the distributed system, here the researchers has run 
experiment for 5-times, & the median outcome was recorded. In the 
same way, they performed 3-extra experiments with other dataset’s 
combinations as depicted in Table 3. Given monocular visual SLAM, 
systems do not capture the scale, then, they have manually calculated 
to minimize the RMSE error in all experiments.

(a) First exploring node

(b) Second exploring node 

Figure 10: Key frame poses against ground truth

Augmented Reality (AR) Application 
As mentioned in section 3.1, the researchers added AR window to 
each e-node to test their framework. The AR window, allows users 
to add a virtual object (a simple cube, in taken example) into its 
map. This permit them to prove the collaborative AR performance 
of the distributed SLAM framework. Each e-node has its local map 
therefore it can condense the augmented scene from its standpoint. 
It has been also known its pose on the global map. This allows it to 
render objects added by the other exploring nodes as well. Moreover, 
exploring nodes can interact with one another using peer-to-peer 
communication channels of the framework. Figure 11 displays AR 
windows of 2-exploring nodes and 2 interactively added cubes.

Figure 11: Same set of virtual objects is viewed from 2 different 
exploring nodes

Conclusion
In this research article, researchers have familiarized a distributed 
simultaneous localization and mapping outline that has been 
recognizing map overlaps grounded on an appearance-based method. 
The framework operated with no prior know-how of relative starting 
poses of its nodes. Via the AR application, they have been shown 
that their framework can support collaborative Augmented Reality 
applications. We also have developed a new publicly accessible 
dataset and used that for an extensive evaluation of the entire system. 
Their next step would be improving the exploring node’s SLAM 
process by integrating features in pose graph optimization, which 
would also help critically in supporting public datasets as well. ORB 
descriptors instead of SIFT descriptors to improve performance 
and reduce the network bandwidth usage would be evaluated. The 
ultimate goal of this framework is to be ported to truly mobile, 
resource limited platforms and for the computational nodes to run 
on such mobile devices.
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