
Abstract
In this paper, I proposed an iris recognition system by using deep learning via convolutional neural networks (CNN). Although
CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers.
The main objective of the code is recognizing test pictures’ category (aka person name) with high accuracy rate after having
extracted enough features from training pictures of the same category which are obtained from a dataset that I added to the
code. I used IITD iris dataset which included 10 iris pictures for 223 people. The pictures were divided into 3 pictures for test-
ing and 7 pictures for training. The categories are from 001 to 223. Since the number of pictures for training is low, in order to
enhance the recognition accuracy of the network, I used five sets of layers and altered nine parameters of sgdm training option.
The code concluded an accuracy rate of 97.46% and the time elapsed was 10 minutes and 30 seconds.

Citation: Wael Alnahari. (2022). A convolutional neural network for iris recognition. J Robot Auto Res, 3(3),254-257.

 Volume 3 | Issue 3 | 254

A Convolutional Neural Network for Iris Recognition

Research Article

Wael Alnahari

College of Computing and Information Technology, Department
of Information Systems, University of Bisha, Bisha, Asir, Saudi
Arabia

*Corresponding author
Wael Alnahari, College of Computing and Information Technology,
Department of Information Systems, University of Bisha, Asir, Saudi Arabia.

 Submitted: 25 Aug 2022; Accepted: 30 Aug 2022: Published: 24 Sep 2022

Journal of Robotics and Automation Research

Keywords: Biometrics, Biometric Systems, Machine Learn- ing, Deep Learning, Recognition, IRIS

ISSN: 2831 - 6789
ISSN: 2831-6789

J Robot Auto Res, 2022

Introduction
Introduction to CNN
Convolutional neural networks (CNN) is a deep learning algo-
rithm used to help machines categorize objects. CNN is used as a
computer vision detection on images. CNN is designed to mimic
human brain hence the name neural. CNN is used to treat visual
inputs and determine what the input represents based on the inputs
features. CNN uses a set of multiple layers to analyze the visual in-
puts and to determine what are the inputs’ distinguishing features
based on probability of repetition. CNN is useful for Artificial In-
telligence (AI) such as self-driving cars to help the cars determine
what the objects appearing in their cameras represent. In general,
CNN is two parts: convolution layer and fully connected layer.
The convolution layer is a single layer used to extract a specific
feature from the visual input which can be repeated as many times
as desired. The fully connected layer connects all convolution lay-
ers to one layer or representation to combine the features [1].

CNN Architecture
In order to create a CNN system, one needs a dataset to be used
for training and another dataset to be used for testing. The training
dataset is categorized according to the desirable categories. The set
of data for training is usually very large compared to the test data
but it is not a requirement; however, the bigger the number of data
for training the better the quality of the result. The machine uses
the training images or train dataset to find distinguishing features
of each category. The features are extracted with the help of layers.

A layer in this case represents a specific process which transforms
the image into another shape, size, color, or look which is done
in some pixels that are extremely smaller than the actual image.
Many layers are applied for images of the same category which
are then stored in the network of the CNN. The stored features
are based on the probability of repetition of a number of features
among a category from the training dataset. Afterward, when an
image is tested, the same layers will be applied to it and then are
processed to determine which category is most similar to its fea-
tures.

Implementation of Cnn for Biometric Recognition
Data Set
Description of the Iitd Iris Image Database Version 1.0
This iris image database mainly consists of the iris images collect-
ed from the students and staff at IIT Delhi, India. This database
has been acquired in the Biometrics Research Laboratory during
January - July 2007 using JIRIS, JPC1000, digital CMOS camera.
The acquired images were saved in bitmap format. The database
of 2240 images is acquired from 224 different users and made
available freely to the researchers. All the subjects in the database
are in the age group 14-55 years comprising of 176 males and 48
females. The resolution of these images is 320 x 240 pixels and all
these images were acquired in the indoor environment. All the im-
ages in the database were acquired from the volunteers who were
not paid or provided any honorarium. The images were acquired
using an automated program that requires users to present their

 Volume 3 | Issue 3 | 255J Robot Auto Res, 2022

eyes in a sequence until ten images are registered. Organization
of Database.

The acquired database is saved in 224 folders, each correspond-
ing to 224 subjects. Majority of images were acquired from the
left eyes while the rest images were acquired from right eye. Now
the database has a label ’L’ or ’R’ which designates left or right
eye. There are 1288 images from 224 subject that are from left
eyes while the rest images from 211 subjects are from right eyes.
Except folders 1-13, 27, 55 and 65 all other folders have five left
and 5 right eye images. (**appended on 20-04- 2016**). Usage
of Database. This database is only available for research and non
commercial purposes. Commercial distribution or any act related
to commercial use of this database is strictly prohibited. Kindly ac-
knowledge all the publicly available publications/work employing
this database with the following

Acknowledgment
“Portions of the work tested on the IITD Iris Database version 1.0”
A citation to “IIT Delhi Iris Database version 1.0, http://web.iitd.
ac.in/~biometrics/Database_Iris.htm Related Publication:
A.	 Sample of the dataset pictures
B.	 Layers
C.	 CNN is composed of different types of layers as follows:
[1]
Convolutional layer: in this layer the computer scans the visual
input few pixels at a time to determine a feature for each few pixels
then continue to the next few pixels until the whole visual input is
finalized.
Pooling layer (down sampling): in this layer the features of the
previous layer is down sampled after having stored the most im-
portant features.

Fully connected layer: in this layer all the previous layers are con-
nected together to build a conclusion of all important features.
The used layers of our CNN are: layers = [image Input Layer ([x
y z]); convolution 2d Layer (3,8,’Padding’,’same’) batch Normal-
ization Layer relu Layer (); Max Pooling 2d Layer (5,’Stride’,2)
convolution 2d Layer (3,16,’Padding’,’same’) batch Normaliza-
tion Layer Relu Layer (); average Pooling 2d Layer (5,’Stride’,2)
convolution 2d Layer (3,16,’Padding’,’same’) batch Normalization
Layer relu Layer ();max Pooling 2d Layer (5,’Stride’,2)convolu-
tion 2d Layer (3,32,’Padding’,’same’) batch Normalization Layer
relu Layer (); average Pooling 2d Layer (5,’Stride’,2) convolution
2d Layer (3,32,’Padding’,’same’) batch Normalization Layer relu
Layer (); fully Connected Layer (223,’BiasLearnRateFactor’,2);
soft max Layer classification Layer];

Training Options
options = training Options (’sgdm’, ...’Initial Learn Rate’, 0.0001,
...’Validation Data’,imds Validation, ... ’ValidationFrequency’,30,
... ’Shuffle’,’ every-epoch’, ... ’Max Epochs’, 10,...’Mini Batch
Size’, 8,... ’Validation Frequency’50,...’Learn Rate Schedule’,’
piecewise’,...’LearnRateDropFactor’,0.05,... ’LearnRateDropPe-
riod’,60, ...’Execution Environment’,’ parallel’,...’Verbose’, true,

’Plots’,’ training-progress’);

Results
A. Training Trails
B. Got an accuracy of 54 56% using the following specifications
for layers and options: ? Define Network Architecture layers =
[image Input Layer ([x y z]); convolution 2d Layer (3,8,’Pad-
ding’,’same’) Batch Normalization Layer relu Layer
max Pooling 2d Layer (2,’Stride’,2) convolution 2d Layer
(3,16,’Padding’,’same’) batch Normalization Layer relu Layer
max Pooling 2d Layer (2,’Stride’,2)	 convolution 2d Lay-
er(3,32,’Padding’,’same’)batch Normalization Layer relu Layer
fully Connected Layer (size(categories,2),’ Bias Learn Rate Fac-
tor’,2); soft max Layer classification Layer]; %% Specify Training
Options options = training Options (’sgdm’, ... ’Initial Learn Rate’,
0.01, ... ’Validation Data’,imds Validation, ... ’ValidationFrequen-
cy’,35, ...

Figure 1.

’Shuffle’, ‘every-epoch’, ...’Max Epochs’, 15, ...’Mini Batch Size’,
8, ... ’Learn Rate Schedule’,’ piecewise’, ... ’LearnRateDropFac-
tor’,0.05,...’LearnRateDropPeriod’,60, ... ’Execution Environ-
ment’,’ parallel’, ... ’Verbose’, true, ’Plots’,’ training-progress’);
When I adjusted ’Initial Learn Rate’ to 0.001 instead of 0.01 I got
an accuracy rate of 92.83% When I used the same training op-
tions as above but the max Epoch to 6 in order to compare the
results with the previous trial and changed the layers. I managed
to reduce the elapsed time to 00:10:41 with 96.41% accuracy? De-
fine Network Architecture layers = [image Input Layer ([x y z]);
convolution 2d Layer (3, 8,’Padding’,’same’) batch Normalization
Layer relu Layer ();Max Pooling 2d Layer (5,’Stride’,2)convolu-
tion 2d Layer (3,16,’Padding’,’same’) batch Normalization Layer
relu Layer ();average Pooling 2d Layer (5,’Stride’,2)convolution
2d Layer(3,16,’Padding’,’same’) batch Normalization Layer relu
Layer (); max Pooling 2d Layer (5,’Stride’,2)convolution 2d Layer
(3,32,’Padding’,’same’) batch Normalization Layer relu Layer();
average Pooling 2d Layer (5,’Stride’,2) convolution 2d Lay-
er (3,32,’Padding’,’same’) batch Normalization Layer relu Laye
r(); fully Connected Layer (size(categories,2),’Bias Learn Rate
Factor’,2); Soft max Layer classification Layer]; %% Specify
Training Options options = training Options (’sgdm’, ... ’Initial

 Volume 3 | Issue 3 | 256J Robot Auto Res, 2022

Learn Rate’, 0.001, ... ’Validation Data’,imds Validation, ...’Vali-
dation Frequency’,35, ...’Shuffle’,’every epoch’, ... ’MaxEpochs’,
6, ...’Mini Batch Size’, 8, ... ’Learn Rate Schedule’,’piecewise’,
...’Learn Rate Drop Factor’,0.05, ... ’Learn Rate Drop Period’,60,
... ’Execution Environment’, ’parallel’, ... ’Verbose’, true, ’Plots’,
’training-progress’); When I changed ’Initial Learn Rate’ to 0.0001
and ’Validation Frequency’ to 35 I ended up with a lower accuracy
86.70% When I changed ’InitialLearnRate’ to 0.00001 I ended up
with an extremely low accuracy of 15.55%

Final Accuracy
Using the following layer and training options: layers = [image
Input Layer ([x y z]); convolution 2d Layer(3,8,’Padding’,’same’)
batch Normalization Layer relu Layer(); Max Pooling 2d Layer
(5,’Stride’,2) convolution 2d Layer (3,16,’Padding’,’same’) batch
Normalization Layer relu Layer(); average Pooling 2d Layer
(5,’Stride’,2)	 convolution 2d Layer (3,16,’Padding’,’same’)
batch Normalization Layer relu Layer (); maxPooling2dLayer
(5,’Stride’,2) convolution 2d Layer (3,32,’Padding’,’same’) batch
Normalization Layer relu Layer(); Average Pooling 2d Layer
(5,’Stride’,2) convolution 2d Layer (3,32,’Padding’,’same’) batch
Normalization Layer relu Layer(); fully Connected Layer (size(-
categories,2),’Bias Learn Rate Factor’,2); soft max Layer classi-
fication Layer]; %% Specify Training Options options = training
Options(’sgdm’, ... ’Initial Learn Rate’, 0.001, ... ’Validation Da-
ta’,imds Validation, ... ’Validation Frequency’,50, ... ’Shuffle’,’ev-
ery-epoch’, ... ’Max Epochs’, 10, ...’Mini Batch Size’, 8, ...’Learn
Rate Schedule’,’piecewise’, ... ’Learn Rate Drop Factor’,0.5, ...
’Learn Rate Drop Period’,50, ... ’Execution Environment’,’ paral-
lel’, ... ’Verbose’, true, ’Plots’,’ training-progress’);

Figure 2.

Figure 3.

Figure 4.

Figure 5

Figure 6.

 Volume 3 | Issue 3 | 257J Robot Auto Res, 2022

Figure 7.

Figure 8.

Samples of Identification Results
The for loop for samples was adjusted to display all mismatches
then a sample of successful matches were displayed with the same
numbers of mismatches as follows:

Acknowledgment
Wish to thank my parents for their support and encouragement
throughout my studies.

Reference
1.	 Kumar, A., & Passi, A. (2008). Comparison and combination

of iris matchers for reliable personal authentication. Pattern
recognition, 43(3), 1016-1026.

Copyright: ©2022 Wael Alnahari. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

https://www.sciencedirect.com/science/article/abs/pii/S0031320309003343
https://www.sciencedirect.com/science/article/abs/pii/S0031320309003343
https://www.sciencedirect.com/science/article/abs/pii/S0031320309003343

